Chapter 4: Gates and Circuits

Computers and Electricity – Ch. 4.1

- voltage: measure of electromotive force (analogy: water pressure in a garden hose)
- voltage is variable: we are only interested in **off** (no voltage) or **on** (high voltage, 5V)
- voltage can fluctuate (brown outs): **off** (0V to 2V), **on** (2V to 5V)
- maximum voltage is 5V so you won't "fry" the delicate wires
- gate:
 - device that performs a basic operation on electrical signals
 - one or more input signals, produces one output signal
 - basic operations: not, and, or, xor, nand, nor
- circuits
 - combination of interacting gates designed to accomplish a specific logical function
 - e.g. perform arithmetic, store values
- notation for describing behaviour of gates and circuits:
 - boolean algebra
 - logic diagrams
 - truth tables
- boolean algebra:
 - (abstract/modern) algebra: system that consists of elements and operations performed on them
 - only two elements (true/false, yes/no, on/off)
 - operations: or, and, not
- logic diagrams:
 - a graphical representation of a circuit
- truth table:
 - a table showing all possible input values and the associated output values

Gates – Ch. 4.2

- tour of the six main types of gates
- why these six? can build everything we need from them
 - operations in boolean algebra: and, or, not
 - for convenience: xor, nand, nor
 - easier to physically build <u>nand</u> gate than an <u>and</u> gate
- details for the six gates: see Chapter 4.2

Constructing Gates – Ch. 4.3

- transistor:
 - a device that acts either as a wire or resistor, depending on voltage level of input signal
 - a switch, with no moving parts, controlled by another wire when on the switch is closed, otherwise open
- semiconductor:
 - material out of which this switch with no moving parts is constructed
- basic properties of electricity: see Chapter 4.3

Circuits – Ch. 4.4

- combinational circuits:
 - output solely determined by the input values
 - change an input value at any point in time and the output changes immediately
- circuit equivalence:
 - same output for each corresponding input-value combination for two circuits
 - useful to simplify circuits
- adder:
 - circuits to implement pencil-and-paper arithmetic
- multiplexor:
 - a circuit that uses several input control signals to determine which of several input data lines to route to its output