
Chapter 1

Some Elementary Informal
Set Theory

Set theory is due to Georg Cantor. “Elementary” in the title above does not
apply to the body of his work, since he went into considerable technical depth
in this, his new theory. It applies however to our coverage as we are going to
restrict ourselves to elementary topics only.

Cantor made many technical mistakes in the process of developing set theory,
some of considerable consequence. The next section is about the easiest and
most fundamental of his mistakes.

How come he made mistakes? The reason is that his theory was not based
on axioms and rigid rules of reasoning —a state of affairs for a theory that we
loosely characterise as “informal”.

At the opposite end of informal we have the formal theories that are based
on axioms and logic and are thus “safer” to develop (they do not lead to obvious
contradictions).

One cannot fault Cantor for not using logic in arguing his theorems —that
process was not invented when he built his theory— but then, a fortiori, mathe-
matical logic was not invented in Euclid’s time either, and yet he did use axioms
that stated how his building blocks, points, lines and planes interacted and be-
haved!

Guess what: Euclidean Geometry leads to no contradictions.

The problem with Cantor’s set theory is that anything goes as to what
sets are and how they come about. He neglected to ask the most fundamental
question: “How are sets formed?”† He just sidestepped this and simply said
that a set is any collection. In fact he took the term “set” as just a synonym
for “collection”, “class”, “aggregate”, etc.

†It’s amazing how much trouble could be avoided if he had done so!

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



2 1. Some Elementary Informal Set Theory

Failure to ask and answer this question leads to “trouble”, which is the
subject matter of the next section.

One can still do “safe” set theory —devoid of “trouble”, that is— within
an informal (non axiomatic) setting, but we have to ask and answer how sets
are built first and derive from our answer some principles that will guide (and
protect!) the theory’s development! We will do so.

1.1. Russell’s “Paradox”

Cantor’s näıve (this adjective is not derogatory but is synonymous in the litera-
ture with informal and non axiomatic) set theory was plagued by paradoxes, the
most famous of which (and the least “technical”) being pointed out by Bertrand
Russell and thus nicknamed “Russell’s paradox”.†

His theory is the theory of collections (i.e., sets) of objects, as we mentioned
above, terms that were neither defined nor how they were built.‡

This theory studies operations on sets, properties of sets, and aims to use set
theory as the foundation of all mathematics. Naturally, mathematicians “do”
set theory of mathematical object collections —not collections of birds and other
beasts. We have learnt some elementary aspects of set theory at high school.
We will learn more in this course.

1. Variables. Like any theory, informal or not, informal set theory —a
safe variety of which we will develop here— uses variables just as algebra
does. There is only one type of variable that varies over set and over
atomic objects too, the latter being objects that have no set structure.
For example integers. We use the names A,B,C, . . . and a, b, c, . . . for
such variables, sometimes with primes (e.g., A′′) or subscripts (e.g., x23),
or both (e.g., x′′′22, Y

′
42).

2. Notation. Sets given by listing. For example, {1, 2} is a set that contains
precisely the objects 1 and 2, while {1, {5, 6}} is a set that contains pre-
cisely the objects 1 and {5, 6}. The braces { and } are used to show the
collection/set by outright listing.

3. Notation. Sets given by “defining property”. But what if we cannot
(or will not) explicitly list all the members of a set? Then we may define

†From the Greek word “paradoxo” (παράδοξο) meaning against one’s belief or knowledge;
a contradiction.

‡This is not a problem in itself. Euclid too did not say what points and lines were; but
his axioms did characterise their nature and interrelationships: For example, he started from
these (among a few others) a priori truths (axioms): a unique line passes through two distinct
points; also, on any plane, a unique line l can be drawn parallel to another line k on the plane
if we want l to pass through a given point A that is not on k.

The point is:

� You cannot leave out both what the nature of your objects is and how they behave/interrelate
and get away with it! Euclid omitted the former but provided the latter, so all worked out. �
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1.1. Russell’s “Paradox” 3

what objects x get in the set/collection by having them to pass an entrance
requirement, P (x):

An object x gets in the set iff (if and only if ) P (x) is
true of said object.

Let us parse “iff”:

(a) The IF : So, IF P (x) is true, then x gets in the set (it passed the
“admission requirement”).

(b) The ONLY IF : So, IF x gets in the set, then the only way for this
to happen is for it to pass the “admission requirement”; that is, P (x)
is true.

In other words, “iff” (as we probably learnt in high school or some previ-
ous university course such as calculus) is the same thing as “is equivalent”:

“x is in the set” is equivalent to “P (x) is true”.

We denote the collection/set† defined by the entrance condition P (x) by

{x : P (x)} (1)

but also as
{x |P (x)} (1′)

reading it “the set of all x such that (this “such that” is the “:” or “|”)
P (x) is true [or holds]”

4. “x ∈ A” is the assertion that “object x is in the set A”. Of course, this
assertion may be true or false or “it depends”, just like the assertions of
algebra 2 = 2, 3 = 2 and x = y are so (respectively).

5. x /∈ A is the negation of the assertion x ∈ A.

6. Properties

• Sets are named by letters of the Latin alphabet (cf. Variables,
above). Naming is pervasive in mathematics as in, e.g., “let x = 5”
in algebra.

So we can write “let A = {1, 2}” and let “c = {1, {5, 6}}” to give
the names A and c to the two example sets above, ostensibly because
we are going to discuss these sets, and refer to them often, and it is
cumbersome to keep writing things like {1, {5, 6}}. Names are not
permanent ;‡ they are local to a discussion (argument).

†We have not yet reached Russell’s result, so keeping an open mind and humouring Cantor
we still allow ourselves to call said collection a “set”.

‡OK, there are exceptions: ∅ is the permanent name for the empty set —the set with
no elements at all— and for that set only; N is the permanent name of the set of all natural
numbers.
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4 1. Some Elementary Informal Set Theory

• Equality of sets (repetition and permutation do not matter!)

Two sets A and B are equal iff they have the same members. Thus
order and multiplicity do not matter! E.g., {1} = {1, 1, 1}, {1, 2, 1} =
{2, 1, 1, 1, 1, 2}.

• The fundamental equivalence pertaining to definition of sets by “defin-
ing property”: So, if we name the set in (1) above, S, that is, if we
say “let S = {x : P (x)}”, then “x ∈ S iff P (x) is true”

� By the way, we almost never say “is true” unless we want to shout
out this fact. We would say instead: “x ∈ S iff P (x)”.

Equipped with the knowledge of the previous bullet, we see that the
symbol {x : P (x)} defines a unique set/collection: Well, say A and
B are so defined, that is, A = {x : P (x)} and B = {x : P (x)}. Thus

x ∈ A
A={x:P (x)}

iff P (x)
B={x:P (x)}

iff x ∈ B

thus

x ∈ A iff x ∈ B

and thus A = B. �

Let us pursue, as Russell did, the point made in the last bullet above. Take
P (x) to be specifically the assertion x /∈ x. He then gave a name to

{x : x /∈ x}

say, R. But then, by the last bullet above,

x ∈ R iff x /∈ x (2)

If we now believe,† as Cantor, the father of set theory did not question and went
ahead with it, that every P (x) defines a set, then R is a set.

� What is wrong with that? �

Well, if R is a set then this object has the proper type to be plugged into
the variable of type “math object”, namely, x, throughout the equivalence (2)
above. But this yields the contradiction

R ∈ R iff R /∈ R (3)

This contradiction is called the Russell’s Paradox.

†Informal mathematics often relies on “I know so” or “I believe” or “it is ‘obviously’
true”. Some people call “proofs” like this —i.e., “proofs” without justification(s)— “proofs
by intimidation”. Nowadays, with the ubiquitousness of the qualifier “fake”, one could also
call them “fake proofs”.

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



1.1. Russell’s “Paradox” 5

This and similar paradoxes motivated mathematicians to develop formal
symbolic logic and look to axiomatic set theory† as a means to avoid paradoxes
like the above.

Other mathematicians who did not care to use mathematical logic and ax-
iomatic theories found a way to do set theory informally, yet safely.

You see, they asked and answered “how are sets formed?”‡

Read on!

†There are many flavours or axiomatisations of set theory, the most frequently used being
the “ZF” set theory, due to Zermelo and Fraenkel.

‡Actually, axiomatic set theory —in particular, its axioms are— is built upon the answers
this group came up with. This story is told at an advanced level in [Tou03].
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Chapter 2

Safe Set Theory

� So, some collections are not —technically— sets, as the Russell Paradox taught
us! How do we tell them apart? �

From now one we will deal with collections that may or may not be sets,
with a promise of learning how to create sets if we want to!

The modern literature uses the terminology “class” for any such collection
(and uses the term “collection” non technically and sparsely).

The above is captured by the following picture:

All Classes

All Sets

All Proper Classes
(nonSets)

2.0.1 Definition. (Classes and sets)
From now on we call all collections classes.

Definitions by defining property “Let A = {x : P (x)}” always define a class,
but as we saw, sometimes —e.g., if “P (x)” is specifically “x /∈ x”— that class
is not a set (Section 1.1). Classes that are not sets are called proper classes.
We will normally use what is known as “blackboard bold” notation and capital
latin letters to denote classes by names such as A,B,X. If we determine that
some class A is a set, we would rather write it as A, but we make an exception
for the following sets: Mathematicians use notation and results from set theory
in their everyday practice. We call the sets that mathematicians use the “real
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8 2. Safe Set Theory

sets” of our mathematical intuition, like the set of natural numbers, N (also
denoted by ω), integers Z, rationals Q and reals R. �

� In forming the class {x : P (x)} for any property P (x) we say that we apply
comprehension. It was the Frege/Cantor who believed (explicitly or implicitly)
that comprehension was safe —i.e., always produced a set. Russell proved that
it was not. �

It is known that set theory, using as primitives the notions of set, atom
(an object that is not sub-divisible; not a collection of objects), and the relation
belongs to (∈), is sufficiently strong to serve as the foundation of all mathematics.

Mathematicians use notation and results from set theory in their everyday
practice. We call the sets that mathematicians use the “real sets” of our math-
ematical intuition, like the set of natural numbers, N (also denoted by omega),
integers Z, rationals Q and reals R.

2.1. The “real sets”

So, how can we tell, or indeed guarantee, that a certain class is a set?
Russell proposed this “recovery” from his Paradox:

� Make sure that sets are built by stages, where at stage 0 all atoms are available.
Atoms are also called urelements in the literature from the German Urelemente,
which in analogy with the word “urtext” —meaning the earliest text— would
mean that they are the “earliest” mathematical objects. Witness that they are
available at stage 0! �

We may then collect atoms to form all sorts of “first level” sets. We may
proceed to collect any mix of atoms and first-level sets to build new collections
—second-level sets— and so on. Much of what set theory does is attempting to
remove the ambiguity from this “and so on”. See below, Principles 0–2.

Thus, at the beginning we have all the level-0, or type-0, objects available to
us. For example, atoms such as 1, 2, 13,

√
2 are available. At the next level we

can include any number of such atoms (from none at all, to all) to build a set,
that is, a new mathematical object. Allowing the usual notation, i.e., listing of
what is included within braces, we may cite a few examples of level-1 sets:

L1-1. {1}.

L1-2. {1, 1}.

L1-3. {1,
√

2}.

L1-4. {
√

2, 1}.

We already can identify a few level-2 objects, using what (we already know)
is available:

L2-1. {{
√

2, 1}}.
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� Note how the level of nesting of { }-brackets matches the level or stage of the
formation of these objects! �

2.1.1 Definition. (Class and set equality) This definition applies to any classes,
hence, in particular, to any sets as well.

Two classes A and B are equal —written A = B— means

x ∈ A iff x ∈ B

That is, an object is in A iff it is also in B.
A is a subclass of B —written A ⊆ B— means that every element of the first

class occurs also in the second, or

If x ∈ A, then x ∈ B

If A is a set, then we say it is a subset of B.
If we have A ⊆ B but A 6= B, then we write A $ B (some of the literature

uses A ( B or even A ⊂ B nstead) and say that A is a proper subclass of B.
Caution. In the terminology “proper subclass” the “proper” refers to the

fact that A is not all of B. It does NOT say that A is not a set! It may be a
set and then we say that it is “proper subset” of B. �

� If n is an integer-valued variable, then what do you understand by “2n is even”?
The normal understanding is that “no matter what the value of n is, 2n is even”,
or “for all values of n, 2n is even”.

When we get into our logic topic in the course we will see that we can write
“for all values of n, 2n is even” with less English as “(∀n)(2n is even)”. So
“(∀n)” says “for all (values of) n”.

Mathematicians often prefer to have statements like “2n is even” with the
“for all” always implied.† You can write a whole math book without writing ∀
even once, and without overdoing the English. �

2.1.2 Remark. Since “iff” between two statements S1 and S2 means that we
have both directions

If S1, then S2

and
If S2, then S1

we have that “A = B” is the same as (equivalent to) “A ⊆ B and B ⊆ A”. �

2.1.3 Example. In the context of the “A = {x : P (x)}” notation we should re-
mark that notation-by-listing can be simulated by notation-by-defining-property:
For example, {a} = {x : x = a} —here “P (x)” is x = a.

†An exception occurs in Induction that we will study later, where you fix an n (but keep
it as a variable, not as 5 or 42) and assume the “induction hypothesis” P (n). But do not
worry about this now!

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



10 2. Safe Set Theory

Also {A,B} = {x : x = A or x = B}. Let us verify the latter: Say x ∈ lhs.†

Then x = A or x = B. Thus x must be A or B. But then the entrance
requirement of the rhs‡ is met, so x ∈ rhs.

Conversely, say x ∈ rhs. Then the entrance requirement is met so we have
(at least) one of x = A or x = B. Trivially, in the first case x ∈ lhs and ditto
for the second case. �

We now postulate the principles of formation of sets!

Principle 0. Sets and atoms are the mathematical objects of our (safe) set
theory.

Sets are formed by stages. At stage 0 we acknowledge the presence of atoms.
They are given outright, they are not built.

At any stage Σ we may build a set, collecting together other mathematical
objects (sets or atoms) provided these (mathematical) objects we put into our
set were available at stages before Σ.

Principle 1. Every set is built at some stage.

Principle 2. If Σ is a stage of set construction, then there is a stage Φ after
it.

� Principle 2 makes clear that we have infinitely many stages of set formation in
our toolbox. �

2.1.4 Remark. If some set is definable (“buildable”) at some stage Σ, then it
is also definable at any later stage as well, as Principle 0 makes clear.

The informal set-formation-by-stages will guide us to build, safely, all the
sets we may need in order to do mathematics. �

2.2. What caused Russell’s paradox

How would the set-building-by-stages doctrine avoid Russell’s paradox?

� Recall that à la Cantor we get a paradox (contradiction) because we insisted to
believe that all classes are sets, that is, following Cantor we “believed” Russell’s
“R” was a set. �

Principles 0–2 allow us to know a priori that R is a proper class. No con-
tradiction!

How so?

†Left Hand Side.
‡Right Hand Side.
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OK, is x ∈ x true or false? Is there any mathematical object x —say, A—
for which it is true?

A ∈ A? (1)

Well, for atom A, (1) is false since atoms have no set structure, that is, are
not collections of objects. An atom A cannot contain anything, in particular it
cannot contain A.

What if A is a set and A ∈ A? Then in order to build A, the set, we have
to wait until after its member, A is built (Principle 0). So, we need (the left)
A to be built before (the right) A in (1).

Absurd!

So (1) is false. A being arbitrary, we demonstrated that

x ∈ x is false

thus x /∈ x is true (forall x), therefore R of Section 1.1 is U, the universe of all
sets and atoms.

R = U

So? Well this U is “far too big” to be built as a set and we should never have
used {x : x /∈ x} so recklessly!

“Too Big” is bad in set theory; it intuitively means we ran out of stages after
we built all the members of the class! No stages left to build the class as a set!

The “intuition”, as always, is vague.
So here is why U is not a set. Well, if it is

• U ∈ U since the rhs contains all sets and we believe the lhs to be a set.

• but we just saw that the above is false if U is a set!

So U, aka R, is a proper class. Thus, the fact that R is not a set is neither
a surprise, nor paradoxical. It is just a proper class as we just have recognised.

2.3. Some useful sets

2.3.1 Example. (Pair) By Principle 0, if A and B are sets or atoms, then let
A be available at stage Σ and B at stage Σ′. Without loss of generality say Σ′

is not later than Σ. Let then pick a stage Σ′′ after Σ (Principle 2). This will be
be after both (cf. Principle 2) Σ,Σ′.

At stage Σ′′ we can build
{A,B} (1)

as a set (cf. Principle 0).
We call (1) the (unordered) pair set.

Pause. Why “unordered”? See 2.1.1.J �
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