Positional notation – Ch. 2.2 .../continued

Conversions between Decimal and Binary

Binary to Decimal

Technique

- use the definition of a number in a positional number system with base 2
- evaluate the definition formula using decimal arithmetic

Example

$$543210 \leftarrow \text{position} = \text{corresponding power of } 2$$

||||||
$$101011 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 43 \text{ (decimal)}$$

$$d_5d_4d_3d_2d_1d_0$$

Decimal to Binary

Technique

- repeatedly divide by 2
- remainder is the next digit
- binary number is developed right to left

Example

173 ÷ 2	86	1	1
86 ÷ 2	43	0	01
43 ÷ 2	21	1	101
21 ÷ 2	10	1	1101
10 ÷ 2	5	0	01101
5 ÷ 2	2	1	101101
2 ÷ 2	1	0	0101101
1 ÷ 2	0	1	10101101

What is going on in the repeated division by 2?

Example

43÷2	21	1	1
21 ÷ 2	10	1	11
10 ÷ 2	5	0	011
5 ÷ 2	2	1	1011
2 ÷ 2	1	0	01011
1 ÷ 2	0	1	101011

43 (decimal) = $1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$ $43 \div 2$ produces a quotient of 21, with a remainder of 1 $43 \div 2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1}$ 21 (decimal) = $1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ $21 \div 2$ produces a quotient of 10, with a remainder of 1 $21 \div 2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1}$ 10 (decimal) = $1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ $10 \div 2$ produces a quotient of 5, with a remainder of 0 $10 \div 2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1}$ 5 (decimal) = $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ $5 \div 2$ produces a quotient of 2, with a remainder of 1 $5 \div 2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1}$ 2 (decimal) = $1 \times 2^1 + 0 \times 2^0$ $2 \div 2$ produces a quotient of 1, with a remainder of 0 $2 \div 2 = 1 \times 2^{0} + 0 \times 2^{-1}$ 1 (decimal) = 1×2^0 $1 \div 2$ produces a quotient of 0, with a remainder of 1 $1 \div 2 = 0 \times 2^0 + 1 \times 2^{-1}$

Generalization: Conversions between Decimal and base b

base b to Decimal

Technique

- use the definition of a number in a positional number system with base *b*
- evaluate the definition formula using decimal arithmetic

Decimal to base b

Technique

- repeatedly divide by *b*
- remainder is the next digit
- base *b* number is developed right to left

Conversions between Binary and Octal/Hexadecimal

Binary to Octal

Technique

- group bits into threes, right to left
- convert each such group to an octal digit

Example

1011010111 = 001 011 010 111 = 1327 (octal)

Binary to Hexadecimal

Technique

- group bits into fours, right to left
- convert each such group to a hexadecimal digit

Example

1011001011 = 0010 1100 1011 = 2CB (hexadecimal)

Octal to Binary

Technique

- convert each octal digit to a three-bit binary representation

Example

705 = 111 000 101 = 111000101 (binary)

Hexadecimal to Binary

Technique

- convert each octal digit to a four-bit binary representation

Example

10AF = 0001 0000 1010 1111 = 1000010101111 (binary)

You need the following tables in the above conversion processes: (These can easily be reconstructed in the margins of a test paper when needed)

Binary $\leftarrow \rightarrow$	$\leftrightarrow \text{Octal} \qquad \qquad \text{Binary} \leftrightarrow \text{Hexadecimal}$				
Octal Digits	Binary	Hex Digits	Binary		
0	000	0	0000	8	1000
1	001	1	0001	9	1001
2	010	2	0010	(10) A	1010
3	011	3	0011	(11) B	1011
4	100	4	0100	(12) C	1100
5	101	5	0101	(13) D	1101
6	110	6	0110	(14) E	1110
7	111	7	0111	(15) F	1111

What about converting between Octal and Hexadecimal?

Octal to Hexadecimal:

Convert Octal to Binary and then convert Binary to Hexadecimal.

Hexadecimal to Octal:

Convert Hexadecimal to Binary and then convert Binary to Octal.

Chapter 3 Data Representation

Data and computers – Ch. 3.1

- everything inside a computer is stored as patterns of 0s and 1s.
- numbers, text, audio, video, images, graphics, etc.
- how do you convert it to 0s and 1s.
- how do you store the 0s and 1s efficiently.

Representing Numeric data – Ch. 3.2

Representing Natural numbers with a finite number of digits

General Property

Number of digits	Min	Max
n	0	$b^{n} - 1$

Examples:

<i>b</i> =10, <i>n</i> =3	000 to 999	
<i>b</i> =2, <i>n</i> =3	000 to 111 (equivalent to 0 to 7, in decimal)	
<i>b</i> =8, <i>n</i> =3	000 to 777 (equivalent to 0 to 511, in decima	l)
<i>b</i> =16, <i>n</i> =3	000 to FFF (equivalent to 0 to , in deci	mal)

Representing Negative Number (Integers)

Basic Definition

• an integer is a number which has no fractional part

Examples: +123 -67

Integers (Signed, natural numbers)

- previously: unsigned numbers only, i.e. natural numbers
- need mechanism to represent both positive and negative numbers
- two schemes: 1) sign-magnitude, 2) complementary representation

Sign-Magnitude

in binary:

- sign: left-most bit (0 = positive, 1 = negative)
- magnitude: remaining bits

Example: (using 6-bit sign-magnitude representation)

+5 = 000101 -5 = 100101

Ranges

-	Binary			
	Unsigned		Sign-Magnitude	
	(Natural Number)		(Inte	eger)
Number of bits	Min	Max	Min	Max
1	0	1		
2	0	3	-1	+1
3	0	7	-3	+3
4	0	15	-7	+7
5	0	31	-15	+15
6	0	63	-31	+31
etc.				
n	0	$2^{n} - 1$	$-(2^{n-1}-1)$	$+(2^{n-1}-1)$

Difficulties with Sign-Magnitude

- two representations for zero +0 = 000000 -0 = 100000
- arithmetic is awkward, especially subtraction

Complementary Representation

- positive numbers are represented by their corresponding natural numbers
- negative numbers are represented as (very) large natural numbers
- subtraction reduces to addition

negative numbers: $-x \equiv b^n - x$

Example:

Let b = 10 and n = 2

Positive		Negative		
numbers		numbers		
00				
01		99	(-1)	
02		98	(-2)	
03		97	(-3)	
		••		
49		51	(-49)	
		50	(-50)	
	00 01 02 03 49	00 01 02 03 49	Neg num 00 01 99 02 98 03 97 49 51 50	

Visualization:

