Representing Numeric data – Ch. 3.2 .../continued

Examples of Arithmetic in Ten's Complement

Add:	-35	plus	+25	equals	-10	
	65	plus	25	equals	90	
Add:	+17	plus	+25	equals	+42	
	17	plus	25	equals	42	
Add:	+20	plus	-30	equals	-10	
	20	plus	70	equals	90	
Add:	-20	plus	+30	equals	+10	
	80	plus	30	equals	10	(110)

More Examples of Arithmetic in Ten's Complement

+5	05	-4	96	
+ -6	+ 94	+ +6	+ 06	
-1	99	+2	02	
-2	98	-5	95	95
+ -4	+ 96	- +3	- 03	+ 97
-6	94	-8		92

- subtraction reduces to addition because A B = A + (-B)
- easy to convert a positive number to its negative counterpart, and a negative number to its positive counterpart.

Two's Complement Representation

- negative numbers: $-x \equiv 2^n x$
- used in computers because subtraction reduces to addition
 ⇒ simpler circuits

To form a negative number:

- start with the positive version of the number
- flip the bits: $0 \rightarrow 1$ and $1 \rightarrow 0$
- add 1 to the number produced in the previous step

The above steps are an indirect way of carrying out the evaluation of $2^n - x$, namely $-x \equiv [(2^n - 1) - x] + 1$

Note: same process will convert between positive and negative representations, in both directions.

Example:

$2^4 - x = 2^4 - 5 = 16 - 5 = 11$	in binary this is	10000
		$- 101 \\ 1011$
$(2^4 - 1) - x = (2^4 - 1) - 5 = 10$	in binary this is	1111 - <u>101</u>
		1010

Now add one to this result.

Example (4-bits, i.e. 4 digit binary)

Natural	Representation	Sign-Magnitude	Two's Complement
0	0000	+0	+0
1	0001	+1	+1
2	0010	+2	+2
3	0011	+3	+3
4	0100	+4	+4
5	0101	+5	+5
6	0110	+6	+6
7	0111	+7	+7
8	1000	not used	-8
9	1001	-1	-7
10	1010	-2	-6
11	1011	-3	-5
12	1100	-4	-4
13	1101	-5	-3
14	1110	-6	-2
15	1111	-7	-1

Side-by-side Comparision: Sign-Magnitude vs. Two's Complement

Big payoff: subtraction reduces to addition

			throw digit away					throw digit away
	_				-			
	+1	=	10001		-5 =		=	11011
+	+3	=	+0011	-	+3 =	-0011	=	+1101
	-2	=	1110		-2 =	1110	=	1110
	-							
	+5	=	0101		-1 =		=	1111
+	+3	=	+0011	_	+3 =	-0011	=	+1101
	+2	=	0010		+2 =	0010	=	0010

Sample Test/Exam questions:

Question:

Convert -173 to 12-bit two's complement representation. Show all your work.

Answer:

Step 1: convert 173 to binary by repeated division by 2.

173 ÷ 2	86	1	1
86÷2	43	0	01
43 ÷ 2	21	1	101
21 ÷ 2	10	1	1101
10 ÷ 2	5	0	01101
5 ÷ 2	2	1	101101
2 ÷ 2	1	0	0101101
1 ÷ 2	0	1	10101101

Step 2: expand answer in Step 1 to 12-bits

000010101101

Step 3: flip-the-bits and add one

000010101101

Final answer: -173 = 111101010011

Question: Convert +173 to 12-bit two's complement representation. Show all your work.

Question: Convert the 12-bit two's complement number 111101010011 to decimal.