Structured Network Coding and Cooperative
Wireless Ad-hoc Peer-to-Peer Repair for
WWAN Video Broadcast

Technical Report: ECE-CE-2010-1. UC Davis. *

Xin Liu Gene Cheung Chen-Nee Chuah

Abstract

In a scenario where each peer of an ad-hoc wireless local arearkgWWbAN) receives one of many available
video streams from a wireless wide area network (WWAN), we proposetaork-coding-based cooperative repair
framework for the ad-hoc peer group to improve broadcast videdityuduring channel losses. Specifically, we first
impose network coding structures globally, and then select the appmpitgeo streams and network coding types
within the structures locally, so that repair can be optimized for broad@esd in a rate-distortion manner. Innovative
probability—the likelihood that a repair packet is useful in data recovera teceiving peer—is analyzed in this
setting for accurate optimization of the network codes. Our simulation resluttev that by using our framework,
video quality can be improved by up 6.7 dB over un-repaired video stream and by up4t6 dB over video
stream using traditional unstructured network coding.

Index Terms

Cooperative Peer-to-Peer Repair, Network Coding, WWAN Video &cast.

I. INTRODUCTION

With consumers’ increasing demand for rich media contents the ubiquity of mobile wireless access, de-
ployments of various wireless multimedia services are émsérging. To scale these services to large user bases,
different wireless wide area network (WWAN) multimedia bidoast/multicast technologies have been proposed.
For example, Multimedia Broadcast/Multicast Service (MBM2] was introduced in UMTS cellular networks of
3GPP release 6.0 and later, which provides efficient poimltipoint multimedia delivery via a common cellular

channel.

This report is a revision of the journal paper [1] that in&acthanges that appeared in a subsequence one-page errata.



While the broadcast nature of the aforementioned WWAN mulliselistribution technologies enables scalable
and bandwidth-efficient media delivery to a larger numbeusérs via a common physical channel, it also has
its share of technical challenges. First, previously dgwvedl feedback-based loss recovery schemes like [3] for
point-to-point unicast streaming become infeasible inlih@adcast scenario due to either the lack of a feedback
channel, or the well-known NAK implosion problem [4] eversiich feedback channel is available. Second, because
broadcast systems are often optimized for the average ehfjnto maximize utility for the average user, packet
losses are inevitable for the temporarily-worse-tharraye users due to the unpredictable and time-varying nature
of wireless channels, resulting in deteriorated video ityal

Given the recent popularity of multi-homed mobile devic&sfdevices with both 3G cellular and IEEE 802.11
wireless interfaces, one potential solution to the brostdpacket loss problem is for a group of interconnected
peers listening to the same video stream to use their 808t&ffaces to cooperatively perforaut-of-bandrepair
of 3G broadcast losses. This is the premise behind our prslyiproposedCooperative Peer-to-Peer RepdiCPR)
framework [7] to combat WWAN packet losses. Having each ablyeeceived a different subset of packets from
WWAN broadcast (due to different channel conditions expexéel), an ad-hoc network of peers can then locally
broadcast their packets via 802.11 to cooperatively redogt WWAN packets. Using our developed heuristics, we
showed in [7] that significant packet recovery can be ackieM®reover, if we permit each peer to perfonetwork
Coding (NC) [8]—linearly combining payloads of received packetsGnlois FieldGF(O) whereO = 29 is the
field size andy is a positive integer—before forwarding packets, we showe[d] that even further performance
gain can be achieved.

Compared to its cellular counterpart, an 802.11 interfaxpires much more power to establish and maintain
connections [10], [11], [12], and as a result, having both &@ 802.11 interfaces activated constantly may not
be feasible for lightweight battery-powered handheld deviconsuming lengthy videos. To address the power
consumption issue, we have previously imposed structunedl© [13], [14] to optimize repaired video quality
given an energy budget.

In our previous works, we assumed that all peers in the sarf®adetwork are watching the same video; i.e.,
all available 802.11 bandwidth can be used to repair a swigko stream. In practice, however, different users are
likely watching different streams, and as a result, mudtipireams (multi-stream) need CPR to improve broadcast
video simultaneously. Fig. 1 illustrates the multi-stresganario where different peers are watching differenastise
a, b andec. Since each peer now needs to relay CPR packets of streaynarthaot watching, the network resource
allocated to each stream is reduced. In this paper, we althissmore realistic and more challenging scenario.

Specifically, we present a rate-distortion optimized, N&&dal, CPR solution for the multi-stream scenario to
improve WWAN broadcast video quality. Our contributions #re following:

1) We propose a two-step NC optimization frameworkGipbal NC structure Optimizatigrwhere the media

source defines an optimal NC structure globally based ondhecs’s estimated average peer’s network state,
so that packets of more important frames can be recoverdd apipropriately higher probabilities for the

average peer; iilocal Peer Optimizationwhere at a peer’s transmission opportunity, given itslalée local
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Fig. 1. An lllustration of Multi-Stream Scenario CoopevatiPeer-to-Peer Repair.

state information at hand about its neighbors, a peer setestream and a NC type for packet transmission
to minimize distortions particularly for its neighbors.

2) To facilitate accurate NC optimization, we estimate theovative Probability—likelihood that a received
packet at a peer is useful for data recovery—in a computagfficient manner.

3) We provided detailed simulations to verify our resultspwing that our solution improves video quality
significantly: by up tol6.7 dB over un-repaired video stream and by upité dB over video stream using

traditional unstructured NC schemes.

The outline of the paper is as follows. In Section Il, we d&the multi-stream system and our chosen source
and network models. In Section Ill, we formally define unstaned NC and our proposed structured NC. In Section
IV, we analyze packet innovativeness of receiving CPR paciea given peer. Based on these discussions, we
present our NC optimization framework in Section V. We eiplaur results in Section VI. We overview related

works in Section VIl and conclude in Section VI, respeetix

Il. SYSTEM ARCHITECTURE ANDMODELS

We first outline the architecture of our proposed broadcigosrepair system. We then introduce two theoretical
models used in our system optimization: i) a video sourceehoe use to optimize network coding for packet

recovery, and ii) a network model used to schedule peee&r-packet repairs.

A. CPR System Architecture

We consider the scenario whekepeers are watching broadcast video streams using theilesdrenobile devices
through theWireless Wide Area NetwoidVYWAN). The mobile devices are also equipped witlreless Local Area
Network (WLAN) interfaces, and the peers are physically located oselenough proximity that a peer-to-peer

wireless ad-hoc network can be formed. The video stream®bedive or stored content that are broadcasted from
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the media sourcefor simplicity, we denote media source to mean botimedia encodefwhere the video streams
are encoded), and the actual video broadcasting entity \M&AN.

We first assume that the media source provides a totabspfvideo streams.S,, varies due to different
technologies, broadcast bandwidths, and operationatredms of the mobile video providers. Althoudh, streams
are available, not all streams will have audiences in a giwkhoc network at a given time. Without loss of generality,
we denoteS* = {s',s%,..., 5%} as the subset afy, streams that have audience afid= |S*|. We assume that
the media source can estimate the sizef the subset (rather than the actual suli$ettself) based on its past
history and inform the peers of its estimate using pre-ddfiiedds in data packet headers.

Each peem in the network watches one streafiin) € S* from the media source, and conversely each stream
s € §* has a group of receiving peets. Peers in/,, each receiving a different subset of packets of stream
can relay packets to others using WLAN interfaces to repair packets. This repair process is callédoperative
Peer-to-Peer Repai(CPR).

We assume that each peer is willing to relay repair packetghar streams; in return other peers will relay repair
packets for the peer. We denatg, as the set of streams of which peerhas received packets: either original
video packets from the media source or CPR packets from peersstreams that peer can repair via CPR.
We use flags in CPR packet header to identify the stream a pagpeirs. Whenever peer has a transmission
opportunity—a moment in time when peeris permitted by a scheduling protocol (to be discussed) tallp

broadcast a packet via WLAN, peerselects one stream from,, to construct and transmit a CPR packet.

B. Source Model

31 5,3

Fig. 2. An Example of DAG Source Model for H.264/AVC Video wiReference Frame Selection

We use H.264 [15] codec for video source encoding becausts axcellent rate-distortion performance. For
improved error resilience, we assume the media source érébnnsreference frame selectidi6] for eachGroup
of Picture (GOP) in each stream separately during H.264 encoding.iéf, jt6] assumes each GOP is composed
of a starting I-frame followed by P-frames. Each P-frame choose among a set of previous frames Ntwotion
Compensationwhere each choice results in a different encoding rate #feteht dependency structure. If we then
assume that a frame is correctly decoded only if it is colyesiceived and the frame it referenced is correctly
decoded, then this choice leads to a different correctlpded probability. Using P-frames’ selection of reference
frames, [16] sought to maximize the expected number of cyrdecoded frames given an encoding rate constraint.

After the media source performs reference frame selectiorefich GOP of each stream, we can moblg

frames in a GOP of a streant, 7% = {F},..., F¥,}, as nodes in alirected acyclic graph(DAG) as shown
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in Fig. 2, similarly done in [17]. Each framé&F has an associated, the resulting distortion reduction "

is correctly decoded. Each franf€® points to the frame in the same GOP that it uses for motion emisgtion.
FrameF} referencing frameFf results in encoding rabe{-j ;- We assume each franﬁj“’ is packetized intdreal-time
Transport ProtocoRTP) packets according to the frame size &akimum Transport UnifMTU) of the delivery
network. A frameFf is correctly received only if all packets withiﬁ;C are correctly received.

We assume that the media source delivers each GOR 'offrames of streans* in time durationY”. Y* is
also therepair epochfor s*, which is the duration in which CPR completes its repair om phevious GOP; i.e.,
peers exchange CPR packets for previous GOP of stedaduring the current epoch. The playback buffer delay
for peern is hence two epochs. Given that our later discussion focosesne streans”, for simplicity we drop

the superscript and refer to frandé® simply asF;, etc.

C. Network Model

We assumeV peers listening to the same WWAN broadcast channel experigniependent and identically-
distributed (iid) losses from WWAN base station, resultingdifferent subsets of received WWAN packets. For
WLAN, though raw transmission rate is relatively large, geeeed to contend for the shared medium. In this
work, we rely on the underlying 802.11 MAC layer schedulimgtpcol to resolve potential contention; we assume
that MAC layer will prompt the application layer when a tramission opportunity is available. Note the MAC-
controlled scheduling is completely distributed for aletpeers. We assume that the average pessceivesR,

of CPR packets in time one epoch.

I1l. NETWORK CODING BASED CPR

In this section, we first descridgnstructured Network Codinggcommon in the literature, in the context of CPR.
We then preserbtructured Network Coding new technique where by imposing structures on NC, onewrdmef

optimize NC specifically for video streaming in a rate-ditsn manner.

A. Unstructured Network Coding

We denote the traditional random NC scheme [18] as UnstredtNetwork Coding (UNC), as compared to our
proposed Structured Network Coding (SNC). First, suppass p has a transmission opportunity andselects
streams from A,, for transmission. Suppose there dreoriginal (native) framesF = {Fy,..., Fy} in a GOP of
streams to be repaired among peersify. Each frameF; is divided into multiple packet®; = {p; 1,pi2,...,pi.B;}
of sizeW bits each. Herds; is the number of packets frante is divided into. Note that a peer adds padding bits
to each packet so that each has constantidizeits; this is performed for NC purposes, similarly done if][IWe
denoteP* as the set of all packets in a GOP, iB, = {P1,...,Pu}. There are a total oP = |P*| = Zf\il B;
packets to be disseminated among peer&, in

We denotej,, as the set ohative packet®f streamS(n) peern received from media source. Dendaf, as the

set of NC packetf streams peern received from other peers through CPR. If the stream seldotaransmission
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is the same as the stream peecurrently watches, i.es = S(n), then the NC packef,, generated by peer is

represented as:

=Y aiipijt > bmGm= D Ci;Dij @

Pi,j €EGn am€Qn pi,; EP*
wherea; ;'s andb,,’s, random numbers it/ F'(O), are coefficients for the original packets and the receiveaed
NC packets, respectively. Because each received NC pagkés itself a linear combination of native and NC
packets, we can rewritg, as a linear combination of native packets wiiditive coefficients; ;'s as shown in (1).
If the stream selected for transmissient S(n), then the NC packet is simply a linear combination of all NC
packets of stream received through CPR from other peers so far:

qn = Z memZ Z Ci,jPi,j5- (2)

Am€E€Qn pi,jEP*

For UNC, all packets of streans, both native packets (if any) and received NC packets, aesl dfigr NC
encoding, and a peer i; can reconstruct alP native packets of streamwhen P innovative native or NC packets
of streams are received, and hence all frames can be recovered. Byatimeywe mean that native coefficient
vectorv = [¢11,...,€1,8,,---5CM.1,- - -, CM, By, ] Of @ Newly received packet is not a linear combination ofveati
coefficient vectors from the set of previously received irative packets. When a peer has accumul@eéadnovative
packets, it recovers alP native packets in the GOP by solvirfg linear equations, each equation corresponding to
an innovative packet, itself a sum of native packets as showf).

The downside of UNC is that if a peerreceives fewer tha® innovative packets, this peer cannot recoaBy
native packets using the received NC packets. If the préibabi receiving at leastP innovative native or NC
packets for many peers is low, then this is not a desired tt€Ehis is indeed the case for multi-stream, where the
CPR bandwidth is shared by all streams, as we will see in @etti. Hence there is a need to derive an alternative

NC strategy for multi-stream.

B. Structured Network Coding

To address the aforementioned issue, we propose to use SNiGpBsing structure in the coefficient vector, we
seek to partially decode at a peer even when fewer thamovative native or NC packets of streanare received.
We accomplish that by forcing some chosen coefficientss andb,,’s to be zeroes during NC packet generation,
so that when a peer receives innovative packetsin < P, it can decoden packets 4 linear equations forn
unknowns) so that a subset of video frames in a GOP can beawsthv

More precisely, given the DAG source model described iniBedt-B, for streams, we first define a series of
X SNC frame groups9s,...,0x, where®; C ... C Ox = F. Corresponding to each SNC frame groap is
a SNC packet type. Let g(j) be index of the smallest frame group that includes frae

g9(j) = arg minX |©,| st.Fj; €0, ()

z=1,...,
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Native packets of framé’; are of SNC packet type(j). SNC type of a NC packet is identifiable in the packet
header asb(q). Similar to UNC, when the stream selected for transmisséotihé same as the stream that peer
watches, i.e.s = S(n), then the NC packet,, (z) of type = given peer’s set of received or decoded native packets

G, and set of received NC packeg, is written as:

() = Y Ulglh) <) aispi

pz‘jegn
+ Z U(®(gm) < ) bngm = Z Ci,jPij (4)
qm€E€Qn Pi,; €O,

whereU (c) evaluates td if clausec is true, and) otherwise. In words, peer constructs NC packet of SNC type
x by linearly combining received or decoded native packetsavhes in©, and received NC packets of SNC type
< z. Note that the encoded packet of frame gr@up, i.e., ¢, (X), in SNC is the same ag, in UNC. Similarly, if
the stream selected for transmission is different from theasn that peen watches, i.e.s # S(n), the generated

NC packet is:
(@)=Y U®(gm) <) bmtm = Y CijDi; )

gm€EQn Di,j €O
A peern; can recover aIIZFZe@w B, packets in frame grou®, of streams once it has receive(EFie@w B;

innovative packets of SNC types z. Fig. 3 shows a possible frame group assignment for a GOP dfabies
with three frame groups. The probability of decodifg is much higher than the other frames in frame groups 2
and 3. Since generally first I-frami, of a GOP is the most important, by recovering otly, a large distortion

can already be reduced.

@ @ OFrarne Group 3
@ @Frame Group 2

@Frame Group 1

Fig. 3. A DAG example with three frame groups.

IV. PACKET INNOVATIVENESS

In this section, we estimate the innovative probability it@nputation-efficient way. We first show a lower
bound for the innovative probability for single stream caBeen by observing the differences between single and

multi-stream, we estimate the innovative probability foe imulti-stream case.
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A. Innovative Probability for Single Stream

The exact computation of the NC packet innovative probighitivolves careful tracking of states of all peers in
the CPR network. For example, [20] provided a complex intieggrobability analysis for a gossip-based protocol,
in which each peer in the network randomly selects another fmesend or to receive packets. Our CPR scenario is
even more difficult in that each peer’s transmission hasipielpotential receivers because local WLAN broadcast
is used. So instead of looking for an exact solution, we pleva simple and effective way of estimating the
probability.

Supposen; transmits an NC packet to; using UNC. We denoté3 as the total number of packets needed to
be disseminated for packet recovery; in the case of URC: P. We also callB the Batch Size We denote
setsS; = {v}, v}, .,vi} andS; = {v]l,vf,...,vfj} as the native coefficient vectors of innovative native or
NC packets inn; and n; before the transmission, respectively. DenSt%®; and SP; as the subspaces spanned
by the vectors inS; and S; respectively. Since vectors if; (S;) are linearly independent, they form a basis for
subspaceSP; (SP;) with k; (k;) being the dimension of the subspaeg.receiving an innovative packet means
the coefficient vector associated with the received pat&gether with vectors i5;, remain linearly independent.
That means the innovative probability is also the probgbithat the dimension obP; increases.

We assume that the components in all native coefficient vedtke on values randomly chosen fra@i# (O).

This assumption is reasonable when peers are watching the siieam because in the UNC scheme all of the
packets are treated equally and the encoding coefficieetsalap randomly chosen frof@F(O). We note that

the assumption is less accurate at the beginning of theriegairocess when the peers only have the chance to
mix packets with neighbors close by. However it becomes naok more accurate with increasingly more packet
ki,k;,B

mixing with peers. Let us defin®;

muv

as theinstantaneous innovative probabilibf the received packet at peer
n;. We can summarize the lower bound fBTf;k””B with the following theorem:

Theorem 1. Assuming the dimensions of the subspaces spanned by the maigfficient vectors in peers;
andn; arek; andk;, then the instantaneous innovative probability of the NCkpatransmitted from; to n; has

a lower bound:
1 .
kiokiB o ) 1T 5 ki > kj;

(6)
(1= &)1~ Pr{SP; CSP;}), ki <k;,

inv

where Pr{SP; C SP,} is the probability that the subspace spanned by vectos; is a subset of the subspace
spanned by the vectors ), which can be calculated as

(08 — oY)

i (0P - oY)

Proof: We leverage Lemma 2.1 from [20], which stated if the subsgpesned by native coefficient vectors in

Pr{SP, C SP;} = 7

the transmitting peer is not a subset of the subspace spédoyn native coefficient vectors in the receiving peer,
then the probability that the subspace dimension increalsése receiving peer, i.e., the innovative probability, is
at leastl — 4. If dimensionk; of SP; is larger than dimensiok; of SP;, then obviouslySP; ¢ SP;, and the

first line of (6) follows.
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The second line of (6) follows similar argument, and the keyoi find Pr{SP; C SP,} whenk; < k;. Since
S; is a set of basis vectors f&P;, Pr{SP, C SP;} is the same as the probability that each basis vectd; in
is also inSP;, i.e., Pr{vF € SP;,vvF € §;}. Since there are a total 6#” vectors ovelGF(0), the first vector
selected fromS; hasOP — 1 possible choices excluding the zero vector. Withlinearly independent vectors,
there areD*: different vectors in subspac®P,. Then the probability that the first vector &) is in SP; is %57 ‘11
where the “-1” in the numerator and denominator accounts for the zerooveBimilarly, the probability that the

second vector irf; is also inSP; is %B”jg where the “-O"accounts for vectors that are linear combinations of

the first vector. Continue calculating the probabilities tlee rest of the vectors i§; and multiply all of them, we
get the result for the second case. Combining the two case$iawe (6)[]

Since our derivations are exact and the bound provided innh&r@.1 in [20] is achievable, the result in Theorem
1 is tight and is achievable. (6) shows the innovative proitalassuming dimensions of the subspace®; and
SP; are known. Generally, we define tipgobability mass functiofPMF) of the dimensions of the subspaces for
the average peen as f(k), and we can calculate the lower bound of theerage innovative probabilityP?

wmuv?

a weighted average:

PE, = Z Z PESIP £ (k) f(Ky). ®)

ki=1k;=1

B. Innovative Probability for Multi-stream

When there are multiple streams being repaired simultahgauig assumption that the components of the native
coefficient vectors are randomly generated fr6fA'(O) is altered. This is because when a peer forwards a stream
that he/she is not watching, he/she can only encode a pasket packets received from other peers through CPR
without any packets received directly from WWAN. Without tbigance of mixing the packets, the randomness of
the components in the native coefficient vectors is reduceltiaus our previous assumption does not hold.

To better understand the problem, let us consider a scewhgee all peers are repairing two streasisand s2.
Assuming peers randomly select one stream to watch, thea feern. watching streans®, half of n's neighbors
are also watching!, and they can each send NC packets:tavith innovative probability?Z . The innovative
probability of NC packets sent from the other half:66 neighbors ton, who are watching streast, depends in
turn on their neighbors, i.e., two-hop neighbors:ofAgain, with probabilityL, n’s two-hop neighbors are watching
s! and can help: via n’'s one-hop neighbors. For the rest half two-hop neighboas Watchs? can also receive
some packets of streasi during the repairing process, and with these limited packsty can help as well.

At this point, we need to consider ttemmon neighboeffect wheren’s one-hop neighbors can receive identical
packets from the same two-hop neighborrofNote we do not apply this effect to the two-hop neighbors who
watchs! because different common one-hop neighbors may belong by s@mmon neighbor groups and they can
receive different packets from those two-hop neighborsnduthe CPR process, which greatly reduces the effect.
However, this is not true for the two-hop neighbors who wattreams? and have limited packets belonging b

The common neighbor effect is illustrated in Fig. 4, whererpas; andng receive the same packet of stream
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from ny, which reduces the innovative probability of subsequentgd€kets forwarded te by half. The innovative
probability for the two stream scenario can now be estimaedlP?  + 1 (% + %)

In general, denoting the average number of common neighd®rs,, the average innovative probability for
multi-stream is estimated as

1 1 pPB 1 1
pBS o — pB 1 =) |——imv (1 = pB —
muv S mnmv + S Nc _ ch S muv S

1 PZEU 1 ‘Pz?w
-5 (-9

The first term in (9) accounts for neighbors watching the satream as the receiving peer under consideration, and

the second term accounts for neighbors watching differeams. Note that our derivation is limited to two-hop
neighbors, which is conservative.

When SNC is considered, the innovative probability is estmiasimilarly as in the UNC case, except we set
the batch sizeB to the size of the frame group that is under repair. Note tlihbagh we can get the simulated
innovative probability under some scenarios offline, wencaget it under all cases because in practice the topology
of the network may change and. may change. In the following, we will use the analytical inative probability

for SNC optimization.

Common Neighbors

Fig. 4. Common neighbors in CPR networks, n4,n5 andng are common neighbors of; andns. n1,n3 andng watchess!, na, ns
andng watchess?. ny receives one packet af during the repair process.

V. SNC OrPTIMIZATION FRAMEWORK

In this section, we propose a framework to optimize strugand transmissions of network-coded CPR packets
at peers so that the expected distortions of streams arenmad. Our proposed SNC optimization has two steps.
First, the media source defines a global NC structure to nimeindistortion for the average peer with average

connectivity. Second, at each transmission opportunityeer selects a stream from,, and a type within the
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defined NC structure to transmit given its available locatestinformation of its neighbors. We discuss the two

steps in order.

A. Global NC Structure Definition

The media source first optimizes an NC structure for eaclamstrefor the average peem, assuming that an
average peer can expekf, packets from neighbors during CPR. Using the DAG source oo Section 1I-B,
the expected distortion at peerwatching streans can be written as:

M

Ap=D= di[[anly). (10)

=1 j=i
d; is calculated as the additional PSNR improvement of usingpdied framei for display of framei, plus the
PSNR improvement of using decoded fraini®r error concealment of descendant frames of frarrethe source
dependency tree in the event that they are incorrectly defathinus the PSNR improvement of using the parent
frame of framei (if one exists) for error concealment of framand its descendant frameB. is the sum of alld;
in one GOP, i.e., the distortion when no frame is received.j) is the recovery success probability of frarhg
at peern. Note that in (10) we make the simplifying assumption that filame recovery probability is independent
from each other.

oy (7) itself can be written as:
an(j) = (1 =D% + (1 -1 -0%)S8,.0), (11)

wherel is the WWAN packet loss rate, artd},(j) is the probability of frameF; being recovered at peerthrough
CPR givenF; was not initially successfully delivered via WWAN.

Suppose we are given SNC groups, ..., © x. FrameF; can be recovered Eme@gm B, innovative packets
of SNC types< ¢(j) are received, or iEFiE@m>+1 B; innovative packets of SNC types g(j) + 1 are received,

etc. We can hence writg,,(j) as:

X Y
Su(N=Qm.g(MN)+ Y. Qny) [[ (1-Qm,z-1) (12)
y=g(j)+1 z=g(j)+1

where Q(n,z) is the probability that peen can NC-decode SNC type by receiving . .o B; innovative
native or NC packets. Note here we make the simplifying agsiom that the recoveries of the frame groups are
uncorrelated.

Using the average innovative probability shown in (8), ifeeprn sends a NC packet of typewith probability

Bn(x), we can approximat€&)(n,z) as in (13),

R z k, x R—k
Qnz)~ Y X (Zﬁnu)) (Z m(@) x A(z, k), (13)

k=155 co, Bil k i=z+1

where R provides the total number of innovative CPR packets of SNiLig©,, in streamS(n). R is estimated as
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R, Pl
— mnuv 14
— (14)

whereL, =} .o B; is the number of packets in group % is the probability of receiving a particular stream

R

given an active set o streams.A(z, k) in Eq. (13) is theSNC group allocation ratipi.e., given there aré
received CPR packets in SNC gro@g., the fraction of possible allocations &fpackets to SNC groups x such

that they are innovative and hence are useful for the regosESNC group®,. As an example, suppose there
are two SNC groups with two framels, and F» of sizesB; = 2 and By = 2, respectively. Assume in addition
that there are 3 packet losses. Then can lose at most 2 packets via WWAN and thus can consume at most 2
SNC packets; the third packet loss must beSin and one SNC packet must be @. Without A(z, k), Q(n,x)
would give high CPR recovery probability for the biased SN@ture where all three CPR packets are allocated
to ©; and no CPR packet is allocated &, which is incorrect and will result if®, irrecoverable. Note Eq. (9)
addresses the innovative probability problem for multéain before the dimension of the subspace spanned by the
coefficient vectors reaches its full dimension, while theCSf§foup allocation ratio ensures that the CPR packets
are allocated to the SNC groups in a sensible way. In word®, fihds the frame group recovery probability by
calculating the probability that at leaft) .. .o Bi] CPR packets are received in SNC grou@nd these CPR
packets are allocated to the SNC groups in a sensible ordérasdhey are useful to the recovery of SNC group

z. A(z, k) is written as follows:

A(z, k) = min {A;(x, k), ..., Apu_1(z,k)}, (15)

where each termd;(z, k) is the probability of assigning extra CPR packets that SN@ug®©; cannot consume
to SNC groups greater than A(x, k) then finds the minimum of them to guarantee that CPR packietsatéd to
each SNC group will not surpass its capacity of holding th&@Rckets.A;(z, k) can be written as

k— UZFj ©; BJJ T . A 7 . k— UZF €O, Bjjf)‘
7 <Zj—i+1 5n(])> (Zj—l 5n(3)> T (16)

Ai(z,k) = > i1 Ba(G) 25— Ba(d)

A=[gi]

whereg; is the minimum number of CPR packets that must be in SNC gf@pbut not SNC grou®,.

gi=1> B;j—1Y B 17)

F;cO, F;co;

wherelZFjEQT B; is the average number of lost packets in SNC gréyp | ZFjeei B; is the average number
of lost packets in SNC grou@,. The difference between them gives the extra number of CRRepa that must

be in SNC group9,., but not SNC group®,. Note we use the average number of lost packets as the capécit
holding the CPR packets because WWAN packet losses are agdonie uniformly distributed in the GOP. In

words, A;(z, k) divides the SNC groups into two sections, with the sectiorirtzathe relative trasnmission weight

Z;:i+1 Bn (J)

S 50) holding at leasty; extra CPR packets.
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With our formulation shown in (10)—(17), the SNC optimizatiat the media source is to find the number of
frame groupsX, composition of frame group®.'s, and the packet transmission probabilitigs(z)'s of frame

groups so that the average distortion of the GOP is minimized

min A, 18
X A0 {Bn(@)} (18)

To solve the optimization problem in (18), a simple exhatessiearch scheme has been shown to be of exponential
complexity [13]. We therefore used an efficient local sealgorithm for fast optimization.

We first notice that the search space can be reduced by cdngidliee DAG structure described in Section II-B.
A frame F} that precedes framg; must surely be as important as frathg since without itF; cannot be correctly
decoded. When we assign frames to NC types then, we will agsiggeding frames with a smaller or equal NC
type than succeeding frames given the DAG structure.

Based on the reduced search space, we perform the locahseafollows. We first assign/ NC types to the
M frames intopological orderaccording to the DAG structure, so that a fraig preceding; will have a NC
type smaller tharF;. For this NC structure, we perform local optimization féy(xz). We start by having equal
Bn(z) for all frame groups. Then, starting from frame group one,gradually increasé,, (1), by evenly reducing
the otherg, (z),z > 1. Once we meet a decrease in the distortion performance, veeseethe direction. After
finishing the search on frame group one, we then perform thee sgperation on the rest of the frame groups. We
find the best “merging” of parent and child frames—assignhrgysame NC type to the merged group— according
to the DAG. We continue until no such beneficial merging openacan be found.

With our local search scheme, we need to check at mfsherging operations fol/ frames in each iteration,
and there are at most/ iterations. Hence there are at madgt merge operations performed, which is significantly
less than the exhaustive search. In this way, we can boundptimization in a reasonable amount of time, which

facilitates real-time video streaming.

B. SNC Local Peer Optimization

1) Peers Utilize Local State Informatiorin the previous section, an NC structure was globally ofédifor
the entire ad-hoc network assuming an average peer wittageeronnectivity. During CPR, howevdocal state
information can be easily exchanged among neighbors by piggybackingatan phckets with minimal overhead.
By local we mean only one-hop neighbor information. Spegiljc we assume each NC packet from peeaeveals
which stream the packet is repairing and which streans watching §(n)). The NC packet also includes two
state reports: ipative packet reception repoidentifying which packets of streai(n) were successfully delivered
from WWAN, and ii) NC group status reportontaining the number of innovative packets that are reckim each
NC groups ofS(n). Note that the obtained local neighbor information can beEdnaccurate (stale) over time.

Using local information, a peer first selects a stream amdpgdfor repair deterministically instead of picking
one at random. For a chosen stream, a peer then selects a K& pgae to transmit deterministically. This can

potentially further improve streaming performance logcdleyond the global optimization performed in previous
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section; for example, if a peer's neighbors have alreadly fitdcovered a certain stream, then the peer will not
choose that stream for repair.

2) Local Peer Optimization:Using the local information discussed above, at each tre@ssom opportunity a
peer can select the optimal stream for repair and the SNCthateresults in the minimum total distortion among
all its neighbors. More specifically, we optimize the foliogy expression:

min > N (19)

VEA, uEUY : m
me{n’s neighbor$

wherev andu are the stream and the SNC type to be decided for packet trssismi(? is the set of SNC types
in streamwv peern has. Similar to (10)A?:*, the resulting distortion of neighber when NC packet of type in
streamw is transmitted, is written as:

- D— Z di [J as( (20)

i=1 714
Note here the distortion reduction is for neighbor and D, M andd; are constants for strea(m). Since peer

n has local information from neighbon, we have

s - 1, if frame j has been received
o(g) = _ (21)
S (j5), otherwise
Note that the first line in (21) has two meanings: either &l plackets in frameg of streamS(m) are successfully
delivered through WWAN or they have been repaired through .CHey are inferred from the native packet
reception report and the NC group status report respegtig&l(j) has similar formulation as in the global NC
definition part except here we need to decide the stream acicptype for transmission. It is now approximated

as

X Y
QU (mg()+ Y, Q""(my) [[ (1-Q"“(m,2-1)), (22)
y=g(j)+1 z=g(j)+1

Since peers now have neighbor informatigit,“(m, =) is updated as in (23),

—k

Um Um T m Um
Q" (m,x)= Y ' (Zﬁm(i)> (Z B (1) ) x Az, k), (23)
i=1

k=rrgoe\ K i=o+1
where L?:"-" is the number of innovative packets of tygex peerm needs to recover frame group which can

be written as

C’;?L— m 3 Bm(i) =1, v=38(m),u=um;
Con— R'"%? i B (3), otherwise

C% is the actual number of innovative packets of type neighborm misses at the time when the state report is sent

szrzv,u — (24)

Lg,S
from m. t is the time elapsed from the last received state report upetsept.%% i, Bm(i) represents
the estimated number of innovative packets of typer in streamS(m) neighborm could receive during time

interval t. If the transmitted stream is the same as the stream peerneeds,S(m), and the transmitted packet
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type u is the same asg, then the packet transmitted fromto m will result in a reduction in the needed number
of packets. Similarlyl/,,, is the total number of packets neighbar could possibly receive during the rest of the
repair time. It is written as: /

Un = [R(1 = 3)] — 1. (25)
wheret’ is the time elapsed from the beginning of the repairing upresent.| R, (1 — §,—')j is the number of
packets neighbom could receive in the remaining time. Since peetransmits a packet to its neighber, the
total number of packets neighbet could receive is reduced by 1.

Note that in (23) and (24), we assume conservatively that pe€s other neighbors do not perform local
optimization, but instead are transmitting using the pegetmined transmission probability. This is due to the
fact that to predict the optimization results of peeis other neighbors and what packets will be received by
neighborm during the rest of the repairing process, we need globat atédrmation, which is difficult to achieve

in a distributed scenario.

VI. SIMULATION STUDIES

In this section, we verify the effectiveness of our SNC otation framework through simulations. We first
present the simulation setup: the video codec parametersh@nCPR network settings. Next, we show the result
of the innovative probability estimation. We then compdre performance of the UNC and SNC schemes when
CPR bandwidth is not sufficient to repair all WWAN losses focleatream. Finally, we examine the benefits of the

two proposed innovations in our SNC framework: local pedinagation and innovative probability estimation.

A. Simulation Setup

Two test video sequences were used for simulations: 300efrRIPEG class Anews and class Bf or enan
sequences at QCIF resolutioni7¢ x 144), at 30 fps and sub-sampled in time by 2. The GOP size was phatse
15 frames: one I-frame followed by 14 P-frames. Quantirafiarameters used for I-frames and P-frames were 30
and 25, respectively. The H.264 codec used was JM 12.4, dawtable from [21]. We performed reference frame
selection in [16] with target encoding rate at 220 kbps, Itegyin a DAG describing inter-frame dependencies as
discussed in Section II-B. For each trial, we used the saheovequence as media content for all streams. A peer
selected a stream to watch randomly among all availablarsse

We considered a CPR network of siz&)0 x 1000 m? where50 peers were uniformly distributed. The peers were
watching video streams through MBMS using their multi-hdngevices, where WLAN interfaces were activated
for CPR. We used the broadcast mode of WLAN, therefore no feedimessages were sent from the receivers
and no transmission rate adaption was performed. The mediees providedSy, streams, each of which was
transmitted at rateygus = 220 kbps. Given one GOP was 15 frames and video was encodEdfps, one epoch
time Y is 1s. The MBMS broadcast packet loss rate was kept constdnt.aEach CPR packet is set to the size
W = 1000 bytes. We used QualNet [22] to conduct the simulations. e hhe freedom to vary CPR bandwidth,
we selectedAbstract PHYin QualNet for physical layer.
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B. Simulation Results

1) Innovative Probability:We compared our analytical results on innovative probighiti the simulation results
in this section. Simulations for both the single stream andtirstream scenarios were performed.

Fig. 5a plots the average innovative probability when &l peers were watching the same stream and used UNC
scheme to do the repairing. Since the average number ddlipgicket loss wa&B, wherel is MBMS packet loss
rate, we assumed that PMKE) was uniformly distributed betweefl — ) B and B. This assumption is reasonable
because during the repairing process, the dimensions artbeding coefficient vectors were increasing gradually
and steadily. Because of the low packet loss rate, peers&/egcmost of the packets from MBMS. Therefore each
transmitted NC packet is a combination of a large number tf@and NC packets, which makes the components
of the native coefficient vectors random and the innovativebgbility close to 1. The difference between the
analytical and simulation results was small and was duedaimplified assumption of uniform distribution on the

dimension of subspaces.

1
. 3
0.9
= 0.98 > -A-Ana. 2 str.
=z = B4 —A— Sim. 2 str.
8 0.961 8 0.8-|-©-Ana.5str. | : 1
e -A- Analytical g —©-Sim. 5 str.
g ¢ —©— Simulation v -¥-Ana. 10 str. 5
E 0.94/ '§ 0-7 =7~ Sim. 10 str.
8 e 0-0--0--0--0--0--0--0--0
= £ V—FN
0.92} , : ] 0.6 7 ]
0.9 ‘ ‘ ‘ ‘ OS'V"V"V"V"V""" 4
"5 15 25 35 45 50 5 15 25 35 45 50
Batch Size Batch Size
a) Single stream b) Multi-stream

Fig. 5. Receiving CPR packet Innovative probability.

Fig. 5b shows the analytical result versus the simulati@ulteinder various multi-stream scenarios. Intuitively,
with the increase of the number of video streams, the inn@atrobability is reduced. We see that the analytical
results capture the trend of the simulation results very.wel

2) Multi-stream Repair with UNCAs discussed in Section Ill, if a peer does not receive a $effficmumber of
innovative native or NC packets during CPR to recoabrWWWAN losses, then UNC could not recovany lost
packets using received NC packets. This undesired phermmsas depicted in Fig. 6a, which showed the CDF
of the fraction of peers that recovered all packets througfR @ one epoch time using UNC. There wefe= 5
total active streams, and on averagepeers were watching the same stream. As shown, lessTti{@nof peers
recovered their lost packets in one epoch time. Similarly, Bb showed the CDF when there wefe= 10 total

active streams. The result was similar, and ali®¥ of the peers benefited from CPR with UNC.
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Fig. 6. CDF of the number of peers repaired during one epoch time

3) Multi-stream Repair with SNCWe now show the performance of SNC for the multi-stream seen@he
complete SNC scheme involves a two-step optimization: jlimeource first searches for the optimal NC structure
for each stream separately using the optimization framlewhown in Section V; and ii) individual peer performs
local optimization by utilizing partial state informatiorceived from neighbors.

In the following, we first compare the performance of SNC to @WNnder different CPR data rates using
different video sequences. We then show the effectivenéstheo local peer optimization and the innovative
probability estimation in the SNC optimization framewotlastly we explore how the number of streams affected
the performance.

a) SNC outperforms UNCFig. 7a and Fig. 7b showed the CPR data rates vs PSNR ploefes when there
were 5 and 10 streams, respectively. Fig. 7c and Fig. 7d shéfee CPR data rates vs PSNR plot fasr enan.
We also have the Un-repaired video quality, the originakbwidjuality without any CPR repairs, as a performance
benchmark.

From Fig. 7 it can be easily observed that SNC outperformadittonal UNC and Un-repaired video in all
transmission rates. When there were 5 streams provided by $|EBMIC provided up to 11.7 dB PSNR improvement
for the news sequence and 16.7 dB PSNR improvement forftbeeman sequence over Un-repaired video when
the data rate was larger than 3 Mbps. When there were 10 stréaengerformance improvement over Un-repaired
video using SNC were up to 9.9 dB and 13.9 dB when the data rate larger than 6 Mbps. For UNC, the
peers needegj;i1 B; innovative native or NC packets before any repairing co@dbrformed. However, for the
SNC scheme, peers could repair important frames as soorffasestt NC packets of particular SNC types were
received. Hence when bandwidth was low, the performanceNs® ®as much better than UNC. For example, at
the transmission rate of 1.2 Mbps, SNC achie2etidB gain over UNC for thenews sequence and around6
dB gain for thef or eman sequence where there were 10 streams. When the bandwidthigtes, the number of

received packets increased so that UNC recovered more tgazhe the performance of the two schemes became
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Fig. 7. PSNR fomews andf or eman under various CPR data rates.

similar.

Comparing the video qualities for theews andf or eman sequences, we found that the improvement by using
SNC over the UNC scheme was more pronounced forf theermran sequence. For example, as shown earlier the
gain was2.3 dB for thenews sequence and.6 dB for thef or eman sequence when 10 streams were repaired
under 1 Mbps CPR data rate. This is due to the fact tlmatenan has more inherent motion and requires more
encoding bits for the same given quantization parametessa fesult, the corresponding DAG was long rather than
wide, which means that if a particular packet close to theé nmale is lost, it affects many descendant frames and
results in large distortion.

b) Effectiveness of Local Peer Optimization and Innovatrebability Estimation: We also examine the
individual benefits of the two innovations we propose witltiie SNC framework: local peer optimization and
innovative probability estimation. We compare the perfance when: i) both innovations were removed; ii) only
innovative probability estimation was added; and iii) bathovations were added.

Fig. 8a and Fig. 8b compared the performance of SNC undegrdiff configurations for both theews and
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Fig. 8. PSNR for themews andf or eman sequences under various CPR transmission rates and SNC ssh#ings.

f or eman sequences. First, note that SNC without both innovationsadl outperformed UNC. For example
at 1.2 Mbps CPR data rate, for theews sequence and without local optimization and innovativebphility

estimation (innovative probability set to 1), SNC achiewegain of1.4 dB over UNC. By utilizing both local peer
optimization and innovative probability estimation, SNfdyided2.3 dB gain over UNC. The results were similar

for thef or eman sequence.

—©— SNC Data Rate 3Mbps
-©-UNC Data Rate 3Mbps| |
—B— SNC Data Rate 1Mbps ||
-B-UNC Data Rate 1Mbps

PSNR (dB)
N N w w w
o @O N &

N
~

N
N

8
Number of Streams

Fig. 9. PSNR for thenews sequence under various multi-stream scenarios.

¢) Number of streams affects performanéég. 9 showed the performance of UNC and SNC when the stream
number varied from 4 to 12. Obviously with the increase of nlaenber of video streams, performance decreased
because the CPR bandwidth that could be allocated to a plartistream was reduced. Peers had to contribute
most of their CPR bandwidth to help others. Nevertheless SNC scheme showed noticeable gain over the UNC

scheme for all cases.
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VIl. RELATED WORK

Due to the aforementioned NAK implosion problem [4], manglad streaming strategies over MBMS [5] have
forgone feedback-based error recovery schemes like [3]cgoted instead for Forward Error Correction (FEC)
schemes like Raptor Codes [5]. While FEC can certainly hetpesbIBMS receivers recover some packets, receivers
experiencing transient channel failures due to fadingdeWing, and interference still suffer great losses. Weciadt
exploit the multi-homed nature and propose to repair loskets through CPR.

NC has been a popular research area since Ahlswede’s sernunal[23], which showed that network capacity
can generally be achieved using NC. Many studies have skptered message dissemination using NC. In [24], the
authors proposed to use random NC [18] to encode the paakéts transmitted in a peer-to-peer content delivery
scenario. We leverage this idea to our design and focus aowvitteaming and NC structure in wireless ad-Hoc
networks. A gossip-based protocol was proposed in [20] vhiiilizes network coding to disseminate messages.
Instead of gossiping, we utilize the broadcast nature ofwtiieless medium to disseminate video packets.

Recent works [25], [19], [26], [27] have attempted to jontptimize video streaming and NC. [19] discussed
a rate-distortion optimized NC scheme on a packet-by-faossis for a wireless router, assuming perfect state
knowledge of its neighbors. Though the context of our CPRbler is different, our formulation can be viewed
as a generalization in that our optimization is on the er@@P, while [19] is performed greedily per packet.

[25] utilized the hierarchical NC scheme in the same way f@NCand P2P networks to combat Internet
bandwidth fluctuation. Our work is more general in that owrrse model is a DAG, while the model in [25] is a
more restricted dependency chain. Moreover, we provide aplnization framework to better exploit the benefit
of SNC.

[26] discussed the application of Markov Decision Procd33 fo NC, in which NC optimization and scheduling
are centralized at the access point or base station. LiketfiEYy require complete state information assuming
reliable ACK/NAK schemes, which has yet been shown to beabtalto large number of peers. In our work, we
instead consider fully distributed peer-to-peer repathaiit assuming full knowledge of state information of peers

[27] discussed applying structure on NC across multipleegations of video packets, where one generation is
defined at the transport layer irrespective of applicatayer GOP structures. In our work, NC is applied within one
GOP, and the structure is defined according to the dependeseyamong the video frames in the GOP. Defining
NC structure within a GOP enables us to build a rate-distortiased NC optimization framework which finds the
optimal NC structure resulting in the smallest expectedodion. To our knowledge, we are also the first in the

NC literature to use randomization in the implementatiorsSbIC for video streaming optimization.

VIII. CONCLUSIONS

In this paper, we present a novel, rate-distortion optichiZdC-based, cooperative peer-to-peer packet repair
solution for the multi-stream WWAN video broadcast. We makatdbutions in the following major aspects. First,
we propose a two-step NC structure optimization framewarkvhich the video stream repair can be optimized

in a rate-distortion manner. Second, we analyze the inin@vgtrobability of a receiving NC packet to facilitate
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accurate NC structure optimization. Lastly, we provideadetl simulations and show that the video quality can be

improved by up tol6.7 dB over un-repaired video stream and by uptté dB over video stream using traditional

unstructured network coding.
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