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Matrix Completion
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• Fill in missing entries in a matrix:
(Low-rank matrix recovery problem)

• Examples of applications:

• Recommendation system—making rating prediction.
• Remote sensing—infer full covariance matrix from partial 

correlations.
• Structure-from-motion in computer vision.
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[1] E. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE, vol. 98, no.6, April 2010, pp. 925–936.
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Sampling for Matrix Completion
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Sampling
(querying)

Matrix 
Completion

Recommen
dation

Which entries are more informative, such 
that the unknown scores could be 
recovered better (smaller MSE w.r.t ground 
truth)?  

1. Choose one completion method 
2. Sampling formulation to minimize the 

completion error
3. Design sampling algorithms

Steps



• Use dual graph smoothness prior to promote low rank [1]: 

• Unconstrained convex objective, fast solvable via ADMM, 
conjugate gradient; make use of side information (better 
completion)

Matrix Completion with Dual Graph 
Smoothness Prior

Graph Fourier transform on 
rL

Graph Fourier transform on cL
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[1] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, “Matrix completion on graphs,”arXiv preprint arXiv:1408.1717, 2014.
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 Optimal solution

  =diag vec mn mnR 

  A A

Kronecker product

To promote stable computation in this linear equation, we should maximize λmin(𝑸)

Coefficient matrix Q

Fidelity term 



Dual Graph Smoothness Prior based 
Sampling 
• Sampling formulation

• Lemma 1.  MSE of the reconstructed signal w.r.t the original signal 
is upper-bounded by 

Maximizing 𝜆𝑚𝑖𝑛(𝑸) turns out minimizing the upper-bound of MSE value   
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Greedy Sampling based on Recurrent First 
Eigenvector Computation 

• Denote

• Combinatorial         Greedy scheme  

Sampling budget
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Matrix   =diag vec mn mnR 

  A A

={2,4,6} tk S S；One needs to compute 𝜆𝑚𝑖𝑛 for all candidates for one sample. Expensive !!!
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diagonal structure !!

Fast sampling method



diag(0,0,…,1,0,…,0)

Greedy Sampling based on Recurrent First 
Eigenvector Computation
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• Problem formulation

• Gershgorin circle theorem (GCT) [1]: λmin Lower-bounded by left-ends of Gershgorin
discs:

• Sampling node will shift one Gershgorin disc by 1 and keep the others fixed

• Corollary of GCT: λmin must be within the disc whose node’s energy is largest one in the
first eigenvector

min,min  iii
i

Rb

𝑘𝑡 = 1

1

Shift 𝑗∗-th disc with 𝑗∗ = argmin𝑗 |𝚽 j |, where 𝐋𝑡−1𝚽 = λmin 𝚽

To get a new sample, we just need to compute the first
eigenvector once and then select the node with largest energy. 

[1] R. A. Horn, R. A. Horn, and C. R. Johnson, “Matrix analysis”, Cambridge university press, 1990



Greedy Sampling based on Recurrent First 
Eigenvector Computation

• Lemma 2. An optimal solution for the problem

is 

• Fast recurrent computation with warm start

we adopt the LOBPCG [1] method to compute the first eigenvector, which requires 

an initial guess. We use 𝚽(𝐋𝑡−1) as input to compute 𝚽(𝐋𝑡). 
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Small change in 1st eigenvector

[1] Andrew V Knyazev. “Toward the optimal preconditioned eigensolver: Locally optimal block 
preconditioned conjugate gradient method” , SIAM journal on scientific computing , 23(2):517–541, 2001



Fast Sampling via Iterative Method 
• For real-world datasets (movielens 100K, m=943,n=1682), computing 

the first eigenvector of 𝐋 (m*n= 1586126) is too expensive even with 
LOBPCG.

• Decompose the matrix 𝐐 as follow with split parameter 0 < 𝑞 < 1

Block diagonal Permuted block diagonal

Iterative sampling design:

Sampling one node will help 𝐐𝟏 and 𝐐𝟐. We propose to iteratively sample in one
cluster (block) in 𝐐𝟏 and then switch to one group (block) in 𝐐𝟐
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m groups in 𝐐𝟐

n clusters in 𝐐𝟏

With iterative sampling, the complexity is reduced by 
at least a factor min{m, n}



Noiseless synthetic rating matrix

Noisy synthetic rating matrix
Comparison methods: PG [1]; GWC-random [2]; LOC [3]

• [1] Guillermo Ortiz-Jiménez, Mario Coutino, Sundeep Prabhakar Chepuri, and Geert Leus. “Sampling and reconstruction of signals 

on product graphs”. arXiv preprint arXiv:1807.00145, 2018. 

• [2] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of bandlimited signals on graphs,” Applied and 

Computational Harmonic Analysis, vol. 44, no. 2, pp. 446–475, 2018. 

• [3] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Eigendecomposition-free sampling set selection for graph signals,”IEEE

Transactions on Signal Processing, 2019.

Figure: Reconstruction MSE of different sampling methods  on synthetic dataset. The 
reconstruction method for matrix completion is dual graph smoothness based method. 

(1) Noiseless (2) Noisy 

Experimental results 
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Experimental results

Intelligent sampling will improve the completion performance, in different datasets/ completions /graphs 

Some datasets information: ML100K (943*1682); ML1M (6040*3706); Douban/Yahoomusic (3000*3000) 

[31] Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon, “Collaborative filtering with graph information: Consistency and scalable 

methods”, In Advances in Neural Information Processing Systems, pages 2107–2115. 2015.

[7] Rianne van den Berg, Thomas N Kipf, andMaxWelling,“ Graph convolutional matrix completion”, arXiv preprint arXiv:1706.02263, 2017.

[24] D. M. Nguyen, E. Tsiligianni, and N. Deligiannis, “Extendable neural matrix completion” , In IEEE ICASSP, pages 6328–6332, April 2018.
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Experimental results

Execution time is decreased when the warm start parameter 𝜻 becomes larger.
Best performance is achieved when the warm start parameter 𝜻 is small. 

[1] F. Wang, C. Yang, G. Cheung, and Y. Wang, “Graph Sampling for Matrix Completion Using Recurrent First Eigenvector Computation,” arXiv preprint 

arXiv:1906.01087, 2019.

G1:  side-information 
(feature attributes) 
constructed graphs

G2: collected samples 
constructed graphs



• Matrix completion is an overwhelming topic in data science field, but 
sampling for matrix completion is neglected. 

• Existed sampling methods are not applicable to large real-world 
datasets

• Our proposed graph-based iterative sampling strategy is fast and 
essentially improves the completion  performance

• The proposed strategy is generally useful for different 
completions/graphs/datasets
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Conclusion

Future work:

• Fast sampling without explicit first eigenvector computation

• Online recommendation system



Thanks!! 

Questions ?!
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Contact: fenwang@stu.xidian.edu.cn


