Gene Cheung

Associate Professor, York University
22nd August, 2019

Fast Graph Sampling using
Gershgorin Disc Alignment

[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc 1
Alignment,"” submitted to IEEE Transactions on Signal Processing, July 2019.



Qutline

« What is Graph Sampling?
* Related Work

« Signal Reconstruction using GLR
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Graph Sampling (with and without noise)

* Q: How to choose best samples for graph-based reconstruction?

e Existing graph sampling strategies extend
to graph data kernels:

« Assume bandlimited signal.

« Greedily select most “informative” samples by

computing extreme eigenvectors of sub-matrix.

« Computation-expensive.

[1] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” 3
IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3775-3789, 2016.



Related Works

Aggressive sampling [1] A-optimal
(M. Tsitsvero.TSP2016; F. Wang. SPL2018)

E-optimal
(S. Chen. TSP2015)

Graph sampling —  Local measurement [2] - Bandlimitedness _
Spectral proxies
(A. Anis. TSP2016; A. Anis. TIT2018)

— Deterministic _
Localized coverage
(A. Sakiyama. TSP2019)

— Selection sampling —

— Smoothness: GMRF model
(P. Chen. ICASSP2018;Y. Bai. ICASSP 2019)

— Random selection [3]

@8 Eigen-decomposition Free

[1] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with successive local aggregations.” IEEE

Transactions on Signal Processing, vol. 64, no. 7, pp. 1832-1843, 2016.

[2] X. Wang, J. Chen, and Y. Gu, “Local measurement and reconstruction for noisy bandlimited graph signals,” Signal Processing, vol.

129, pp. 119-129, 2016.

[3] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of bandlimited signals on graphs,” Applied and 4
Computational Harmonic Analysis, vol. 44, no. 2, pp. 446-475, 2018.



Signal Reconstruction using GLR D@ @

sampling matrix 01 0 0
observation / desired signal - [O 0 O 1]

- Signal Model: ol
: y =HX+V «<— noise Sample set {2, 4}

e Signal prior is graph Laplacian regularizer (GLR) [1]:

1 2 z :
TV v — E _ =2
x'Lx = E Wi’j(xl' — XJ) = Akxk _ _
T /\ = <—__ signal contains

signal smooth w.r.t. graph mostly low graph freq.

« MAP Formulation:

fidelity term — ) ,_— slgnal prior
mxlnIIy — Hx||5 + u xTLx

(HFH 4+ uL)x* =y
T linear system of eqn’s solved using conjugate gradient

Ryerson 8/22/2019 5



Stability of Linear System

« Examine system of linear equations :

(HHH + uL)x* =y
7
coefficient matrix B

« Stability depends on the condition number
Amas/ Apin) Of coeff. matrix B.

* A\, IS upper-bounded by 1+ u 2*d ...

max

 Goal: select samples to maximize A,
(without computing eigen-pairs)!

e Also minimizes worst-case MSE:

IX —x]|[, <u H

Amin (B) 2

IL(x + 1)l + [l

1 —-1 0
-1 2 -1
L_0—12
0 0 -1
0 0 0 O]
01 0 O
TH =
HHoooo
0 0 0 1]

Sample set {2, 4}
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Gershgorin Circle Theorem @006

C A 1 -1 0 0
« Gershgorin Circle Theorem: |-tz -1 o
« Row /of L maps to a Gershgorin o AT
disc w/ [ ;and R.
+—>
¢ >
J#I h—_
1 2 3 4

* A\, is lower-bounded by smallest
left-ends of Gershgorin discs:

min L;; — R; < Anin
l

« Graph Laplacian L has all Gershgorin disc
left-ends at 0 — L is psd.

Ryerson 8/22/2019 7




Gershgorin Disc Alignment

« Main Idea: Select samples to max smallest
disc left-end of coefficient matrix B:

B=H"H+uL < coeff. matrix

« Sample node — shift disc.

e Consider similar transform of B:

C =SBS™1 «— similarity transform
diagonal matrix w/ scale factors

« Scale row — expand disc radius.
— shrink neighbors’ disc radius.

Ryerson 8/22/2019
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Gershgorin Disc Alignment

« Main Idea: Select samples to max smallest
disc left-end of coefficient matrix B:

B=H"H+uL < coeff. matrix

« Sample node — shift disc.

e Consider similar transform of B:
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Gershgorin Disc Alignment

« Main Idea: Select samples to max smallest
disc left-end of coefficient matrix B:

B=H"H+uL < coeff. matrix

« Sample node — shift disc.

e Consider similar transform of B:

Sample set {2}
Scale factor {1,s,,1,1}

C =SBS™1 «— similarity transform
diagonal matrix w/ scale factors

« Scale row — expand disc radius.
— shrink neighbors’ disc radius.
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Primal Sample Selection Problem

« Optimization: Select sample vector a and scalars s:

max  min Cii — E cij)
a,s e{1,....N} —
JF1

s.t. C=S(A+uL)S™!
N

3 a; € {0 1} Z 1y < ‘P:?

1=1

A = diag(a)

S = diag(s), s; > 0.

Ryerson 8/22/2019
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Primal Sample Selection Problem

« Optimization: Select sample vector a and scalars s:

max | min Cii — E cij) smallest disc left-end of C
a,s lie{l,....N} vy
JF1

s.t. C=S(A+puL)S™!

N

3 a; € {0 1} Z 1y < -Hrt

1=1
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Primal Sample Selection Problem

« Optimization: Select sample vector a and scalars s:

max | min Cii — E cij) smallest disc left-end of C
a,s |ic{l,... N} vy
JF1

S.1. [(j —) (A + }uL) S_l }% C is similar transform of coeff. matrix
N

3 a; € {0 1} Z 1y < -Krt

1=1

A = diag(a)

S = diag(s), s; > 0.
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Primal Sample Selection Problem

« Optimization: Select sample vector a and scalars s:

max | min Cii — E cij) smallest disc left-end of C
a,s |ic{l,... N} vy
JF1

S.1. [(j —) (A + P:L) S_l J% C is similar transform of coeff. matrix
N

. . sample vector a is binary
A = diag(a), [ai € {0, 1} E a; < K. and within budget K
1=1

S = diag(s), s; > 0.

Ryerson 8/22/2019 15



Primal Sample Selection Problem

« Optimization: Select sample vector a and scalars s:

max | min Cii — E il smallest disc left-end of C
a,s |ie{l,...,N} —t
JF1
S.1. [C — S (A + P:L) S_l J% C i1s similar transform of coeff. matrix
N | t IS bi
. . sample vector a is binary
A = diag(a), [ai € {0, 1} E a; < K. and within budget K
1=1

S = diag(s). [ s; > 0. F scalars s are positive
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Primal Sample Selection Problem

« Optimization: Select sample vector a and scalars s:

max | min Cii — E cij) smallest disc left-end of C
a,s |ic{l,... N} vy
JF1

S.1. [(j —) (A + P:L) S_l }% C is similar transform of coeff. matrix
N | t is bi
. . sample vector a is binary
A = diag(a), [ai € {0, 1} Z a; < K, and within budget K
=1
S = diag(s). [ s; > 0. F scalars s are positive

e Difficulty: max-min objective is hard to optimize.

Ryerson 8/22/2019 17



Dual Sample Selection Problem

« Dual Formulation: Select sample vector a and scalars s:

N

min E (;
a,s

1=1

st. C=S(A+uL)S i— Y el > T, Vi
71
A = diag(a). a; € {0,1},

S = diag(s). s; > 0.

Ryerson 8/22/2019
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Dual Sample Selection Problem

« Dual Formulation: Select sample vector a and scalars s:

total number of samples

st. C=S(A+uL)S i— Y el > T, Vi
71
A = diag(a). a; € {0,1}.

S = diag(s). s; > 0.

Ryerson 8/22/2019
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Dual Sample Selection Problem

« Dual Formulation: Select sample vector a and scalars s:

total number of samples

st. C=S(A+puL)S™t, [c.,;,,,; =¥ el > T vg}
j#i
A = diag(a). a; € {0,1}. " all disc left-ends are at least T

S = diag(s). s; > 0.

- Proposition: If there exists threshold 7 s.t. optimal sol'n (a,s) to dual
satisfies 2 a,= K, one dual sol'n is also optimal to primal.

Ryerson 8/22/2019 20



Solving the Dual: align disc at /7

- Breadth First Iterative Sampling (BFIS):

* Given initial node set, threshold 7.

4,
5.

Sample chosen node /
(shift disc)

Scale row /

(expand disc radius /to 7)

/\1/S3<1

®0 006

st 4

l/sz<1/\ /\1/53<1
W12

d>

-W32

-W23

-W34 E;

s3>1

-Wa3

da |-was

W21
34 >
-Was
5

-wsa| ds

If disc left-end of connected node y > 7,

Scale row
(expand disc radius jto 7)

Else,
Add node jto node set.

Goto 1 if node set not empty.
Output sample set and count K

l/sz<1/\ /\1/53<1
W12

s2>1

s3>1]

-W21

%

-Was

a| ds

o T o
W5 [e—io—> W5 |ei—ie—> W5 |ei—ie—>
wa| e wa| e wa | e
mpe . — v b
w2 | il—e—— w2 | e ———> w2 | e ———>
w1 [—te— w1 [ii—te—s wi| i fe—e—s
0 1 0 1 0 1
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Disc-based Sampling (intuition)

- Analogy: throw pebbles into a pond.
* Disc Shifting: throw pebble at sample node .

 Disc Scaling: ripple to neighbors of node /.

« Goal: Select min # of samples so ripple at
each node is at least /.

Ryerson 8/22/2019 22



Gershgorin Disc Alignment (math)

« Binary Search with BFIS:
« Sample count K inverse proportional to threshold 7.
* Binary search on 7 to drive count K to budget.

* Example: line graph with equal edge weight.
 Uniform sampling.
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Results: Graph Sampling

« GDA is 100x to 1000x faster than state-of-art methods computing e-vectors.
« GDA is “comparable” in complexity to Random [23] and Ed-free [8].

TABLE 11
SPEEDUP FACTORS OF OUR ALGORITHM WITH RESPECT TO OTHER
SAMPLING ALGORITHMS FOR N = 3000

Sampling Methods Sensor Community
Random |23] 0.22 0.21
E—optimal [20] 281277 1360.76
SP [12] 174.09 466.18
MEN |[18] 253291 [184.23
MIA [16] 1896.19 964.65
Ed-free [8] [.82 3.11
[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc 24

Alignment,"” submitted to IEEE Transactions on Signal Processing, July 2019.



Results: Graph Sampling

- Small graphs: GDA has roughly the same reconstruction MSE.

« Random sensor graph of size 500 for two signal types.

0.04 1
n —&—Random
09 —&—E_optimal
sP
Ll LL .
iy 0.03 wnat —a—MFM
= = —A—MIA
S 507 —o—Ed-free
5 0.02 % —#—B5-GDA
o = 06
|
Q ]
@ 001 8 05
0.4
{] 1 1 1 1 ] u_a 1 1 1 1 1
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Sample budget Sample budget

() (b)

[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc

25
Alignment,"” submitted to IEEE Transactions on Signal Processing, July 2019.



Results: Graph Sampling

- Large graphs: GDA has smallest reconstruction MSE.
« Minnesota road graph of size 2642 and for two signal types.
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[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc

26
Alignment,"” submitted to IEEE Transactions on Signal Processing, July 2019.



Summary

« Graph Sampling
« Generalization of Nyquist sampling to graph domain.
« Existing works require computation of extreme eigenvectors.

e Disc-based graph sampling
« Each eigenvalue is contained in a Gershgorin disc.
« Maximize smallest disc left-ends to maximize A ., .
* Roughly linear time, 100x to 1000x faster than e-vector schemes.



Q&A

 Email: genec@yorku.ca
« Homepage: https://www.eecs.yorku.ca/~genec/index.html



