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Abstract

In a scenario where each peer of an ad-hoc wireless local area network (WLAN) receives one of many available

video streams from a wireless wide area network (WWAN), we propose anetwork-coding-based cooperative repair

framework for the ad-hoc peer group to improve broadcast video quality during channel losses. Specifically, we first

impose network coding structures globally, and then select the appropriate video streams and network coding types

within the structures locally, so that repair can be optimized for broadcastvideo in a rate-distortion manner. Innovative

probability—the likelihood that a repair packet is useful in data recovery toa receiving peer—is analyzed in this

setting for accurate optimization of the network codes. Our simulation resultsshow that by using our framework,

video quality can be improved by up to16.7 dB over un-repaired video stream and by up to4.6 dB over video

stream using traditional unstructured network coding.

Index Terms

Cooperative Peer-to-Peer Repair, Network Coding, WWAN Video Broadcast.

I. I NTRODUCTION

With consumers’ increasing demand for rich media contents and the ubiquity of mobile wireless access, de-

ployments of various wireless multimedia services are fastemerging. To scale these services to large user bases,

different wireless wide area network (WWAN) multimedia broadcast/multicast technologies have been proposed.

For example, Multimedia Broadcast/Multicast Service (MBMS) [2] was introduced in UMTS cellular networks of

3GPP release 6.0 and later, which provides efficient point-to-multipoint multimedia delivery via a common cellular

channel.

This report is a revision of the journal paper [1] that includes changes that appeared in a subsequence one-page errata.
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While the broadcast nature of the aforementioned WWAN multimedia distribution technologies enables scalable

and bandwidth-efficient media delivery to a larger number ofusers via a common physical channel, it also has

its share of technical challenges. First, previously developed feedback-based loss recovery schemes like [3] for

point-to-point unicast streaming become infeasible in thebroadcast scenario due to either the lack of a feedback

channel, or the well-known NAK implosion problem [4] even ifsuch feedback channel is available. Second, because

broadcast systems are often optimized for the average channel [5] to maximize utility for the average user, packet

losses are inevitable for the temporarily-worse-than-average users due to the unpredictable and time-varying nature

of wireless channels, resulting in deteriorated video quality.

Given the recent popularity of multi-homed mobile devices [6]—devices with both 3G cellular and IEEE 802.11

wireless interfaces, one potential solution to the broadcast packet loss problem is for a group of interconnected

peers listening to the same video stream to use their 802.11 interfaces to cooperatively performout-of-bandrepair

of 3G broadcast losses. This is the premise behind our previously proposedCooperative Peer-to-Peer Repair(CPR)

framework [7] to combat WWAN packet losses. Having each correctly received a different subset of packets from

WWAN broadcast (due to different channel conditions experienced), an ad-hoc network of peers can then locally

broadcast their packets via 802.11 to cooperatively recover lost WWAN packets. Using our developed heuristics, we

showed in [7] that significant packet recovery can be achieved. Moreover, if we permit each peer to performNetwork

Coding (NC) [8]—linearly combining payloads of received packets inGalois FieldGF (O) whereO = 2q is the

field size andq is a positive integer—before forwarding packets, we showed in [9] that even further performance

gain can be achieved.

Compared to its cellular counterpart, an 802.11 interface requires much more power to establish and maintain

connections [10], [11], [12], and as a result, having both 3Gand 802.11 interfaces activated constantly may not

be feasible for lightweight battery-powered handheld devices consuming lengthy videos. To address the power

consumption issue, we have previously imposed structures on NC [13], [14] to optimize repaired video quality

given an energy budget.

In our previous works, we assumed that all peers in the same ad-hoc network are watching the same video; i.e.,

all available 802.11 bandwidth can be used to repair a singlevideo stream. In practice, however, different users are

likely watching different streams, and as a result, multiple streams (multi-stream) need CPR to improve broadcast

video simultaneously. Fig. 1 illustrates the multi-streamscenario where different peers are watching different streams

a, b andc. Since each peer now needs to relay CPR packets of streams they are not watching, the network resource

allocated to each stream is reduced. In this paper, we address this more realistic and more challenging scenario.

Specifically, we present a rate-distortion optimized, NC-based, CPR solution for the multi-stream scenario to

improve WWAN broadcast video quality. Our contributions arethe following:

1) We propose a two-step NC optimization framework: i)Global NC structure Optimization, where the media

source defines an optimal NC structure globally based on the source’s estimated average peer’s network state,

so that packets of more important frames can be recovered with appropriately higher probabilities for the

average peer; ii)Local Peer Optimization, where at a peer’s transmission opportunity, given its available local
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Fig. 1. An Illustration of Multi-Stream Scenario Cooperative Peer-to-Peer Repair.

state information at hand about its neighbors, a peer selects a stream and a NC type for packet transmission

to minimize distortions particularly for its neighbors.

2) To facilitate accurate NC optimization, we estimate theInnovative Probability—likelihood that a received

packet at a peer is useful for data recovery—in a computation-efficient manner.

3) We provided detailed simulations to verify our results, showing that our solution improves video quality

significantly: by up to16.7 dB over un-repaired video stream and by up to4.6 dB over video stream using

traditional unstructured NC schemes.

The outline of the paper is as follows. In Section II, we discuss the multi-stream system and our chosen source

and network models. In Section III, we formally define unstructured NC and our proposed structured NC. In Section

IV, we analyze packet innovativeness of receiving CPR packets at a given peer. Based on these discussions, we

present our NC optimization framework in Section V. We explain our results in Section VI. We overview related

works in Section VII and conclude in Section VIII, respectively.

II. SYSTEM ARCHITECTURE ANDMODELS

We first outline the architecture of our proposed broadcast video repair system. We then introduce two theoretical

models used in our system optimization: i) a video source model we use to optimize network coding for packet

recovery, and ii) a network model used to schedule peer-to-peer packet repairs.

A. CPR System Architecture

We consider the scenario whereN peers are watching broadcast video streams using their wireless mobile devices

through theWireless Wide Area Network(WWAN). The mobile devices are also equipped withWireless Local Area

Network (WLAN) interfaces, and the peers are physically located in close enough proximity that a peer-to-peer

wireless ad-hoc network can be formed. The video streams canbe live or stored content that are broadcasted from
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the media source; for simplicity, we denote media source to mean both amedia encoder(where the video streams

are encoded), and the actual video broadcasting entity overWWAN.

We first assume that the media source provides a total ofSall video streams.Sall varies due to different

technologies, broadcast bandwidths, and operational constraints of the mobile video providers. AlthoughSall streams

are available, not all streams will have audiences in a givenad-hoc network at a given time. Without loss of generality,

we denoteS∗ = {s1, s2, . . . , sS} as the subset ofSall streams that have audience andS = |S∗|. We assume that

the media source can estimate the sizeS of the subset (rather than the actual subsetS∗ itself) based on its past

history and inform the peers of its estimate using pre-defined fields in data packet headers.

Each peern in the network watches one streamS(n) ∈ S∗ from the media source, and conversely each stream

s ∈ S∗ has a group of receiving peersUs. Peers inUs, each receiving a different subset of packets of streams,

can relay packets to others using WLAN interfaces to repair lost packets. This repair process is calledCooperative

Peer-to-Peer Repair(CPR).

We assume that each peer is willing to relay repair packets ofother streams; in return other peers will relay repair

packets for the peer. We denoteAn as the set of streams of which peern has received packets: either original

video packets from the media source or CPR packets from peers, i.e., streams that peern can repair via CPR.

We use flags in CPR packet header to identify the stream a packet repairs. Whenever peern has a transmission

opportunity—a moment in time when peern is permitted by a scheduling protocol (to be discussed) to locally

broadcast a packet via WLAN, peern selects one stream fromAn to construct and transmit a CPR packet.

B. Source Model

1 2 3 4 5

3,1r    5,3r

4,3r2,1r

Fig. 2. An Example of DAG Source Model for H.264/AVC Video withReference Frame Selection

We use H.264 [15] codec for video source encoding because of its excellent rate-distortion performance. For

improved error resilience, we assume the media source first performsreference frame selection[16] for eachGroup

of Picture (GOP) in each stream separately during H.264 encoding. In brief, [16] assumes each GOP is composed

of a starting I-frame followed by P-frames. Each P-frame canchoose among a set of previous frames forMotion

Compensation, where each choice results in a different encoding rate and different dependency structure. If we then

assume that a frame is correctly decoded only if it is correctly received and the frame it referenced is correctly

decoded, then this choice leads to a different correctly decoded probability. Using P-frames’ selection of reference

frames, [16] sought to maximize the expected number of correctly decoded frames given an encoding rate constraint.

After the media source performs reference frame selection for each GOP of each stream, we can modelMk

frames in a GOP of a streamsk, Fk = {F k
1 , . . . , F k

Mk}, as nodes in adirected acyclic graph(DAG) as shown
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in Fig. 2, similarly done in [17]. Each frameF k
i has an associateddk

i , the resulting distortion reduction ifF k
i

is correctly decoded. Each frameF k
i points to the frame in the same GOP that it uses for motion compensation.

FrameF k
i referencing frameF k

j results in encoding raterk
i,j . We assume each frameF k

j is packetized intoReal-time

Transport Protocol(RTP) packets according to the frame size andMaximum Transport Unit(MTU) of the delivery

network. A frameF k
j is correctly received only if all packets withinF k

j are correctly received.

We assume that the media source delivers each GOP ofMk frames of streamsk in time durationY k. Y k is

also therepair epochfor sk, which is the duration in which CPR completes its repair on the previous GOP; i.e.,

peers exchange CPR packets for previous GOP of streamsk during the current epoch. The playback buffer delay

for peern is hence two epochs. Given that our later discussion focuseson one streamsk, for simplicity we drop

the superscript and refer to frameF k
i simply asFi, etc.

C. Network Model

We assumeN peers listening to the same WWAN broadcast channel experience independent and identically-

distributed (iid) losses from WWAN base station, resulting in different subsets of received WWAN packets. For

WLAN, though raw transmission rate is relatively large, peers need to contend for the shared medium. In this

work, we rely on the underlying 802.11 MAC layer scheduling protocol to resolve potential contention; we assume

that MAC layer will prompt the application layer when a transmission opportunity is available. Note the MAC-

controlled scheduling is completely distributed for all the peers. We assume that the average peern receivesRn

of CPR packets in time one epoch.

III. N ETWORK CODING BASED CPR

In this section, we first describeUnstructured Network Coding, common in the literature, in the context of CPR.

We then presentStructured Network Coding, a new technique where by imposing structures on NC, one can further

optimize NC specifically for video streaming in a rate-distortion manner.

A. Unstructured Network Coding

We denote the traditional random NC scheme [18] as Unstructured Network Coding (UNC), as compared to our

proposed Structured Network Coding (SNC). First, suppose peer n has a transmission opportunity andn selects

streams from An for transmission. Suppose there areM original (native) framesF = {F1, . . . , FM} in a GOP of

streams to be repaired among peers inUs. Each frameFi is divided into multiple packetsPi = {pi,1, pi,2, . . . , pi,Bi
}

of sizeW bits each. HereBi is the number of packets frameFi is divided into. Note that a peer adds padding bits

to each packet so that each has constant sizeW bits; this is performed for NC purposes, similarly done in [19]. We

denoteP∗ as the set of all packets in a GOP, i.e.,P∗ = {P1, . . . ,PM}. There are a total ofP = |P∗| =
∑M

i=1 Bi

packets to be disseminated among peers inUs.

We denoteGn as the set ofnative packetsof streamS(n) peern received from media source. DenoteQn as the

set ofNC packetsof streams peern received from other peers through CPR. If the stream selected for transmission
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is the same as the stream peern currently watches, i.e.,s = S(n), then the NC packetqn generated by peern is

represented as:

qn =
∑

pi,j∈Gn

ai,jpi,j +
∑

qm∈Qn

bmqm =
∑

pi,j∈P∗

ci,jpi,j , (1)

whereai,j ’s andbm’s, random numbers inGF (O), are coefficients for the original packets and the received encoded

NC packets, respectively. Because each received NC packetqm is itself a linear combination of native and NC

packets, we can rewriteqn as a linear combination of native packets withnative coefficientsci,j ’s as shown in (1).

If the stream selected for transmissions 6= S(n), then the NC packet is simply a linear combination of all NC

packets of streams received through CPR from other peers so far:

qn =
∑

qm∈Qn

bmqm =
∑

pi,j∈P∗

ci,jpi,j . (2)

For UNC, all packets of streams, both native packets (if any) and received NC packets, are used for NC

encoding, and a peer inUs can reconstruct allP native packets of streams whenP innovative native or NC packets

of streams are received, and hence all frames can be recovered. By innovative, we mean that native coefficient

vectorv = [c1,1, . . . , c1,B1
, . . . , cM,1, . . . , cM,BM

] of a newly received packet is not a linear combination of native

coefficient vectors from the set of previously received innovative packets. When a peer has accumulatedP innovative

packets, it recovers allP native packets in the GOP by solvingP linear equations, each equation corresponding to

an innovative packet, itself a sum of native packets as shownin (1).

The downside of UNC is that if a peern receives fewer thanP innovative packets, this peer cannot recoverany

native packets using the received NC packets. If the probability of receiving at leastP innovative native or NC

packets for many peers is low, then this is not a desired result. This is indeed the case for multi-stream, where the

CPR bandwidth is shared by all streams, as we will see in Section VI. Hence there is a need to derive an alternative

NC strategy for multi-stream.

B. Structured Network Coding

To address the aforementioned issue, we propose to use SNC. By imposing structure in the coefficient vector, we

seek to partially decode at a peer even when fewer thanP innovative native or NC packets of streams are received.

We accomplish that by forcing some chosen coefficientsai,j ’s andbm’s to be zeroes during NC packet generation,

so that when a peer receivesm innovative packets,m < P , it can decodem packets (m linear equations form

unknowns) so that a subset of video frames in a GOP can be recovered.

More precisely, given the DAG source model described in Section II-B, for streams, we first define a series of

X SNC frame groups, Θ1, . . . ,ΘX , whereΘ1 ⊂ . . . ⊂ ΘX = F . Corresponding to each SNC frame groupΘx is

a SNC packet typex. Let g(j) be index of the smallest frame group that includes frameFj :

g(j) = arg min
x=1,...,X

|Θx| s.t. Fj ∈ Θx (3)
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Native packets of frameFj are of SNC packet typeg(j). SNC type of a NC packetq is identifiable in the packet

header asΦ(q). Similar to UNC, when the stream selected for transmission is the same as the stream that peern

watches, i.e.,s = S(n), then the NC packetqn(x) of type x given peer’s set of received or decoded native packets

Gn and set of received NC packetsQn is written as:

qn(x) =
∑

pi,j∈Gn

U(g(j) ≤ x) ai,jpi,j

+
∑

qm∈Qn

U(Φ(qm) ≤ x) bmqm =
∑

pi,j∈Θx

ci,jpi,j , (4)

whereU(c) evaluates to1 if clausec is true, and0 otherwise. In words, peern constructs NC packet of SNC type

x by linearly combining received or decoded native packets offrames inΘx and received NC packets of SNC type

≤ x. Note that the encoded packet of frame groupΘX , i.e., qn(X), in SNC is the same asqn in UNC. Similarly, if

the stream selected for transmission is different from the stream that peern watches, i.e.,s 6= S(n), the generated

NC packet is:

qn(x) =
∑

qm∈Qn

U(Φ(qm) ≤ x) bmqm =
∑

pi,j∈Θx

ci,jpi,j (5)

A peer ni can recover all
∑

Fi∈Θx
Bi packets in frame groupΘx of streams once it has received

∑

Fi∈Θx
Bi

innovative packets of SNC types≤ x. Fig. 3 shows a possible frame group assignment for a GOP of 15frames

with three frame groups. The probability of decodingF1 is much higher than the other frames in frame groups 2

and 3. Since generally first I-frameF1 of a GOP is the most important, by recovering onlyF1, a large distortion

can already be reduced.

Fig. 3. A DAG example with three frame groups.

IV. PACKET INNOVATIVENESS

In this section, we estimate the innovative probability in acomputation-efficient way. We first show a lower

bound for the innovative probability for single stream case. Then by observing the differences between single and

multi-stream, we estimate the innovative probability for the multi-stream case.
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A. Innovative Probability for Single Stream

The exact computation of the NC packet innovative probability involves careful tracking of states of all peers in

the CPR network. For example, [20] provided a complex innovative probability analysis for a gossip-based protocol,

in which each peer in the network randomly selects another peer to send or to receive packets. Our CPR scenario is

even more difficult in that each peer’s transmission has multiple potential receivers because local WLAN broadcast

is used. So instead of looking for an exact solution, we provide a simple and effective way of estimating the

probability.

Supposeni transmits an NC packet tonj using UNC. We denoteB as the total number of packets needed to

be disseminated for packet recovery; in the case of UNC,B = P . We also callB the Batch Size. We denote

setsSi = {v1
i ,v

2
i , ...,v

ki

i } and Sj = {v1
j ,v

2
j , ...,v

kj

j } as the native coefficient vectors of innovative native or

NC packets inni and nj before the transmission, respectively. DenoteSPi and SPj as the subspaces spanned

by the vectors inSi andSj respectively. Since vectors inSi (Sj) are linearly independent, they form a basis for

subspaceSPi (SPj) with ki (kj) being the dimension of the subspace.nj receiving an innovative packet means

the coefficient vector associated with the received packet,together with vectors inSj , remain linearly independent.

That means the innovative probability is also the probability that the dimension ofSPj increases.

We assume that the components in all native coefficient vectors take on values randomly chosen fromGF (O).

This assumption is reasonable when peers are watching the same stream because in the UNC scheme all of the

packets are treated equally and the encoding coefficients are also randomly chosen fromGF (O). We note that

the assumption is less accurate at the beginning of the repairing process when the peers only have the chance to

mix packets with neighbors close by. However it becomes moreand more accurate with increasingly more packet

mixing with peers. Let us defineP ki,kj ,B

inv as theinstantaneous innovative probabilityof the received packet at peer

nj . We can summarize the lower bound forP
ki,kj ,B

inv with the following theorem:

Theorem 1: Assuming the dimensions of the subspaces spanned by the native coefficient vectors in peersni

andnj areki andkj , then the instantaneous innovative probability of the NC packet transmitted fromni to nj has

a lower bound:

P
ki,kj ,B

inv ≥







1 − 1
O

, ki > kj ;
(

1 − 1
O

)

(1 − Pr{SPi ⊆ SPj}), ki ≤ kj ,
(6)

wherePr{SPi ⊆ SPj} is the probability that the subspace spanned by vectors inSi is a subset of the subspace

spanned by the vectors inSj , which can be calculated as

Pr{SPi ⊆ SPj} =

∏ki−1
t=0 (Okj − Ot)

∏ki−1
t=0 (OB − Ot)

. (7)

Proof: We leverage Lemma 2.1 from [20], which stated if the subspacespanned by native coefficient vectors in

the transmitting peer is not a subset of the subspace spannedby the native coefficient vectors in the receiving peer,

then the probability that the subspace dimension increasesat the receiving peer, i.e., the innovative probability, is

at least1 − 1
O

. If dimensionki of SPi is larger than dimensionkj of SPj , then obviouslySPi * SPj , and the

first line of (6) follows.
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The second line of (6) follows similar argument, and the key is to findPr{SPi ⊆ SPj} whenki ≤ kj . Since

Si is a set of basis vectors forSPi, Pr{SPi ⊆ SPj} is the same as the probability that each basis vector inSi

is also inSPj , i.e., Pr{vk
i ∈ SPj ,∀v

k
i ∈ Si}. Since there are a total ofOB vectors overGF (O), the first vector

selected fromSi hasOB − 1 possible choices excluding the zero vector. Withkj linearly independent vectors,

there areOkj different vectors in subspaceSPj . Then the probability that the first vector inSi is in SPj is O
kj −1

OB−1

where the “−1” in the numerator and denominator accounts for the zero vector. Similarly, the probability that the

second vector inSi is also inSPj is O
kj −O

OB−O
where the “−O”accounts for vectors that are linear combinations of

the first vector. Continue calculating the probabilities for the rest of the vectors inSi and multiply all of them, we

get the result for the second case. Combining the two cases, we have (6).�

Since our derivations are exact and the bound provided in Lemma 2.1 in [20] is achievable, the result in Theorem

1 is tight and is achievable. (6) shows the innovative probability assuming dimensions of the subspacesSPi and

SPj are known. Generally, we define theprobability mass function(PMF) of the dimensions of the subspaces for

the average peern asf(k), and we can calculate the lower bound of theaverage innovative probability, PB
inv, by

a weighted average:

PB
inv =

B
∑

ki=1

B
∑

kj=1

P
ki,kj ,B

inv f(ki)f(kj). (8)

B. Innovative Probability for Multi-stream

When there are multiple streams being repaired simultaneously, our assumption that the components of the native

coefficient vectors are randomly generated fromGF (O) is altered. This is because when a peer forwards a stream

that he/she is not watching, he/she can only encode a packet using packets received from other peers through CPR

without any packets received directly from WWAN. Without thechance of mixing the packets, the randomness of

the components in the native coefficient vectors is reduced and thus our previous assumption does not hold.

To better understand the problem, let us consider a scenariowhere all peers are repairing two streams:s1 ands2.

Assuming peers randomly select one stream to watch, then fora peern watching streams1, half of n’s neighbors

are also watchings1, and they can each send NC packets ton with innovative probabilityPB
inv. The innovative

probability of NC packets sent from the other half ofn’s neighbors ton, who are watching streams2, depends in

turn on their neighbors, i.e., two-hop neighbors ofn. Again, with probability1
2 , n’s two-hop neighbors are watching

s1 and can helpn via n’s one-hop neighbors. For the rest half two-hop neighbors that watchs2 can also receive

some packets of streams1 during the repairing process, and with these limited packets they can help as well.

At this point, we need to consider thecommon neighboreffect wheren’s one-hop neighbors can receive identical

packets from the same two-hop neighbor ofn. Note we do not apply this effect to the two-hop neighbors who

watchs1 because different common one-hop neighbors may belong to many common neighbor groups and they can

receive different packets from those two-hop neighbors during the CPR process, which greatly reduces the effect.

However, this is not true for the two-hop neighbors who watchstreams2 and have limited packets belonging tos1.

The common neighbor effect is illustrated in Fig. 4, where peersn5 andn6 receive the same packet of streams1
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from n2, which reduces the innovative probability of subsequent NCpackets forwarded ton by half. The innovative

probability for the two stream scenario can now be estimatedas 1
2PB

inv + 1
2

(

P B
inv

4 +
P B

inv

2

)

.

In general, denoting the average number of common neighborsas Nc, the average innovative probability for

multi-stream is estimated as

P
B,S
inv ≈

1

S
PB

inv +

(

1 −
1

S

)

[

PB
inv

Nc −
Nc

S

(

1 −
1

S

)

+ PB
inv

1

S

]

=

(

2 −
1

S

)

PB
inv

S
+

(

1 −
1

S

)

PB
inv

Nc

(9)

The first term in (9) accounts for neighbors watching the samestream as the receiving peer under consideration, and

the second term accounts for neighbors watching different streams. Note that our derivation is limited to two-hop

neighbors, which is conservative.

When SNC is considered, the innovative probability is estimated similarly as in the UNC case, except we set

the batch sizeB to the size of the frame group that is under repair. Note that although we can get the simulated

innovative probability under some scenarios offline, we cannot get it under all cases because in practice the topology

of the network may change andNc may change. In the following, we will use the analytical innovative probability

for SNC optimization.

Fig. 4. Common neighbors in CPR network.n3, n4, n5 and n6 are common neighbors ofn1 and n2. n1, n3 and n4 watchess1, n2, n5

andn6 watchess2. n2 receives one packet ofs1 during the repair process.

V. SNC OPTIMIZATION FRAMEWORK

In this section, we propose a framework to optimize structures and transmissions of network-coded CPR packets

at peers so that the expected distortions of streams are minimized. Our proposed SNC optimization has two steps.

First, the media source defines a global NC structure to minimize distortion for the average peer with average

connectivity. Second, at each transmission opportunity a peer selects a stream fromAn and a type within the
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defined NC structure to transmit given its available local state information of its neighbors. We discuss the two

steps in order.

A. Global NC Structure Definition

The media source first optimizes an NC structure for each stream s for the average peern, assuming that an

average peer can expectRn packets from neighbors during CPR. Using the DAG source model from Section II-B,

the expected distortion at peern watching streams can be written as:

∆n = D −

M
∑

i=1

di

∏

j�i

αn(j). (10)

di is calculated as the additional PSNR improvement of using decoded framei for display of framei, plus the

PSNR improvement of using decoded framei for error concealment of descendant frames of framei in the source

dependency tree in the event that they are incorrectly decoded, minus the PSNR improvement of using the parent

frame of framei (if one exists) for error concealment of framei and its descendant frames.D is the sum of alldi

in one GOP, i.e., the distortion when no frame is received.αn(j) is the recovery success probability of frameFj

at peern. Note that in (10) we make the simplifying assumption that the frame recovery probability is independent

from each other.

αn(j) itself can be written as:

αn(j) = (1 − l)Bj +
(

1 − (1 − l)Bj
)

Sn(j), (11)

wherel is the WWAN packet loss rate, andSn(j) is the probability of frameFj being recovered at peern through

CPR givenFj was not initially successfully delivered via WWAN.

Suppose we are given SNC groupsΘ1, . . . ,ΘX . FrameFj can be recovered if
∑

Fi∈Θg(j)
Bi innovative packets

of SNC types≤ g(j) are received, or if
∑

Fi∈Θg(j)+1
Bi innovative packets of SNC types≤ g(j) + 1 are received,

etc. We can hence writeSn(j) as:

Sn(j)≈Q(n, g(j)) +

X
∑

y=g(j)+1

Q(n, y)

y
∏

z=g(j)+1

(1 − Q(n, z − 1)) (12)

where Q(n, x) is the probability that peern can NC-decode SNC typex by receiving
∑

Fi∈Θx
Bi innovative

native or NC packets. Note here we make the simplifying assumption that the recoveries of the frame groups are

uncorrelated.

Using the average innovative probability shown in (8), if a peern sends a NC packet of typex with probability

βn(x), we can approximateQ(n, x) as in (13),

Q(n, x) ≈

R
∑

k=⌈l
P

Fi∈Θx
Bi⌉





R

k





(

x
∑

i=1

βn(i)

)k( X
∑

i=x+1

βn(i)

)R−k

× A(x, k), (13)

whereR provides the total number of innovative CPR packets of SNC groupΘx in streamS(n). R is estimated as

February 23, 2010 DRAFT



12

R =
RnP

Lx,S
inv

S
, (14)

whereLx =
∑

Fi∈Θx
Bi is the number of packets in groupx. 1

S
is the probability of receiving a particular stream

given an active set ofS streams.A(x, k) in Eq. (13) is theSNC group allocation ratio, i.e., given there arek

received CPR packets in SNC groupΘx, the fraction of possible allocations ofk packets to SNC groups≤ x such

that they are innovative and hence are useful for the recovery of SNC groupΘx. As an example, suppose there

are two SNC groups with two framesF1 and F2 of sizesB1 = 2 and B2 = 2, respectively. Assume in addition

that there are 3 packet losses. ThenΘ1 can lose at most 2 packets via WWAN and thus can consume at most 2

SNC packets; the third packet loss must be inΘ2 and one SNC packet must be inΘ2. Without A(x, k), Q(n, x)

would give high CPR recovery probability for the biased SNC structure where all three CPR packets are allocated

to Θ1 and no CPR packet is allocated toΘ2, which is incorrect and will result inΘ2 irrecoverable. Note Eq. (9)

addresses the innovative probability problem for multi-stream before the dimension of the subspace spanned by the

coefficient vectors reaches its full dimension, while the SNC group allocation ratio ensures that the CPR packets

are allocated to the SNC groups in a sensible way. In words, (13) finds the frame group recovery probability by

calculating the probability that at least⌈l
∑

Fi∈Θx
Bi⌉ CPR packets are received in SNC groupx and these CPR

packets are allocated to the SNC groups in a sensible order sothat they are useful to the recovery of SNC group

x. A(x, k) is written as follows:

A(x, k) = min {A1(x, k), ..., Ax−1(x, k)} , (15)

where each termAi(x, k) is the probability of assigning extra CPR packets that SNC group Θi cannot consume

to SNC groups greater thani. A(x, k) then finds the minimum of them to guarantee that CPR packets allocated to

each SNC group will not surpass its capacity of holding the CPR packets.Ai(x, k) can be written as

Ai(x, k) =

k−⌊l
P

Fj∈Θi
Bj⌋

∑

λ=⌈gi⌉

(

∑x

j=i+1 βn(j)
∑x

j=1 βn(j)

)λ(∑i

j=1 βn(j)
∑x

j=1 βn(j)

)k−⌊l
P

Fj∈Θi
Bj⌋−λ

, (16)

wheregi is the minimum number of CPR packets that must be in SNC groupΘx, but not SNC groupΘi.

gi = l
∑

Fj∈Θx

Bj − l
∑

Fj∈Θi

Bj . (17)

wherel
∑

Fj∈Θx
Bj is the average number of lost packets in SNC groupΘx. l

∑

Fj∈Θi
Bj is the average number

of lost packets in SNC groupΘi. The difference between them gives the extra number of CPR packets that must

be in SNC groupΘx, but not SNC groupΘi. Note we use the average number of lost packets as the capacity of

holding the CPR packets because WWAN packet losses are assumed to be uniformly distributed in the GOP. In

words,Ai(x, k) divides the SNC groups into two sections, with the section having the relative trasnmission weight
Px

j=i+1 βn(j)
P

x
j=1 βn(j) holding at leastgi extra CPR packets.
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With our formulation shown in (10)—(17), the SNC optimization at the media source is to find the number of

frame groupsX, composition of frame groupsΘx’s, and the packet transmission probabilitiesβn(x)’s of frame

groups so that the average distortion of the GOP is minimized:

min
X,{Θx},{βn(x)}

∆n. (18)

To solve the optimization problem in (18), a simple exhaustive search scheme has been shown to be of exponential

complexity [13]. We therefore used an efficient local searchalgorithm for fast optimization.

We first notice that the search space can be reduced by considering the DAG structure described in Section II-B.

A frameFj that precedes frameFi must surely be as important as frameFi, since without itFi cannot be correctly

decoded. When we assign frames to NC types then, we will assignpreceding frames with a smaller or equal NC

type than succeeding frames given the DAG structure.

Based on the reduced search space, we perform the local search as follows. We first assignM NC types to the

M frames intopological orderaccording to the DAG structure, so that a frameFj precedingFi will have a NC

type smaller thanFi. For this NC structure, we perform local optimization forβn(x). We start by having equal

βn(x) for all frame groups. Then, starting from frame group one, wegradually increaseβn(1), by evenly reducing

the otherβn(x), x > 1. Once we meet a decrease in the distortion performance, we reverse the direction. After

finishing the search on frame group one, we then perform the same operation on the rest of the frame groups. We

find the best “merging” of parent and child frames—assigning the same NC type to the merged group— according

to the DAG. We continue until no such beneficial merging operation can be found.

With our local search scheme, we need to check at mostM merging operations forM frames in each iteration,

and there are at mostM iterations. Hence there are at mostM2 merge operations performed, which is significantly

less than the exhaustive search. In this way, we can bound theoptimization in a reasonable amount of time, which

facilitates real-time video streaming.

B. SNC Local Peer Optimization

1) Peers Utilize Local State Information:In the previous section, an NC structure was globally optimized for

the entire ad-hoc network assuming an average peer with average connectivity. During CPR, however,local state

information can be easily exchanged among neighbors by piggybacking on data packets with minimal overhead.

By local we mean only one-hop neighbor information. Specifically, we assume each NC packet from peern reveals

which stream the packet is repairing and which streamn is watching (S(n)). The NC packet also includes two

state reports: i)native packet reception reportidentifying which packets of streamS(n) were successfully delivered

from WWAN, and ii) NC group status reportcontaining the number of innovative packets that are received in each

NC groups ofS(n). Note that the obtained local neighbor information can become inaccurate (stale) over time.

Using local information, a peer first selects a stream amongAn for repair deterministically instead of picking

one at random. For a chosen stream, a peer then selects a NC packet type to transmit deterministically. This can

potentially further improve streaming performance locally beyond the global optimization performed in previous
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section; for example, if a peer’s neighbors have already fully recovered a certain stream, then the peer will not

choose that stream for repair.

2) Local Peer Optimization:Using the local information discussed above, at each transmission opportunity a

peer can select the optimal stream for repair and the SNC typethat results in the minimum total distortion among

all its neighbors. More specifically, we optimize the following expression:

min
v∈An,u∈Uv

n

∑

m∈{n’s neighbors}

∆v,u
m , (19)

wherev andu are the stream and the SNC type to be decided for packet transmission.Uv
n is the set of SNC types

in streamv peern has. Similar to (10),∆v,u
m , the resulting distortion of neighborm when NC packet of typeu in

streamv is transmitted, is written as:

∆v,u
m = D −

M
∑

i=1

di

∏

j�i

αv,u
m (j). (20)

Note here the distortion reduction is for neighborm, andD, M anddi are constants for streamS(m). Since peer

n has local information from neighborm, we have

αv,u
m (j) =







1, if frame j has been received;

Sv,u
m (j), otherwise,

(21)

Note that the first line in (21) has two meanings: either all the packets in framej of streamS(m) are successfully

delivered through WWAN or they have been repaired through CPR. They are inferred from the native packet

reception report and the NC group status report respectively. Sv,u
m (j) has similar formulation as in the global NC

definition part except here we need to decide the stream and packet type for transmission. It is now approximated

as

Qv,u(m, g(j))+

X
∑

y=g(j)+1

Qv,u(m, y)

y
∏

z=g(j)+1

(1 −Qv,u(m, z − 1)) , (22)

Since peers now have neighbor information,Qv,u(m,x) is updated as in (23),

Qv,u(m,x)≈

Um
∑

k=⌈Lx,v,u
m ⌉





Um

k





(

x
∑

i=1

βm(i)

)k( Xm
∑

i=x+1

βm(i)

)Um−k

× A(x, k), (23)

whereLx,v,u
m is the number of innovative packets of type≤ x peerm needs to recover frame groupx, which can

be written as

Lx,v,u
m =







Cx
m −

RmP
Lx,S

inv

S
t
Y

∑x

i=1 βm(i) − 1, v = S(m), u = x;

Cx
m −

RmP
Lx,S

inv

S
t
Y

∑x

i=1 βm(i), otherwise.
(24)

Cx
m is the actual number of innovative packets of type≤ x neighborm misses at the time when the state report is sent

from m. t is the time elapsed from the last received state report up to present.RmP
Lx,S

inv

S
t
Y

∑x

i=1 βm(i) represents

the estimated number of innovative packets of type≤ x in streamS(m) neighborm could receive during time

interval t. If the transmitted streamv is the same as the stream peerm needs,S(m), and the transmitted packet
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type u is the same asx, then the packet transmitted fromn to m will result in a reduction in the needed number

of packets. Similarly,Um is the total number of packets neighborm could possibly receive during the rest of the

repair time. It is written as:

Um = ⌊Rm(1 −
t′

Y
)⌋ − 1, (25)

where t′ is the time elapsed from the beginning of the repairing up to present.⌊Rm(1 − t′

Y
)⌋ is the number of

packets neighborm could receive in the remaining time. Since peern transmits a packet to its neighborm, the

total number of packets neighborm could receive is reduced by 1.

Note that in (23) and (24), we assume conservatively that peer m’s other neighbors do not perform local

optimization, but instead are transmitting using the pre-determined transmission probability. This is due to the

fact that to predict the optimization results of peerm’s other neighbors and what packets will be received by

neighborm during the rest of the repairing process, we need global state information, which is difficult to achieve

in a distributed scenario.

VI. SIMULATION STUDIES

In this section, we verify the effectiveness of our SNC optimization framework through simulations. We first

present the simulation setup: the video codec parameters and the CPR network settings. Next, we show the result

of the innovative probability estimation. We then compare the performance of the UNC and SNC schemes when

CPR bandwidth is not sufficient to repair all WWAN losses for each stream. Finally, we examine the benefits of the

two proposed innovations in our SNC framework: local peer optimization and innovative probability estimation.

A. Simulation Setup

Two test video sequences were used for simulations: 300-frame MPEG class Anews and class Bforeman

sequences at QCIF resolution (176 × 144), at 30 fps and sub-sampled in time by 2. The GOP size was chosen at

15 frames: one I-frame followed by 14 P-frames. Quantization parameters used for I-frames and P-frames were 30

and 25, respectively. The H.264 codec used was JM 12.4, downloadable from [21]. We performed reference frame

selection in [16] with target encoding rate at 220 kbps, resulting in a DAG describing inter-frame dependencies as

discussed in Section II-B. For each trial, we used the same video sequence as media content for all streams. A peer

selected a stream to watch randomly among all available streams.

We considered a CPR network of size1000×1000 m2 where50 peers were uniformly distributed. The peers were

watching video streams through MBMS using their multi-homed devices, where WLAN interfaces were activated

for CPR. We used the broadcast mode of WLAN, therefore no feedback messages were sent from the receivers

and no transmission rate adaption was performed. The media source providedSall streams, each of which was

transmitted at raterMBMS = 220 kbps. Given one GOP was 15 frames and video was encoded at15 fps, one epoch

time Y is 1s. The MBMS broadcast packet loss rate was kept constant at 0.1. Each CPR packet is set to the size

W = 1000 bytes. We used QualNet [22] to conduct the simulations. To have the freedom to vary CPR bandwidth,

we selectedAbstract PHYin QualNet for physical layer.
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B. Simulation Results

1) Innovative Probability:We compared our analytical results on innovative probability to the simulation results

in this section. Simulations for both the single stream and multi-stream scenarios were performed.

Fig. 5a plots the average innovative probability when all the peers were watching the same stream and used UNC

scheme to do the repairing. Since the average number of initial packet loss waslB, wherel is MBMS packet loss

rate, we assumed that PMFf(k) was uniformly distributed between(1− l)B andB. This assumption is reasonable

because during the repairing process, the dimensions of theencoding coefficient vectors were increasing gradually

and steadily. Because of the low packet loss rate, peers received most of the packets from MBMS. Therefore each

transmitted NC packet is a combination of a large number of native and NC packets, which makes the components

of the native coefficient vectors random and the innovative probability close to 1. The difference between the

analytical and simulation results was small and was due to the simplified assumption of uniform distribution on the

dimension of subspaces.
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Fig. 5. Receiving CPR packet Innovative probability.

Fig. 5b shows the analytical result versus the simulation result under various multi-stream scenarios. Intuitively,

with the increase of the number of video streams, the innovative probability is reduced. We see that the analytical

results capture the trend of the simulation results very well.

2) Multi-stream Repair with UNC:As discussed in Section III, if a peer does not receive a sufficient number of

innovative native or NC packets during CPR to recoverall WWAN losses, then UNC could not recoverany lost

packets using received NC packets. This undesired phenomenon was depicted in Fig. 6a, which showed the CDF

of the fraction of peers that recovered all packets through CPR in one epoch time using UNC. There wereS = 5

total active streams, and on average10 peers were watching the same stream. As shown, less than70% of peers

recovered their lost packets in one epoch time. Similarly, Fig. 6b showed the CDF when there wereS = 10 total

active streams. The result was similar, and about50% of the peers benefited from CPR with UNC.
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Fig. 6. CDF of the number of peers repaired during one epoch time.

3) Multi-stream Repair with SNC:We now show the performance of SNC for the multi-stream scenario. The

complete SNC scheme involves a two-step optimization: i) media source first searches for the optimal NC structure

for each stream separately using the optimization framework shown in Section V; and ii) individual peer performs

local optimization by utilizing partial state informationreceived from neighbors.

In the following, we first compare the performance of SNC to UNC under different CPR data rates using

different video sequences. We then show the effectiveness of the local peer optimization and the innovative

probability estimation in the SNC optimization framework.Lastly we explore how the number of streams affected

the performance.

a) SNC outperforms UNC:Fig. 7a and Fig. 7b showed the CPR data rates vs PSNR plot fornews when there

were 5 and 10 streams, respectively. Fig. 7c and Fig. 7d showed the CPR data rates vs PSNR plot forforeman.

We also have the Un-repaired video quality, the original video quality without any CPR repairs, as a performance

benchmark.

From Fig. 7 it can be easily observed that SNC outperformed traditional UNC and Un-repaired video in all

transmission rates. When there were 5 streams provided by MBMS, SNC provided up to 11.7 dB PSNR improvement

for thenews sequence and 16.7 dB PSNR improvement for theforeman sequence over Un-repaired video when

the data rate was larger than 3 Mbps. When there were 10 streams, the performance improvement over Un-repaired

video using SNC were up to 9.9 dB and 13.9 dB when the data rate was larger than 6 Mbps. For UNC, the

peers needed
∑15

j=1 Bj innovative native or NC packets before any repairing could be performed. However, for the

SNC scheme, peers could repair important frames as soon as sufficient NC packets of particular SNC types were

received. Hence when bandwidth was low, the performance of SNC was much better than UNC. For example, at

the transmission rate of 1.2 Mbps, SNC achieved2.3 dB gain over UNC for thenews sequence and around4.6

dB gain for theforeman sequence where there were 10 streams. When the bandwidth was higher, the number of

received packets increased so that UNC recovered more packets and the performance of the two schemes became
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Fig. 7. PSNR fornews andforeman under various CPR data rates.

similar.

Comparing the video qualities for thenews andforeman sequences, we found that the improvement by using

SNC over the UNC scheme was more pronounced for theforeman sequence. For example, as shown earlier the

gain was2.3 dB for thenews sequence and4.6 dB for theforeman sequence when 10 streams were repaired

under 1 Mbps CPR data rate. This is due to the fact thatforeman has more inherent motion and requires more

encoding bits for the same given quantization parameters. As a result, the corresponding DAG was long rather than

wide, which means that if a particular packet close to the root node is lost, it affects many descendant frames and

results in large distortion.

b) Effectiveness of Local Peer Optimization and InnovativeProbability Estimation: We also examine the

individual benefits of the two innovations we propose withinthe SNC framework: local peer optimization and

innovative probability estimation. We compare the performance when: i) both innovations were removed; ii) only

innovative probability estimation was added; and iii) bothinnovations were added.

Fig. 8a and Fig. 8b compared the performance of SNC under different configurations for both thenews and
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foreman sequences. First, note that SNC without both innovations already outperformed UNC. For example

at 1.2 Mbps CPR data rate, for thenews sequence and without local optimization and innovative probability

estimation (innovative probability set to 1), SNC achieveda gain of1.4 dB over UNC. By utilizing both local peer

optimization and innovative probability estimation, SNC provided2.3 dB gain over UNC. The results were similar

for the foreman sequence.
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Fig. 9. PSNR for thenews sequence under various multi-stream scenarios.

c) Number of streams affects performance:Fig. 9 showed the performance of UNC and SNC when the stream

number varied from 4 to 12. Obviously with the increase of thenumber of video streams, performance decreased

because the CPR bandwidth that could be allocated to a particular stream was reduced. Peers had to contribute

most of their CPR bandwidth to help others. Nevertheless, our SNC scheme showed noticeable gain over the UNC

scheme for all cases.
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VII. R ELATED WORK

Due to the aforementioned NAK implosion problem [4], many video streaming strategies over MBMS [5] have

forgone feedback-based error recovery schemes like [3] andopted instead for Forward Error Correction (FEC)

schemes like Raptor Codes [5]. While FEC can certainly help some MBMS receivers recover some packets, receivers

experiencing transient channel failures due to fading, shadowing, and interference still suffer great losses. We instead

exploit the multi-homed nature and propose to repair lost packets through CPR.

NC has been a popular research area since Ahlswede’s seminalwork [23], which showed that network capacity

can generally be achieved using NC. Many studies have since explored message dissemination using NC. In [24], the

authors proposed to use random NC [18] to encode the packets to be transmitted in a peer-to-peer content delivery

scenario. We leverage this idea to our design and focus on video streaming and NC structure in wireless ad-Hoc

networks. A gossip-based protocol was proposed in [20] which utilizes network coding to disseminate messages.

Instead of gossiping, we utilize the broadcast nature of thewireless medium to disseminate video packets.

Recent works [25], [19], [26], [27] have attempted to jointly optimize video streaming and NC. [19] discussed

a rate-distortion optimized NC scheme on a packet-by-packet basis for a wireless router, assuming perfect state

knowledge of its neighbors. Though the context of our CPR problem is different, our formulation can be viewed

as a generalization in that our optimization is on the entireGOP, while [19] is performed greedily per packet.

[25] utilized the hierarchical NC scheme in the same way for CDN and P2P networks to combat Internet

bandwidth fluctuation. Our work is more general in that our source model is a DAG, while the model in [25] is a

more restricted dependency chain. Moreover, we provide a NCoptimization framework to better exploit the benefit

of SNC.

[26] discussed the application of Markov Decision Process [17] to NC, in which NC optimization and scheduling

are centralized at the access point or base station. Like [19] they require complete state information assuming

reliable ACK/NAK schemes, which has yet been shown to be scalable to large number of peers. In our work, we

instead consider fully distributed peer-to-peer repair without assuming full knowledge of state information of peers.

[27] discussed applying structure on NC across multiple generations of video packets, where one generation is

defined at the transport layer irrespective of application-layer GOP structures. In our work, NC is applied within one

GOP, and the structure is defined according to the dependencytree among the video frames in the GOP. Defining

NC structure within a GOP enables us to build a rate-distortion based NC optimization framework which finds the

optimal NC structure resulting in the smallest expected distortion. To our knowledge, we are also the first in the

NC literature to use randomization in the implementation ofSNC for video streaming optimization.

VIII. C ONCLUSIONS

In this paper, we present a novel, rate-distortion optimized, NC-based, cooperative peer-to-peer packet repair

solution for the multi-stream WWAN video broadcast. We make contributions in the following major aspects. First,

we propose a two-step NC structure optimization framework in which the video stream repair can be optimized

in a rate-distortion manner. Second, we analyze the innovative probability of a receiving NC packet to facilitate
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accurate NC structure optimization. Lastly, we provide detailed simulations and show that the video quality can be

improved by up to16.7 dB over un-repaired video stream and by up to4.6 dB over video stream using traditional

unstructured network coding.
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