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Matrix Completion

* Fill In missing entries in a matrix:
(Low-rank matrix recovery problem)

min rank (X)

XeRan

st. X..=M.
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* Examples of applications:

* Recommendation system—making rating prediction.
* Remote sensing—infer full covariance matrix from partial

correlations.

* Structure-from-motion in computer vision.

[1] E. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE, vol. 98, no.6, April 2010, pp. 925-936.



Sampling for Matrix Completior

Sampling
(querying)

Matrix
Completion

Recommen
dation

Which entries are more informative, such
that the unknown scores could be
recovered better (smaller MSE w.r.t ground
truth)?

Steps

1. Choose one completion method

2. Sampling formulation to minimize the
completion error

3. Design sampling algorithms
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Matrix Completion with Dual Graph
Smoothness Prior

* Use dual graph smoothness prior to promote low rank [1]:

: 1 0 B
min f(X)= —||AQ o(X— Y)“ +—Tr (XTLrX) + éTr (XLCXT) AT
XeR™N B F 2 2 ol § ,
Fidelity term mo
;XILTXi Zl}_{j L.x; 257“
* Unconstrained convex objective, fast solvable via ADMM, i
conjugate gradient; make use of side information (better ’
completion) e
Coefficient matrix Q Graph Fourier transformon L,
: ' A 0 OFTofsnaloncoumngraph
€ Optimal solution [ \
( +al, ®L, + AL, ® Im) vee(X*) = vee(Y) /q
Kronecker product .,
A, =diag(vec(A,))e R™™ : \
To promote stable computation in this linear equation, we should maximize A,,,,(Q) Graph Fourier transform on L

5
[1] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, “Matrix completion on graphs,”arXiv preprint arXiv:1408.1717, 2014.



Dual Graph Smoothness Prior based
Sampling

* Sampling formulation
1'1}2;13( 9(£2) = Anmin (AQ +al,, ® L, + SL. ® Im)
* Lemma 1. MSE of the reconstructed signal w.r.t the original signal

IS upper-bounded by

* e
vec(X™) — vee( X < + vec(N

where p = || (al,, ® L, + L. ® 1,;,) [vec(X + N)]| ||2.

Maximizing Amin (@) turns out minimizing the upper-bound of MSE value




Greedy Sampling based on Recurrent First

Eigenvector Computation —T
0={(1,2);(2.1):(3.2)}:
K=3
¢ DeﬂOte L = chI-n. X L-r + ,.BLC X I:r'n, -
Sampling budget Matrix A, €R™"
Q=L+Aq=L+) ee, 0
t=1 1
. . I I
» Combinatorial === Greedy scheme —912gonal structure 0
ki = argmax Apin(Li—1 + ekte,{z) 1
k’tEsg_l 0
where t € {1,..., K}, S =81 Uk} withSy =0, and Ly = Ly + ek;e; with Ly = L. . !
t Matrix A,=diag(vec(A,))e R™™
5={2,4,6}: k €S

One needs to compute A,y for all candidates for one sample. Expensive !!!

Fast sampling method



Greedy Sampling based on Recurrent First

Figenvector Computation

diag(0,0,+,1,0,---,0)
* Problem formulation k; = argmax )\min(Lt_l
ki €8 4

* Gershgorin circle theorem (GCT) [1]: A, Lower-bounded by left-ends of Gershgorin

discs:

minb;; —R, <4

Sampling node will shift one Gershgorin disc by 1 and keep the others fixed

min

Corollary of GCT: A, must be within the disc whose node’s energy is largest one in the
first eigenvector

L Shift j*-th disc with j* = argmin; |®(j)|, where Li_;® = A, ®

To get a new sample, we just need to compute the first
eigenvector once and then select the node with largest energy.

[1] R. A. Horn, R. A. Horn, and C. R. Johnson, “Matrix analysis”, Cambridge university press, 1990
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Greedy Sampling based on Recurrent First

Figenvector Computation

* Lemma 2. An optimal solution for the problem

argmax lim Apin(Li—1 + 5ekte£)
kTES;f_l 0—0

IS ki = argmax |@(k¢)]
fa}tESf_l

* Fast recurrent computation with warm start

_ T : :
Li =Lt 1 + €k; €} =mmmms) Small change in 1%t eigenvector

we adopt the LOBPCG [1] method to compute the first eigenvector, which requires

an initial guess. We use ®(L;_1) as input to compute ®(L;).

[1] Andrew V Knyazev. “Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method” , SIAM journal on scientific computing , 23(2):517-541, 2001

Algorithm 1 Proposed GCS sampling

Input: Sample budget K'; L = ol,, ® L, + L. ®

L

random vector v

Initialization: S = ()

. While |§| < K

compute the first eigenvector ¢ of L with ini-
tial guess v

i ¢ max;egoTed)|

S+ SuU{i*}
Update L = L + e;-e. anc
end While

return S
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Fast Sampling via lterative Method

e For real-world datasets (movielens 100K, m=943,n=1682), computing
the first eigenvector of L (m*n= 1586126) Is to0 expensive even with

LOBPCG.

* Decompose the matrix Q as follow with split parameter 0 < g <1

Q=(4A+aL,@L) + ((1- A+ fLe® 1) £ Qi + Qa

Block diagonal Permuted block diagonal

: : : P(LC &) I'm)PT — I-m. & Lc
lterative sampling design:

Sampling one node will help Q; and Q;. We propose to iteratively sample in one

cluster (block) in Q; and then switch to one group (block) in Q;

v

With iterative sampling, the complexity is reduced by
at least a factor min{m, n}

m groups in Q2 —

n clusters in Q4
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Experimental results
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Figure: Reconstruction MSE of different sampling methods on synthetic dataset. The
reconstruction method for matrix completion is dual graph smoothness based method.

Comparison methods: PG [1]; GWC-random [2]; LOC [3]

[1] Guillermo Ortiz-Jiménez, Mario Coutino, Sundeep Prabhakar Chepuri, and Geert Leus. “Sampling and reconstruction of signals
on product graphs”. arXiv preprint arXiv:1807.00145, 2018.

[2] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of bandlimited signals on graphs,” Applied and
Computational Harmonic Analysis, vol. 44, no. 2, pp. 446-475, 2018.

[3] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Eigendecomposition-free sampling set selection for graph signals,”IEEE

Transactions on Signal Processing, 2019.
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Experimental results

Table 2: RMSE for ML100K using random  Table 3: GRALS RMSE for different datasets using
/ 1GCS sampling combined with different [GCS sampling with different (’s.

MC methods. Graph-based strategies are

- /\
marked with v'. dataset random /@ = j\ (=3 (=5 (=T
MC methods  G? Gl Flixster 1.029 0.932 1.057 1.046 1.045
Douban 0.744 0.715 0.720 0.736 0.730
IMC [36] - 1.59011.507 YahooMusic 96.987 |59.172| 44.546 52391  47.082
SVT [8] - 1.02111.031 ML1M 0.905 0.829 0.833 0.835 0.838
GRALS [31] v 0.94710.931 Book-Crossing 3.987 3.578 3.704 3.804  4.185
GMC [17] v 1.03611.037 ML10OM 0.706 0.655 0.656 0.656 0.656
GC-MC [7] v 0.89810.891 Jester 0.214 0.160 0.162 0.162 0.165
NMC [24] - 0.892 1 (.887 , FilmTrust 0.820 0.668 0.735 0.711 0.742
(,7— W

Intelligent sampling will improve the completion performance, in different datasets/ completions /graphs

Some datasets information: ML100K (943+1682), MLIM (6040+3706); Douban/Yahoomusic (3000+3000)

[31] Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon, “Collaborative filtering with graph information: Consistency and scalable
methods”, In Advances in Neural Information Processing Systems, pages 2107-2115. 2015.

[7] Rianne van den Berg, Thomas N Kipf, andMaxWelling,“ Graph convolutional matrix completion”, arXiv preprint arXiv:1706.02263, 2017.

[24] D. M. Nguyen, E. Tsiligianni, and N. Deligiannis, “Extendable neural matrix completion” , In IEEE ICASSP, pages 6328-6332, April 2018.
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Experimental results

Table 4: RMSE and IGCS sampling time on ML100K.

)

graph ~ MC methods random |¢( =1 (=3 (=5 (=7
GRALS 0.947 0.927 0.935 0.934 0.931
G GC_T-MC 0.898 0.889 0.895 0.897 0.891 Gl side-information
NMC 0.892 0.880 0.888 0.889 0.886 .
(Teature attributes)
Time (10%s) - 1.104 0.503 0.375 0.320 constructed graphs
GRALS 0.945 0.871 0.870 0.882 0.882
0 GC-MC 0.899 0.839 | 0.840 0847  0.85] GZ2: collected samples
B NMC 0.892 0.840 0.845 0.843 0.852 constructed graphs
Time (10%s) - 1.216 0.573 0.441 0.388
—/

Execution time is decreased when the warm start parameter { becomes larger.
Best performance is achieved when the warm start parameter ¢ is small.

[1] F. Wang, C. Yang, G. Cheung, and Y. Wang, “Graph Sampling for Matrix Completion Using Recurrent First Eigenvector Computation,” arXiv preprint
arXiv:1906.01087, 2019. 13



Conduaan

Matrix completion is an overwhelming topic in data science field, but
sampling for matrix completion is neglected.

* Existed sampling methods are not applicable to large real-world
datasets

* Our proposed graph-based iterative sampling strategy Is fast and
essentially improves the completion performance

* The proposed strategy is generally useful for different
completions/graphs/datasets

* Fast sampling without explicit first eigenvector computation
* Online recommendation system
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