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Bit Allocation for Joint Source/Channel Coding of
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Abstract—We propose an efficient bit allocation algorithm for uses such a source coder in the wireless scenario, there is no
a joint source/channel video codec over noisy channels. Our ap- need to change the source coding algorithm as the channel con-
proachis to distribute the available source and channel coding bits itions change. This is particularly attractive in heterogeneous
among the subbands in such a way that the expected distortion is . . o
minimized. The constructed distortion curves bound the perfor- multicast networks where the wireless link is only a small parf[
mance degradation should the channel be estimated incorrectly. Of @ much larger network, and the source rate cannot be easily
The algorithm can be used in other similar distortion minimiza- adapted to the individual receiver at the wireless node.
tion problems with two constraints, such as power or complexity. Inthis paper, we develop an algorithm for optimal partitioning

Index Terms—Allocation, optimization methods, video codecs. ~ Of source and channel coding bits for the scalable video compres-

sion algorithm described in [15] and an unequal error protection
channel coding scheme. By “optimal,” we mean a partitioning
|. INTRODUCTION which results in minimum expected value of distortion, which we
HE ADVENT of wireless personal communication serchose to be mean squared error (MSE). We will consider the case
vices in recent years has created a number of challenghfere the header files of the encoded bit stream are protected ad-
research problems; a major challenge presented by the wireleggately so there is no loss of synchronization, and the channel
channel is its inherent unreliability. This contrasts with wiredtate is known. Under these conditions, the joint source/channel
networks, which have very low error rates. In a large clasedec will adapt to the estimated channel and optimally transmit
of wireless video applications, users move at relatively slowideo for the current channel state. In Section I, we formalize
speeds, rather than at tens of miles per hour. Consequertily; optimization problem and relate our approach to the current
the resulting channels suffer from slow fading and shadowititerature. In Section Ill, we discuss our formulation of the bit al-
effects. By estimating the condition of this slowly changingpcation problem for joint source/channel codec. In Section 1V,
channel, one can adapt any aspect of the transmission sch&r@escribe our proposed bit-allocation algorithm. Section Vdis-
to the channel condition. In particular, one can change tkhgsses some implementation issues and results. Section VI pro-
source coding and the channel coding algorithms accordivigles concluding remarks.
to the channel condition to minimize the distortion of the
received signals. Because the importance of different bits
within a bitstream often varies, one can protect different sourceThe study of bit allocation addresses the general problem of
bits using unequal error protection (UEP) schemes such famling the optimal distribution of resources (e.g., bits) among
rate compatible punctured convolutional (RCPC) codes [1d&] set of competing users (e.g., quantizers) that minimizes
to further enhance performance. Indeed, several researchkes objective function (e.g. distortion), subject to resource
have applied this idea to speech [1], [2] and image [3], [14¢pnstraints. Many existing bit allocation algorithms [4]-[7]
[13] transmission over wireless links. With the exception dfckle a common special case when the objective fundlios
[1], which deals with speech, the remaining papers mentiontitt sum of individual user functiong,’s, and the one resource
above explicitly require the source coder to adapt to the changehstraint requires the sum of individual user resourcgs
condition. As an example, in [3] a whole new codebook mightot to exceed the resource linfit
have to be designed in order to optimally accommodate each K K
new channel condition. min D= di(m) St Y m <R 1)

With highly scalable video compression schemes [15], it is ot k=1 k=1
possible to generate one compressed bitstream such that \@iereK is the number of users. This formulation has practical
ferent subsets of the stream correspond to the compressed &pplications such as bit distribution among quantizers [5], sub-

sion of the same video sequence at different rates. Thus, if d¥ds [6] and coders in a classification-based coding scheme.
Recent papers [9], [10] describe a class of optimization prob-

i . . . I%ms in signal processing of a similar framework, but with two
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In [9], the constraints are power and bandwidth. In [10], th&ection IlI-A, we discuss the chosen source codec—a rate scal-
constraints are complexity and bit rate. [9] offers a greedy able three-dimensional (3-D) subband coder described in [15].
gorithm that extends the one-dimensional (1-D) bit allocatiofhe unequal error protection channel codec we use is rate-com-
algorithm in [6] to another dimension, but the algorithm corpatible punctured convolutional codes (RCPC) [17]. The for-
verges to a local minimum and does not guarantee a glolalilation of the problem using the chosen source and channel
minimum. In this paper, we present a new bit allocation algaodecs is presented in Section I11-B.
rithm that solves (2) optimally up to a convex-hull approxima-
tion. Our algorithm is an extension of the popular one-dimem. Scalable Video Coder

siona] integer pr.ogramm.ing algorithm in [5]. Similar to_ [5], our The scalable source coder described in [15] has been shown to
algorithm exploits the discreteness of the user functigyis, ﬁenerate rates anywhere from tens of kilo bits to a few mega bits

and, as such, it is especially efficient when the user functio &r second with arbitrarily fine granularity. In addition, its com-

dy's are sparse. Since user functions are operational RD Ch|E’i\réssion efficiency has been shown to be comparable to stan-

acteristics in many applications, which are often sparse dueatgrds such as MPEG-1 [15]. The fundamental idea is to apply
the computational complexity in generating them, our algorith

- . . . .INree dimensional subband coding to the video sequence to ob-
performs efficiently in these scenarios. In particular, we wi

: . ; ) . ?in a set of spatio-temporal subbands. Subsequently, each sub-
present our algorithm in the context of a third practical signg

. . o nd coefficient is successively refined via layered quantiza-
processing problem: optimal distribution of source and chanqé

bit bbands for t o ¢ lable vid n. Finally, conditional arithmetic coding is applied to code
nloiss;r;?:r?nzrs ands for transmission of scalable VIdeo OVfife ey guantization layers. In so doing, the spatial and tem-

. oral correlations, as well as correlation between quantization
Tradeoff between source and channel coding has b

&ers are accounted for to maximize compression gain.
studied from a theoretical standpoint in [11], [12] for vector %V P g

. . L : e opt to use the 3-D scalable video codec in our analysis
quanpzers._ Practical systems for tra_msm|53|on of 'mages bai&da number of reasons. First, the embedded bitstream that the
\c/)\?t;htl)s Ogt'rg?rl] tt;aQeotfrf] hav? beent|m_p|temented In Els]t’h[M ncoder generates is highly scalable. Depending on the esti-

Vith bandwi €ing the only constraint, one can Soive th€ 0,04 channel condition, the bit allocation scheme can easily
timal source/channel_bn distribution problem n the framewor tract varying subsets of the bitstream representing the signal
of (1). For .exampl'e, |n'[13], the approach is to' first constru%tf varying quality. Second, because the codec is wavelet based,
the operational distortion-rate curve as function of bits f(m

h subband of let d ition. th v 1-D e total distortion is roughly the sum of the distortion of the
each subband of a wavelet decomposition, then apply - Hividual subbands, which fits the optimization framework in
allocation algorithm in [6]. The optimal distribution of bits

o . ) A . Finally, the codec is well documented and readily available
within a subband is done by using exhaustive search throu Y y

o . o he Video and Image Processing Laboratory, University of
all combinations of channel coding rates and quantization steRifornia Berkeley [16]
sizes. One common thread among these analyses is that the ’ '
joint source/channel codec is adaptive to the channel conditi%p, Source/Channel Bit Allocation
which is assumed to be known perfectly. In the case when
the channel is estimated incorrectly, it is difficult to evaluate The main problem we solve is: for our chosen source and

the performance of the incorrectly adapted system witho#ftannel codecs, and for a given total bit budget and channel
simulations. condition, what is the optimal distribution of source and channel

In this paper, we formulate the bit allocation problem fobits among the subbands that minimizes distortion? To solve this

joint source/channel codec in the framework of (2) instead. TB@timization problem we must determine i) how many source
added advantage is that one can estimate the performance opifegoes into each subbakdand i) to what extent do we pro-
joint source/channel codec during channel mismatch. Thisis itgct each source bit of subbakd We first assume a total bit
portant when evaluating the performance of a codec in scenafig$lget of B and a memoryless channel with known channel

where the channel condition cannot be estimated correctly, $@te; we will later consider both a binary symmetric channel
where channel variation is too fast for the codec to adapt.  (BSC) and an additive white Gaussian noise (AWGN) channel.

For each channel statewe first construct the distortion func-
tion D; as a function of the ratio of source rate to channel rate
R./R.,whereR, (R.) is the source bitrate (channel bitrate) in
bits per secorid Each point on the curvE R,/ R..), D;) repre-

In scenarios where the transceiving codec has a complexi§Nts the minimum distortion attainable from the best distribu-
constraint or the transmitted signal is delay sensitive, the segg ©f source and channel bits among the subbands such that
rate source/channel coding theorem does not hold; as such, §ifeSum of source bits (channel bits) does not exdegdr..).
must jointly design the source and channel codecs to achiéid/e enforce K. = B — K., thenD;(R, /(B — R.)) would

optimal performance. A common approach for building joint | . _ . .

. . Channel code rate is usually defined as a ratio of source bits to channel
source/channel codecs is to cascade an existing source CQﬁ@.C\Ne decide to use a nonconventional notation for two reasons: 1) bit al-
with a channel codec [14]. An important question then is holatation algorithms discussed later can be directly applicable to other optimiza-
to distribute the source bits and channel bits between the SOL}}@?problems if the two constraint variables are defined as absolute quantities;

. . .. . .. and2)we are using unequal error protection within a subband; the conventional
and channel codecs so that the resulting distortion is m'n'm'z‘?&qative definition may misleadingly give the illusion that all source bits are
We formulate this problem formally in the framework of (2). Inchannel-coded equally at the same rate.

I1l. JOINT SOURCHCHANNEL CODING
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D TABLE |
TABLE OF NOTATIONS
K number of subbands
i Channel State Information for channel i
D;(a) signal distortion for channel i when R,/R. is «
nk source bits used for kth subband
mk channel bits used for kth subband
™Mk channel bits used to protect bit ¢ of subband k
di(nk, my) | distortion function of kth subband given ny, my

r‘1 ,:2 Rs/R¢

Fig. 1. Distortion as function of source to channel rate. bits. As aresult, for givetvy, my), d(nx, m; ) can take on more

merely be a function of one variable, name®, and each than one value. Since our goal is to minimize distortion, we will
point on the curveD;(R, /(B — R,)) will satisfy the bit budget take the smallest value @fn,m;) as the function’s value at
requirementB. This is shown in Fig. 1 for two channel stated”, ). Because the computational complexity of the to-be
1 and 2. By empirically locating the minimum points on thesdiscussed bit allocation algorithm depends on the number of
curves, we can find the optimal source to channel bit ratRpPints on the distortion functions, we will reduce the number
R*/R?, denoted byr; andr; for channel states 1 and 2, re-of points_ in each distortion function by making the following
spectively, in Fig. 1. The corresponding minimum distortion fgtSsumptions.
the two states aré, andd.. If the channel estimate is incorrect, 1) The same level of protection will be applied to all the bits
we can approximate the performance of the codec using the within a quantization layer of any given subband.
constructed distortion curvds;’s. Suppose the channel state is 2) Higher quantization layers, which constitute refinement
incorrectly estimated to be state 2 when it is in fact state 1. We  layers, cannot have higher level of protection than lower
will erroneously use the source to channel bit raticand the layers.
distribution of source and channel bits associated with poiTihe first assumption assumes that all source bits within a
Ds(r2). Since the channel state is actually state 1, the distortigiven quantization layer have the same importance. The second
of the system is lower bounded liy; () = d,. The reason assumption does not affect optimality because higher layers
is that Dy (r2) represents the best possible performance fropannot be decoded if lower layers are not received correctly.
the optimal distribution of source and channel bits for source Tthus it is intuitively clear that lower layers need to be protected
channel ratia~,. Similarly, if we assume the channel to be statat least as much as the subsequent higher layers. Further
1 when it is in fact state 2, then the distortion of the systegretails of the distortion function constructions are deferred to
is lower bounded byD.(r;) and upper bounded bi; (r1). Section V-A.
The performance bounds obtained in this fashion provide aGiven distortion functionsi,(nx,mz)’s, the optimization
first-order evaluation of the joint source/channel codec duringoblem is to find the optimal allocation of source and channel
channel mismatch without actual simulations. bits among subbands:

In computing each point on the above curves for

. . . K
R, = R%™e we must determine how to distribuf@® &<t min i: (e, )
source bits and3 — R'#*¢** channel bits among the subbands {rrme} — AT TR

and quantization layers, such that the distortion, expressed P
below, is minimized: sit Z ng < Rt

t. . < R!
Rtarget K k=1
D; <ﬁ) = dk(”kamk) (3) K
B — R; ge ; Z my < B— R;arget _ R(t:arget' (5)

(see Table | for notations). k=1

To perform the optimization above, we need to construbi the next section, we will focus on solving (5).
the subband distortion functiongy(ns,my)’s. Since each
subband has an integer number of quantization layers and there [V. L AGRANGIAN OPTIMIZATION

is an integer number of channel protgctipn I_evels, distortion There are many approaches to solve (5). If one assumes con-
functions are discrete. L¢tn; .} be the distribution of channel vexity of distortion functions, one can obtain fast algorithms
bits used to protech.k source bits in supband. The total [7], [8] for bit allocation problems in general. For example, [7]
number of channel bits for that subband is demonstrates that there is a complexity reduction in the gen-
Tk eralized BFOS algorithm if one assumes convexity. However,
e = Z M k- (4)  we have found experimentally that the operational distortion
=1 surfaces, with respect to the channel rate axis are not convex.
For the same number of source hits and same total number An intuitive explanation is the following: in very poor channel
of channel bitsn, in a given subband, there may exist many conditions, adding a small amount of channel bits to the sub-
different distributions of channel bits within the subband, coband will barely affect the bit error rate, and the subband dis-
responding to different levels of protections for different sourdertion remains close to the distortion with no channel bits. As
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the amount of channel bits increases, the effect of the forwardThe distortion functionsls, (nx, my)'s are empirically com-

error correction kicks in, and the distortion will decrease mouted discrete nonlinear functions; most general bit allocation
dramatically. This results in a nonconvex surface. As a resultpfoblems do involve these kind of functions. One approach is
the nonconvexity, we chose not to develop our algorithm relyirig fit analytic continuous functions to these discrete functions,

on this assumption. and to perform optimization on the continuous counterpart. In
Instead of solving the original problem in (5), we will solvethis paper, we provide a method for selecting the Lagrange mul-
the corresponding Lagrangian problem instead: tipliers without fitting analytic continuous functions to the dis-
x tortion functions.
+$ . T
. To search for the best possible multipliers, we develop two
i) {; [ (e, m) + A + Nmk]} - ) qethods in the next two sections. The first method, described in

Section IV-A, converges very fast when it is far from the so-
If there exist multipliers. andu such that the source and channdution but performs poorly when near the solution. The second
bit budgets in (5) are satisfied with equality, then the optimahethod, described in Section 1V-B, converges slowly when it
solution to the Lagrangian problem is also the optimal solutios far from the solution but converges to the optimal or near-op-
to the original problem [5]. timal solution efficiently when near it. We will then discuss a hy-
The appeal of solving the Lagrangian problem is that thwid of the two solutions in the Section 1V-C, which provides an
problem is now unconstrained. Moreover, for a giveandy, efficient algorithm for finding an approximate, error-bounded
we can find the sefny, m{} that minimizes (6) by solvind  solution in finite time.
separate equations individually in the form

A. Linear Approximation of Lagrangian Functions
min [dp(ne, me) + Ang + pmy] fork=1,--- K. (7) pp grang

() We will begin with the description of the algorithm in Sec-
The resulting source and channel rate will be calleddpera- tion I\_/—Al. T_hen we will discuss the difficulties with the. algo-
tional source and channel rate, expressed as rithm in Section IV-A2. See [_18] fora proof of the algorithm.

1) Development of AlgorithmThe first method uses two
K K properties of the rate functions to search for the multipliers: 1)
RI=Y n} RI=) mj. (8) the rate functionk? (R?) is more sensitive to changes in its
k=1 k=1 primary multiplierA (1) and 2) the rate functions are convex,

The problem is to find andy such that the resulting?, R°) nonincreasing functions, and they are inversely proportional to
e their multipliers. The first property is based on empirical obser-

from (6) will be the same as our target source and channel r _ .
(Ri=reet, Riarset) |n cases where such multipliers do not exisiations; the second property is a theoretical result of Lagrange

then we have to settle for an approximate solution. Although tﬁ_éultlpllers. With tr(]ese propertles(,) We can gpproxmat_e opera-
solution is not optimal, the error is bounded by the followin onal source raté; (channel rate?) as function of multiplier

theorem. () only:
Theorem 1:Suppose the approximate solution has opera- 1
tional source raté??, channel ratg??, and distortionD?: R :ASX + B;
K R :Acl + B. (12)
D% =" di(ng,m). ©) o
k=1 whereA, and B, (A, and B.) are chosen constants to fit two

Let the resulting distortion of the ideal solution B, and €mpirical data points. The algorithm iteratively selects two
the source and channel rate constraintitjeand R*, respec- Points: ((1/X0), R o) and ((1/A), RS ,), and constructs a
tively. In addition, letD! and.D? be the distortions of two other linear function in the form of (12). Given the linear function,
Lagrangian solutions resulted from two different sets of multihe algorithm computes the multipliev,(u), that will yield the
pliers, such that their operational source and channel rates offget rate Ri™e<t (Ri*e<t). Using the computed multipliers,

the following inequalities: it finds the corresponding operational rate by solving (6). This
gives another data point, and the algorithm repeats. The details
R <R R <R? of the algorithm are as follows.
R!<R°,R* < R% (10) Step 0: Initialize iteration index: := 0. Start with initial

guess for multipliersjg, 1o-
The error of our approximate solution can be bounded by theStep 1: Find the corresponding operationd , £y . If the
following: condition

Rlg < RO RO, < Rpve (13)

D° — D*| < |D* - D?|. 11
| N | (1) does not hold, then

The proof is a natural extension of the proof of Lemma 7 in N 1 \ 1 14

[5]. In practice, such errors are often negligible. 0= 70 Ho -= 7“0 (14)

Vs e
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target . .
RS ] optimal point

o

RsO "¢,

1/

A0 1/A3  1/A2 1/Al

Fig. 2. Example of linear Lagrange multiplier search.

where~v,,v. < 1. Repeat step 1. This is poiatin Fig. 2.

Otherwise, update multipliers

ALi=7sX0 1 1= Yello- (15)

Step 2: Find the corresponding operatioé] ; andR? ; . If
the condition

Ry > R RQy > Rpwee (16)
does not hold, then
AL = sAr H1 2= Ve (17)

Repeat Step 2. This is poihtn Fig. 2. Otherwise, let := 1.

Step 3: Notice now

R € [RY) RY]  R&e € [RO, RS (18)
Using two source data points);, 12 ;) and( Ao, 12 o), find A,
and B;. This is the line that connects poinisandb in Fig. 2.
Use similar procedure to find,. and B..

Step 4: For givenA, and B, find A, that yieldsRt?eet,
This is1/X; in Fig. 2 in the first iteration. Similarly, fingl;1
that yieldsRi*&*", Get R; ,,, andR?,,, by using);;; and
1 @s multipliers to solve (6). This is pointin Fig. 2.

Step 5: Check exit conditions

H 14 _ ptarget target
if |R5,t+1 Rs | S 65RS ’

and |R, . — RITe < ¢ RITESE exit
else t:=t+1
goto step 3

wheree,, e, < 1.

2) Difficulties of Algorithm: In practice, two problems pre-
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di(nl)+ Alni d2(n) +A1n2
\ O\0—0
o}
. e o—0 A2min e 0"
dlmin| oo X . :
PEL | nl ERaay | : 02
nl* n2*
a) b)

Fig. 3. Example of 1-D Lagrange multiplier problem.

to update(y«o, R ). The other more serious drawback is that
the source and channel rate are in practice discrete rather than
continuous functions with respect to their multipliers. As the
algorithm approaches the optimal multiplieks |¢), the discon-
tinuity of the discrete source and channel functions may create
difficulties for it. We address this problem with an improved al-
gorithm presented below.

B. Generalized Shoham-Gersho Algorithm

Our proposed algorithm is a generalization of Shoham-—
Gersho Integer Programming Algorithm [5] which vyields
optimal or near-optimal solutions to the source bit allocation
problem in the framework of (1). We will begin with a brief
review of Shoham-Gersho algorithm in Section IV-B1. In
Section IV-B2, we will define our generalized algorithm, which
we denote as the GSG algorithm. See [18] for proofs of the
algorithm.

1) Shoham-Gersho Algorithmrhe Shoham-Gersho Algo-
rithm is an integer programming algorithm for the source bit al-
location problem. The algorithm solves the Lagrangian problem
by finding the best possible Lagrange multiplier; the algorithm
always terminates with an optimal solution or an error-bounded
approximate solution. Unlike previous bit allocation algorithms
[4], this algorithm addresses a more general class of problems
because it does not fit the subband distortion curves to contin-
uous analytic functions, nor does it make any assumptions about
the nature of the distortion curves such as convexity.

Itis important to understand the geometrical interpretation of
the application of Lagrange multiplier to problems of form (1).
The Lagrangian problem can be viewed as a minimization of
the sum of subband distortions plus a penalty funcégn) =
Ei(zl AN

min

19
tuin (19)

{Z [d(nx) + )\nk]} .

k=1

vent the algorithm from reaching the optimal solution. The first

one is that the assumption of the operational source Kgte

The penalty function translates into adding a penalty line of

(channel ratei?) being function of its primary multiplier only slope to each of the( distortion functions. Fig. 3 shows that
A (W), is only a local approximatiorz? can be approximated asfor a given multiplierA; , we found minima in subband 1 and 2
function of A only when changes ip is small. As the algorithm to benj andnj. If these two are the only subbands, then the op-
progresses, however, it is inevitable thawill change. One erational source rate for this multipligs is RS = n} + n3. If

remedy is to restart the algorithm evely iterations with
andp.y as initial starting multipliers. This wayo, &3 ) is up-

R?is smaller than our budget rat& , then we decrease the mul-
tiplier value to decrease the effect of the penalty function. Geo-

dated with current values @f. Similar procedure is performed metrically, that would mean decreasing the slope of the penalty
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d(n) d(n) + Aln d(n) + A2n

o ‘ -
: e dmin - T O0——>0
M?F‘—L\?\O T 5 L
- LT T SN S U E i S
nl n2 n nl n2 n n2 n3 1
a) b) ¢)

Fig. 4. Example of 1-D singular point multipliers.

lines. The Shoham-Gersho Algorithm addresses the problem of RS
exactly howthe multiplier, orthe slope ofthe penaltylines, should
be adjusted.

The crux of the algorithm is the notion singular points—a Rs2 | .
special set of multiplier values such that the optimal set of Rs*
solutions is non-unique. Geometrically, such multipliers create Rsl
a slope on the subband distortion curves such that a pair of : \
adjacent convex-hull data points on a particular distortion : f ! 7y
curve are simultaneously minimum. Fig. 4(a) shows the Ax A2 M

original distortion function with respect to source bits. To
maken; andns simultaneously minimum, we first find slope
A1 = —(d(n1) — d(n2))/(n1 — n2). Fig. 4(b) shows the effect
of adding a line of slop@; to d(n)—there are now two minima boring multiplier, we are decreasing (increasing) the slope of
in the distortion function. This implies that a singular pointhe penalty lines gradually in all subbands until nonunique so-
such as\;, has more than one operational source rate. lutions appear in a subband. With the new nonunique solutions
An important property of singular points is that neighboringh hand, we compute the new operational source rates and check
singular points always share one solution. Fig. 4(c) shows an agrainst the target. In Fig. 5, we start at multipligr then move
jacent singular point to the one in Fig. 4(b), and they share oteneighboringh,, then to neighboring\,; each time we drive
solution, namelyn,. Another property is that there can be n@ur operational rate closer to our target r&fe Upon reaching
additional solutions in between the neighboring singular points, , we notice that the two associated operational rates encloses
We see that as we decreasgto ),, the only possible min- our target rate. These are the closest solutions we can find by
imum isny, which is the common solution for the two adjacensolving the Lagrangian; we will settle with the solution set cor-
singular points. Another interpretation of this property is thaesponding ta?, ; to be our approximate solution. See [5] for
the set of nonsingular multipliers in between two neighboringore details.
singular multipliers does not yield any more solutions that is 2) Development of GSG Algorithn®ur algorithm extends
not covered by the two singular multipliers. Therefore, the stte Shoham—Gersho Algorithm to another dimension. Similar
of singular points leads to the entire set of solutions to the L& the 1-D case, the multiplier problem in the form of (6) can
grangian problem in (6) for all possible values of multipliershe viewed as minimizing the sum of subband distortions plus a
We can now make the following important conclusion: penalty function(\, i) = & | Any + pmy. With the added
Instead of sweeping the multiplier valaefrom zero to in- dimension, the penalty function now translates into adding el-
finity continuously in search of an operational rate that is closevated penalty planes in and m axes to all subbands with
to our target rate, it is sufficient to look only at the singularslopesA and 4, respectively. Our goal is to iteratively make
points, since they alone lead to all possible Lagrangian soladjustments to the slopes of the penalty planes such that our
tions anyway. operational rate paifR?, R?) converges to our target rate pair
Fig. 5 shows the operational rate as a function of multipli€zt>*&°t, Rt>r&°t) . Similarly, we would like to make these ad-
A. Notice the singular points,.., A2, A; etc, each have multiple justments using singular points. The notion of singular points
solutions, denoted by circles. Notice also that nonsingular pofor two dimensions, however, is slightly more complicated and
multipliers do not lead to solutions that is not already coveretbeds to be explained further.
by the singular points. Singular Points: A nonsingular set of multipliers A( W),
Since operational source rate is monotonically nonincreasisignilar to the 1-D case, implies that there is a corresponding
with respect to the multiplier, at any given point on the opeset,{(ng, mj)}, that uniquely minimizes (6). If the set of mul-
ational rate plot, we only need to search neighboring singuligpliers is singular, then there is at least one subband, called
points iteratively in the direction towards our target rate irthe pivot subbandwhere there is more than one point in the
stead of traversing all of them. Geometrically, to go to a neigeubband that minimizes it. For example, there are two points,

Fig. 5. Operational source rate vs. multiplier.
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Fig. 6. Geometrical interpretation of singular points in 2-D.

xot = (not,mgt) andx9? = (n%?,mg?), that are comin- are two minima. As indicated by the arrow, we can continue
imum of subbang to decrease the tilt of the plane surface by changirand u
Jpe{l,--- K} st while keeping these two points minimum. In Fig. 6(c), we

reach a triangular case; there are three pivot points that are

xp! = arg [(nmi}ll ) {dp(np,mp) + Any + pmyp ] simultaneously minimum for subbardin Fig. 6(d), we reach
0.2 m the other alternative; instead of finding a third pivot point in

Xpo T A8 [(,f:ff}p) {dp(np, myp) + Anp & pimy }] subband, we find two pivot points in another subbagidNote

X;,l 7£X;,2' (20) also that if the case is two-point pivoting, then the resulting

operational source channel rate pair, cafddbt rate pair are
Points that satisfy (20)5' andx?? in the example, are eachin two distinct pairs

calledpivot point Two-point pivotings the case where the mul-

tiplier pair yields only one pivot subband, having only two pivot K K

points. (RPN RYY) = [ npt + Z ng,myt + Z my,
Note that we have two degree-of-freedom (DOF) in choosing k=1,k#p k=1,kzp

the multiplier pair §\, 1. To satisfy (20) for two pivot points in K K

a subband, we essentially have one equation, and only one DQR2?, R2?) = n;ﬂ + Z ng, m;ﬂ + Z mg

is needed to satisfy it. To exploit the additional DOF in selecting k=1 kstp k=1 kstp

our multiplier pair, we have two alternatives. First, we can find (21)

another point within the pivot subband such that together with

the original two pivot points, we have three pivot points that argherep denotes the index of the pivot subband. Similarly, if
simultaneously minimum for a multiplier pair. We call this caséhe case is triangular or quadrangular, there will be three or four
triangular. This implies that we can move from a two-point piv-corresponding pivot rate pairs 6R2, R?), respectively.

oting case to a triangular case by using up the remaining DOFSimilar to the 1-D case, singular points lead to all possible
in multiplier selection. Second, we can use up the remaining dmlutions to the Lagrangian problem. Therefore, instead of
gree of freedom by finding two pivot points in a different subsweeping multiplier pairX, W) continuously for all possible
band. We again have two equations, each in the form of (20). Waues, it is sufficient just to look at the singular points. Instead
denote the case gsadrangular We can move from a two-point of considering all singular values, however, we will only need
pivoting case to a quadrangular case by using up the remaintogstep through a sequence of singular points such that we
DOF. iteratively approach the best possible solution.

Geometrically, a two-point pivoting case means adjusting Lines and Regions of Eligibility: We now introduce the
slopes of the penalty planes in thendm axes of all subbands notion of lines and regions of eligibility for th&,-R. plane
such that there are two minimum points in a subband. Fig. 6@)d then;-m; plane of any subbané. Suppose we are in a
shows that originally there is one unique minimum in subbardo-point pivoting case with singular paik®, »°), resulting in
1. In Fig. 6(b), we create slopes in the two axes such that theveo pivot points,x;,’;1 andx;,’;2 in pivot subband, and unique
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Fig. 8. Change of basis for GSG algorithm.
optimal points{xg} for nonpivot subbands. For th&,-R. 4) Repeat step 2 and 3 until we get sufficiently close to
plane,line of eligibility is the line passing through pivot rate (Rreet | Rtareet) in the R,-R. plane.

pairsX! = (R2',R%') andX? = (R2?2, R%?). The line

divides the plane into two regions. The region that contains tﬂl_ge essence of the algorithm is to choose the new pivot point(s)

target rate paiXtaEet — (Rirset Rtarzet) js the region of In step 2 in such a way that the resulting pivot rate pair(s) are

T . . . 0 arget target
eligibility, as shown in Fig. 7(c). We draw corresponding link! Some sense closer_ o the ta_rget ref; B ) then
of eligibility on ny-my plane of each subbanias well: the previous pivot rate pairs. For this to happen, the new pivot rate

line goes through the currently optimal point(s) with the sarr%?'.r(s) musttrt])etlfn the rﬁgloglbof 3"?'b'l'ty Orf] ;hE:BRC pl?nei tial
slope as the line ok2,-R,. plane. We identify the regions of ISmeans thatforeach subband, to search forthe next potentia

eligibility in ny-m;, planes as the same corresponding side jvot point, we only need to search among the points that are in

the line as the one iR,-R. plane. Fig. 7(b) illustrates this fort € region of eI|g|b|I|ty. . . .

nonpivot subband. Fig. 7(a) illustrates this for pivot subband .F|nd|n.g Qandldqte P'V(.)t Points: Geomgtrlcally, the next.

p. Note that by definition of pivot rate pairs for two—pointp'V.ot point is the }‘|rst point that, as the tilt of the pl‘.mes IS

pivoting in (21), line with slope of line of eligibility inz,-k, ~°¢Nd decreased (increased) gradually, becomes cominimum of

plane and passes through optimal poipﬂ of pivot subbang its suE)2ba_nd together W'Fh the original minimum pom_t(xf},z

must necessarily pass througlp’lQ as well. andx;~, in th_e case of pivot subband (trlangular)_,xwg, in the
Description of Algorithm: Armed with the definitions case of nonpivot subband (quadrangular). Keep in mind that we

above, we can now sketch the outline of our algorithm in word® doing so while keeping the p|vo_t points cominimum in th_e
as follows. pivot subband, thus we are decreasing the tilt in one dimension

ly. This is il in Fig. 8(a). We first definetitted dis-
1) Start with initial multiplier \> and ;2° that yield a two- o 0. 11> ! ustrated in Fig. 8(a). We first definetitted dis

point pivoting subbang. This uses up one DOF. tortion functionfor each subbanél as

2) Use the remaining degree of freedom by searching (g mr) = dyg (g, mp) + Ang + pomy, (22)
through regions of eligibility of all subbands to find
either (a) the next pivot point in the 2-point pivotingwhere(\?, 1°) are the pivoting singular pair. In Fig. 8(d),de-
subband (triangular) or (b) two new pivot points in a newotes the line of eligibility of this subband. Suppose we perform
subband (quadrangular). a change of basis ez axes, as shown in Fig. 8(a), such thist

3) Use pivot selection scheme of Section IV-B to chooggarallel to linel, andx is perpendicular to it. Consider the set of
two pivot points out of the three pivot points in triangulaall the planes passing through thaxis, each having a different
case, or out of the four pivot points in quadrangular castit angle with respect to thez plane. Sincé. is parallel tal in
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Fig. 9. Example of pivot change in triangular and quadrangular case.

TABLE 1
TABLE OF NOTATIONS FORGSG ALGORITHM
x5 = (ng, m}, optimal point for subband k, given multiplier set (\, p)
(R2,R2) operational source-channel pair, given multiplier set (A, )
xg' = (ny',m$!) | pivot point 1 in pivot subband p
(R, R2Y) operational source-channel pair 1 using pivot point 1 as subband minimum,
and multiplier set (A, )
x; = (ng, my) candidate pivot point of subband k
Ck region of eligibility of subband k
dr (ng, mx) = d{nk, mr) + Ang + pmy; tilted distortion function of kth subband

all these planes, the two pivot points will evaluate to the sancboose a pivot point among tl#€ candidates, we pick the point
value no matter how large the tilt of the plane is. Therefore, tifiat requires the smallest tilt. This corresponds to the first point
we search for the next pivot point by gradually changing the tilhat would become cominimum if we actually change the tilt of
of the plane passing throudhaxis, we will be doing so while the plane passing througlaxis gradually as mentioned before.
keeping the original pivot points cominimum. Selecting Pivot Points:If the new pivot point is found in

To find out which point of which subband will be the nexthe pivot subband, then we have a triangular case. We now
pivot point mathematically, we do the following. For each sulivave three pivot rate pairs, poink', X? andX*, as shown
bandk, we elect a candidate pivot poimf,. For each point in in Fig. 9(a). If the new pivot point is found in a subband other
the region of eligibility, we find out how much the plane passinthan the pivot subband, then the original minimum point of
throughl axis must tilt for that point to become a minimum. Thehat subband becomes a pivot point as well, and we have a
point that requires the minimum tilt in order to become minguadrangular case. We have four pivot rate pairs, pa¥its
imum is the first point that will become cominimum of the subX?, X*! andX*:2, as seen in Fig. 9(b). In the triangular case,
band. In the new coordinate system, finding the minimum ti&pivot point selection rul@icks two of three pivot points in the
point is equivalent to finding the minimum slope point in thg@ivot subband as new pivot points. In the quadrangular case, it
1-D case. Fig. 8(b) shows the 2-D view of the tilted distortiopicks one of two pivot subbands, each of which contains two
function of pivot subbang in the new coordinate systerhaxis pivot points, as the new pivot subband. The planes tilt again in
is pointing out of the page, andaxis is pointing along the page.the direction of the target pair using the new pivots, and the
We first observe that the two pivot points are on top of eagirocess continues. The algorithm stops when an enclosed area,
other: they evaluate to the same vaIE]ﬁf““, and they have the whose corners are denoted by the pivot rate pairs, includes
samez coordinatez;. Note also the region of eligibility in this our target rate; this indicates that we have reached the closest
coordinate system is the set of points wheseordinate values, convex-hull surface to the target, whose corners are the pivot
#,'s, are larger then the minimum points’. To find the point rate pairs.
with the minimum slope, we evaluate the slopes of all points Details of Algorithm: (see Table Il for notations).

zp > 7%, Where slope is 1) Multiplier Initialization : Initialize multipliers A° and

1° that yields a two-point pivoting case, say in subband

dp(lp, 2p) — Epmin p (soon to be discussed). Find the $ét?,m?)} that
slope= 2y — 2] (23) minimizes (6), and the corresponding operational source
P and channel pairs, denolé! = (R2! RS, X2 =
Note that in the original coordinate systejm, — 2| is the pro- (R%2, R2?).

jected distance of the point to the line of eligibility. The point 2) Definition of Tilted Distortion Function : For each sub-
with the minimum slope is the candidate pivot point of the sub- bandk, introduce dilted distortion functioras defined in
band. The same procedure applies for non-pivotal subbands. To (22).
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3) Definition of Eligibility Region : Let theslope of eligi- Initialization: For step 1 of the algorithm, the goal is to
bility line, shown in Fig. 7(b), be initialize multipliersA° andy:° such that it results in a two-point
Ro? _ poil pivoting case. We will assume we already have optimal set
= (24) {(n%,m3)} (optimal solution to (6)) for a given nonsingular
R = Re’ point multiplier pair( A%, ;i!). A simple method is the following:
For each subban#, construct dine of eligibility, n,, = first define a slightly different tilted function than (22) for each
Mmy, + b, that goes through the optimal point¢s) = subband as
(ng, mg). ldentify a region of eligibility,Cy, in each sub- _
bandk that corresponds to the region of eligibility in the i (e, ) = di (g, ) + . (28)
R¢-R? plane. T~
4) Identification of Candidate Pivot Point: For each sub- For each subband, find, such that
bandk, find a pointx;, = (n},mj) such that . . . . di(ng,my) — di(ng,ms)
x; = (nf,m}) = arg | min .
. - di (g, ma) — di(ng, m3) ne>T e = M,
X = arg min - - - . (29)
(ni,mi)eCy  |Proj (nx, my) on line of elig]
(25)  Geometrically, this is first point in subbaridthat will become
Among theseK points from K subbands, find one thatcominimum with the pre_se_nt minimusg, if the slopeA of the
yields the minimum slope (the minimum value in (25))|_oenal_ty pla_ne on the axis -|s_gr_adually changgd. A”.‘O'f‘g these
Call it x*. K pom_ts, _flnd one that minimizes (29). Callxt. Thls is the
5) Pivot Selection If x* is in the pivot subband, then it is af'rSt pomt in all subbands that will become cominimum if the
triangular case. Define a poidd* = (R?, R?) as slopeA is gradually changed. The subbandxofis the pivot
subband. Let-y = (di(nx,mu) — di(ng, m3))/(ng, — ng)
K K evaluated ak*. The two-point pivoting multiplier values for
X*=|n,+ Z ng, My, + Z my, (26) step 1 of the algorithm can now be expressed(as;°) :=
h=1,k#p b=1,ksp (v, ).
where p denotes the index of the pivot subband. We Pivot Point Selection Rule:In eithe_r the triangl_JIa_r or quad-
choose two of three points among the £, X2, X+ rangular case, we must select two_p|v0t_ rate pairs |_nRg}d%c
in the R°-R? plane, and specify the new region Of|olane, and hence the co_rrespo_ndmg pivot points in subbands,
eligibility, based on the pivot point selection rule (to b ut of threg or four possible paurs for step_S 9f the algorithm.
discussed). . he selection rule must se!ect pivot rate pairs in such a way that
If x* is not in the original pivot subband, then it is Jt ensures the algorithm W.I|| make progress, and therefore will
quadrangular case. Define pois! = (R:! Rn1) CONVerge to the best possible solution. .
andX*? = (R*2, R*?) as _ We will begin with a_fevy necessary de_f|n|t|ons. Defipiwot
line segmentlabeleda in Fig. 10, as the line segment between
K two current pivot rate pairsX', X2. Definedistance line seg-
Xt = [ a2t 0k + Z ng,myt 4+ m} ment labeledb in Fig. 10, as the line segment that minimizes the
k=1,kzp,j distance between the targ&t>¢e* and the pivot line segment.
K The selection rule is as follows.
+ Z my,  Triangular: To avoid stagnation, the new pivot rate pair
k=1,k#p,j X* must be one of the two pairs selected. To choose be-
X tween the two original pivot rate paiX,' andX?, we se-
X*2 = | no2 40t + Z ng,m%2 +m* lect one that yields a new pivot line segment that crosses
i T . r ’ the current distance line segment. If such point does not
K S gxist, then we select the pivot rate pair th_at yields_a pivot
n Z mo @7) line segme_nt that touches th_e cur_rent distance line seg-
i k ment. In Fig. 10(a), by selecting pivot rate paks$ and
T X2, the new pivot line segment;, crosses the current
wherep is the index of the original pivot subband, ajid distance line segmernt,
the index of the new pivot subband. We use the pivot point < Quadrangular: Again, to avoid stagnation, one of the two
selection rule to select two points in the g&X!, X2, new pivot rate pairsX** and X*2, must be selected.
X*1 X*2} and then specify the region of eligibility. Similarly, we select two pairs that yield a new pivot line
The algorithm stops if pivot point selection rule signals segment that crosses the current distance line segment. If
termination. such pivot rate pairs do not exist, then we select the two
6) Multiplier Reinitialization : For the newly selected pivot that yield a pivot line segment that touches the current
points in the pivot subband, find any multiplier pairs distance line segment. In Fig. 10(b), there are no two pivot
(A%, 4°) such that the resulting tilted distortion function rate pairs that yield a pivot line segment that crosses the
for the pivot subband evaluated at the pivot points will distance line segmeht So we selecK*2 andX? to yield

have the same value. Goto step 2. pivot line segment’ which touches.
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Rs
xlarget
Rc : ' Re
a) Triangular b) Quadrangular
Fig. 10. Pivot point selection algorithm.
Rs ! where t.s. stands for time-sharing. The fractiansf must
R Q) : satisfy the following equations so that the average source and
25 oX' channel rate equal the constraints
Lo aR + BR2 + (1 — a— B)R2 = Rleet
g7 et aR! + BR2 + (1 — o — B)R? = Rt (31)
R& -3 | o .
52 x e Rewriting the above equation, we can solvedof as follows:
¥ =0 2
- o) _[RE-B BRI V[EewoR2) o
@ gl g Re B| T |RL-R® RI-R}| |R™='_R3|

Fig. 11. Time sharing between neighboring approximate solutions. C Hybrid AIgorithm

) N ) The GSG algorithm has one major disadvantage that discour-
* Ending Condition: When the triangle or the parallelo-5gesijts exclusive use: because it painstakingly searches through
gram whose corners are denoted by the three or four pivQjery singular multiplier pair on the search trajectory toward
rate pairs encloses the target rate, we terminate the alg9ne optimal solution, the algorithm is slow if the initial op-
rithm. erational source-channel pair is very far from the optimal. To
Using this selection rule, one can show that the length of themedy this problem, we propose a hybrid algorithm that first
distance line segment decreases during the procession of ibes the linear approximation algorithm in Section IV-A to find
algorithm, meaning the algorithm is making progress at eagh approximate solution, then uses the GSG algorithm to refine
iteration. See the Appendix for convergence of the algoriththe estimate into an optimal or near-optimal solution. The linear
using this pivot point selection rule. approximation algorithm has efficient convergence until it en-

Time-Sharing of Operational Points: Instead of settling counters the discreteness of the rate functions near the optimal.
for an approximate solutioX! without using up the available The GSG algorithm performs poorly when far from the solution,
bandwidth, i.e.,R! < R: andR. < R, we can use but finds the optimal solution efficiently when near it. There-
time-sharing to divide time among the neighboring pivot ratiere, the hybrid algorithm combines the advantages of both al-
pairs so that average rate equals the target rate, and the digjerithms while avoiding their respective pitfalls.
tion is lowered. This is permissible in coding schemes where
the increase in overhead for time-sharing does not overburden V. IMPLEMENTATION
the implementation complexity of the system.

Suppose we exit the algorithm with the set of operation
points shown in Fig. 11. Instead of settling with the solution In practice, there are two possible approaches for arriving at
associated with operational rate pat, we do time-sharing the operational distortion functions for various subbands. In the
amongX', X2 andX*!. In general, we select three of the posfirst approach, we analyze each video clip individually off-line
sible four pairs using the following criteria: among the group# order to compute its exact distortion curves. In the second ap-
of three points that enclose the target, select the group that miprieach, we can arrive at a set of distortion curves for a class of
mizes the total distance between the target and individual poinigeo sequences, say large motion or head and shoulder. To ob-
of the group. Denote the three selected pairgXs, X?, X3}. tain an accurate estimate of the class distortion curves, we take
Suppose we spend fractiorof time atX!, B of time atX?,and the ensemble average of a long representative sequence. The
1— o — B of time atX3. The distortion is the weighted averagecomputations of these distortion curves are performed off-line,
of the three and therefore do not introduce excessive delay in the transmis-

sion system. Clearly, the second approach is more suitable for
D' =aD' 4+ 8D +(1—a—B)D? (30) real time, interactive application than the first approach.

A Operational Distortion-Rate Functions
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The distortion metric we chose is MSE. While we realizever probability. For AWGN channel with BPSK modulation
MSE may not the best metric for video quality evaluation, duend soft decodingP; is
to its wide use in the literature and the lack of a well accepted 1 dE,
metric for video in the research community, we decided to use Fa=3 erfc N, (36)
it for our gppl_lcatlon. N(_)te th_at our algorithm can be applied t\(/)vhfereES/No is the signal-to-noise ratio of the channel. With
any metric, given the distortion can be expressed as the sum,9 ; L .
N . . ) : : .~ the above two function definitions, we can weite
individual distortions as shown in (2). The distortion functions

can now be expressed as E[| Xi(na,me) — Xel?le] - ei g peir] = fu(i)  (37)

di(ng, mi) = E[| X (ng, mi) — Xi)?] (33)

i—1
/ /
where X, is thekth subband component of the original signal, Pleg e pcir) = g(mik) U [L=g(mir)]  (38)
and Xk(nk,mk) is the quantized and channel corrupteth =t
subband component of the signal givepnsource bits aney,
channel bits. We can first expand the expected distortion of s X !
bandk as the sum of conditional distortions for a collection of"€VIous equation

error events. According to the Total Probability Theorem, the  dy.(ng, mx) = E[| Xy (s, mx) — Xi|]

whereg(m; ;) is the resulting error probability i, ;. channel
l}B't_s are used to protect bjitof subband:. Substituting into the

events in the collection are disjoint, and they collectively span n, i—1
the sample space = gmi) i@ J] 11— g(myn)]
A i=1 j=1
E[Xu(n, mu) — Xaf?]
G o +hi(ne) T 1 = glmyl. (39)
=Y B[ Xp(ng,mr) — XpPlely. - ¢ioy wein] i=1
=1
-P(e&jk . 'C/i—l,kei,k) B. Results
+ E[| Xy (g, ms) — XiPl€) g - €, ] To demonstrate the effectiveness of the GSG algorithm, we
N AR (34) construct Fig. 12. The two plots represent two subband distor-
P N, K

tion functions as functions of source bitsand channel bits..
wheree; ;, denotes the event that bibf subband: is received Our goal is to to minimize the sum of the two distortions in the
incorrectly, andegjk denotes the corresponding complemeribrm of (5), such that the sum of source bits and sum of channel
event. We will assume the usage of conditional arithmetisits do not excee(R:**¢<, Rt**¢<t) = (6, 7). Fig. 13(a) shows
coding in the coding of subband coefficients. Since conditionge pivot rate pairs we obtain in each iteration. For each itera-
arithmetic coding is a variable length code, it is a good agien, Fig. 13(b) maps the corresponding three or four pivot rate
proximation to assume that if bitis corrupted, all bits in the pairs onto theR,-R. plane. If the algorithm yields a triangular
remaining codeword are rendered useless due to loss of syase for one iteration, Fig. 13(b) draws a triangle whose corners
chronization. So we can assume that the resulting error whae denoted by the three rate pairs. If it yields a quadrangular
bit ¢ and some other bits after Giare flipped is approximately case, Fig. 13(b) draws a quadrangle whose corners are denoted
equivalent to the resulting error when only bis flipped. by the four rate pairs. The target rate pair is denoted by the *
We will now define three functions to ease our notations. Leymbol. We see in Fig. 13(b) that iteration 1 yields a triangular
hi(4) be the distortion function of subbandf ¢ source bits are case. When we move to iteration 2 (another triangular case), we
used under noiseless condition. Lfgt<) be the resulting distor- found pivot (2, 4), which is in the direction of the target rate.
tion function of subband if only bit ¢ is flipped. To obtain this Iteration 6 is a quadrangular case, denoted by the parallelogram
function, we experimentally inject an error at bivf the corre- 6. We see that the next cluster of pivots is closer to the target
sponding subband, and average out the error over 200 framepdd that the previous. In Fig. 13(b), we see that the algorithm
get an approximate value. Lgtm) be the resulting error prob- terminates after 15 iterations. In this case, we found the optimal
ability of a source bit if, on average; channel bits are used tosolution.
protect it. This function will obviously depend heavily on the To test the overall algorithm numerically, we combined the
particular implementation of the channel codec and the chanBeD scalable video codec [15] and rate-compatible punctured
condition. In our experiment, we use RCPC for our unequebnvolutional codes [17] to build our joint source/channel
error protection codec. Since RCPC is a convolutional code, bidec. For source coding, we used three levels of spatial and

error can be bounded using [17] two levels of temporal subband decomposition as shown in
o Fig. 14. We used 200 frames of the digitized video “Raiders

g(m) < 1 Z ca(m) Py (35) of the Lost Ark” to construct the operational distortion-rate

P dedn surfacesdy (ny, my)'s, and applied our bit allocation strategy

) ) ) ) . to compute the distortion curve as function of source to channel
where P is the puncturing periodP; is the probability that

the wrong path at distancgis selected, and, is the distance 2The resulting error pattern after Viterbi decoding is correlated. To precisely
' calculate the probability of long sequence of correlated bit errors is difficult, and

spectra. Depe”ding 0r_1 the ChanneldCOding rale_’vi” be dif- as such, we estimate the probability that the firbits of subband: received
ferent. For BSCF, is simply P; = P.“, whereF. is the cross error-free toll’=} [1 — g(m; )]
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20*exp(-0.25'n-0.3"m)

a) Subband 1 Distortion Function
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15*exp(~0.2*n-0.2"m)

b) Subband 2 Distortion Function

Fig. 12. Original distortion functions.

GSG Algorithm: iteration 1-15
T T T

iteration | (RO, R%Y) | (BOLRODH [ (2L RYY) [ (RPZRED)
1 (0,6) (1,5) (0,7)
2 (0,7) (1,5) (2,4)
3 (0,7) (2,4) (1,6)
4 (1,8) (2,4) (2,5)
5 (2,5) (2,4) (3,4)
6 (2,5) (3,4) (2,6) (3,5)
7 (3,4) (3,5) (4,4) (4,5)
8 (3,5) (4,5) (0,8)
9 (4,5) (0,8) (1,8)
10 (4,5) (1,8) (0,10)
11 (4,5) (0,10) (5,5)
12 (0,10) (5,5) (0,11) (5,6)
13 (0,11) (5.6) (0,12)
14 (5,6) (0,12) (6,6)
15 (0,12) (6,6) (0,13) (6,7)

Rs
@

a) Table Representation of Rate Pairs

spatial filtering
/
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2 14 HL
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113
Fig. 14.

Fig. 13.

temporal filtering

Spatial and temporal subband decomposition.

coding ratioD; (R, /R.) for various BSC with P, = 0.001 to
0.05. The total bit budget is 250 kbits/s. We see in Fig. 15(a) thatTo show that our optimization strategy is essential in poor
there exist unique distortion minima for various channel statehannel conditionf. = 0.05, we compare its performance
The distribution of source and channel bits among subbansih other codecs that uses ad-hoc bit allocation strategies in
for channel staté’. = 0.05 and source to channel ratio 0.6 ig-ig. 15(b). Curve ain Fig. 15(b), shows the PSNR of the scalable
shown in Table IlI.
We now compare our bit allocation algorithm with the one ierage PSNR in this case is 29.7 dB. Curve b in Fig. 15(b) shows
[9]. The Lervik and Fischer algorithm solves the 2-D optimizahe PSNR of our proposed optimized codec operating at the op-
tion problem in two steps: first, keeping channel bits for eadimal R;/R. = 0.6, with unequal error protection as described

b) Graphical Represercltation of Rate Pairs

Procession of GSG algorithm.

subband fixed, it finds the optimal distribution of source bits
by tracing the convex-hull along the source axis; then, keeping
source bits fixed, it finds the optimal distribution of channel
bits by tracing the convex-hull along the channel axis. The re-
sulting operational source rate, channel rate and distortion for
BSC P, = 0.05 and(R,/R.) = 0.6 is shown in Table IV. No-
tice that while the operational source and channel bits for the
two algorithms are similar, the distortion is much higher for the
Lervik and Fischer algorithm. There are two reasons: first, by
solving the 2-D problem in two steps, the algorithm converges
to a local minimum instead of a global minimum; second, since
the algorithm solves the problem one axis at a time, it can only
find solutions that are on a rectangular grid, a subset of all pos-
sible solutions.

codec under ideal noiseless conditions for 100 frames. The av-
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DISTRIBUTION OF SOURCE AND CHANNEL BITS USING GSG

ALGORITHM (IN bits/s)

353
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Fig. 15. Experimental results.

spatial temporal source ny channel my

1 [o} 8211.84 21075.36
1 1 4101.12 7611.12
1 2 6342.72 12546.48
1 3 4322.88 8436.00
2 o} 5645.76 11361.60
2 1 2304.96 3772.80
2 2 3613.44 6345.60
2 3 1850.88 2921.52
3 0 4911.36 9591.60
3 1 2882.88 4750.80
3 2 4179.84 7608.48
3 3 4017.60 3841.44
4 0 2873.28 4906.56
4 1 528.00 792.00
4 2 2501.76 3990.72
4 3 780.48 1170.72
5 o} 8339.52 16181.04
5 1 780.48 1170.72
5 2 5527.68 2765.76
5 3 1389.12 2083.68
6 0 4907.52 8925.84
6 1 876.48 1314.72
6 2 4581.12 1846.32
6 3 1055.04 1582.56
7 0 1432.32 2198.64
7 1 0.0 0.0

7 2 0.0 0.0

7 3 0.0 0.0

8 0 4244.16 7541.04
8 1 0.0 0.0

8 2 0.0 0.0

8 3 0.0 0.0

9 0 564.48 846.72
9 1 0.0 0.0

9 2 0.0 0.0

9 3 0.0 0.0
10 o] 360.96 0.0
10 1 0.0 0.0
10 2 0.0 0.0
10 3 0.0 0.0

TABLE IV

COMPARISON OFBIT ALLOCATION ALGORITHMS: (R; R;) =
(94744 bps, 156240 bps)

algorithm

Lervik & Fischer
proposed GSG

R? R? D°
04281 bps 157757 bps _ 262.14
93128 bps 157180 bps  170.39

a noiseless channel, then channel codes these source bits with
R. channel bits equally. As seen, the PSNR is about the same
as case b for most frames, except for occasional drops of 25
dB. These drops are a direct consequence of the fact that im-
portant source bits not adequately protected. Finally, curve d
in Fig. 15(b) shows the performance of the same equal error
protection codec as in c but operatingfat/R. = 0.44. In

this case, the source bits are protected adequately, but the insuf-
ficiency of source bits causes the quantization error of source
coding to dominate the resulting error. Curve d has a 3 dB drop
from curve b. The main conclusion to be drawn from Fig. 15(b)

is that optimal source/channel bit distribution does make a sig-
nificant difference in poor channel condition scenarios.

VI. CONCLUSION

In this paper, we have presented a methodology to optimally
allocating source and channel bits for video transmission over
noisy channels. In particular, an optimal bit allocation strategy
that is efficient and yields near-optimal solutions is presented.
Our development of the theory shows that our solution is very
close to optimal, and our results prove that in poor channel con-
ditions, an optimal bit allocation scheme is essential to maintain
good visual quality. Although we have discussed our algorithm
in the context of video transmission over noisy channels, we feel
that our strategy can be applied to other optimization problems
with two constraints, such as power or complexity.

APPENDIX
PrROOF OFPIVOT POINT SELECTION RULE

We now prove that the using the pivot point selection rule we
described in in Section 1V-B enables the algorithm to converge
to the ending conditions. We accomplish that by showing a spe-
cial metric, which tracks the progress of the algorithm at each
iteration, decreases or remains the same at each iteration. This

in earlier sections. The average PSNR in this case is aboundicates that the algorithm yields a cluster of points that are at
dB lower than the ideal noiseless case. Curve ¢ in Fig. 15(epast as close to the target as the previous set.

shows the performance of a codec operating gtR,. = 0.571

We will start by showing that the selection rule is feasible:

using equal error protection. This codec distribukgssource until we reach the ending condition, there always exists two
bits using one-dimensional bit allocation algorithm that assumgisot rate pairs that yields a pivot line segment that crosses or
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c) d)

i) Triangular ii) Quadrangular

Fig. 16. Proof of pivot point selection rule: Case 1.

touches the distance line segment at every iteration. We will djion C, such that the line connecting them is above the target
vide the proof into two cases: 1) when the distance line segméhig. 16(iib)], we have again reached ending condition. If the
is a perpendicular drop from the targét®:s°t to the interior of line is below the target [Fig. 16(iic)], then that line is the new
the pivot line segment, and 2) when the distance line segmeiuot line segment and it crosses the distance line segment. If
is a line connecting the target and one of the current pivot paiks:* and X*2 are both in Region3, then by selecting¥*:?
X', X2 Lemma 1 proves the first case; Lemma 2 proves thad X? as pivot pairs, we have a new pivot line segment that
second. crosses the distance line segment. Finally, by symmeti: if
Lemma 1: Given the relative locations of the pivot pairs an@nd.X *? are both in Regiol’, then then by selecting *:' and
the target are as in case 1. Then either we have reached endifigas pivot pairs, we have a new pivot line segment that crosses
condition, or there exists one set of pivot pairs such that it crire distance line segment. O
ates a pivot line segment that crosses the current distance lineemma 2: Given the relative locations of the pivot pairs and
segment. the targetare asin case 2. Then at least one of three cases must be
Proof 1: Let suppose the two pivot pair&! and X2, are true: i) we have reached ending condition; ii) there exists at least
on theR.. axis, as shown in Fig. 16(ia). We can do that withoutne set of two pivot pairs that yields a pivot line segment that
loss of generality because a simple change of basis and a lineasses the current distance line segment; and iii) there exists at
translation can move any set of points to this configuration. Weast one set of two pivot pairs that yields a pivot line segment
first divide the search space of new pivot rate pair(s) into thréeat touches the current distance line segment at the end point.
disjoint subspacesi, B, andC, as seen in Fig. 16(ib). These Proof 2: We follow similar procedure as in Proof 1, and di-
subspaces resulted from lines that connect the pivot rate paiice the space into three subspacéspB andC. First suppose
and the target and the distance line segment. it is Triangular case, as seen in Fig. 17(i). If pivot pair lands
We can discover one or two pivot rate pairs, resulting in trin region A, we have reached ending condition. If pivot pair
angular or quadrangular case. Let us suppose it is the forrfards in regionB, by selectingX* and X2, the new pivot line
first. If the next pivot pair is found in regioA, as in Fig. 16(ic), segment’ touches distance line segmérdt X 2. If pivot pair
then it is clear that we have reached the ending condition. If thends in regiorC, then by selectingd* and X!, the new pivot
next pivot pair is in regiomB, as in Fig. 16(id), then selectingline segment’ crosses. Suppose it is quadrangular case, as
pivot pairsX* and X?, we have a new pivot line segment, seen in Fig. 17(ii). If eithetX*:* or X*2 lands in regionA4,
that crosses the current distance line segrheBy symmetry, then we have reached the ending conditionX if! is found in
we can also conclude that if pivot pair is found in Reg@rby regionB with X*:2 in regionC, such that the line connecting
selectingX* and X!, we have a new pivot line segment thathem is above the target [Fig. 17(iia)], we have again reached
crosses the current distance line segment as well. ending condition. If the line is below the target [Fig. 17(iic)],
Suppose two pivot pairs are found, resulting in the quadrathen that line is the new pivot line segment and it crosses the
gular case. If either one of the left or right pivot paifé*:* or distance line segment. K*! and X*? are both in RegioB3
X*2 is found in regionA [Fig. 16(ia)], then we have reach the[Fig. 17(iib)], then by selecting{*:? and X2 as pivot pairs,
ending condition. I£X*! is found in regionB with X*:2 inre- we have a new pivot line segment that touches the distance
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Fig. 17.

Fig. 18. Proof of Theorem 3.

line segment. Finally, ifx*! and X*2? are both in RegiorC
[Fig. 17(iid)], then then by selecting ** and X! as pivot pairs,
we have a new pivot line segment that crosses the distance
segment.

Using Lemma 1 and 2, we can now prove that the selecti(gjn

rule ensures the algorithm is making progress.

Theorem 3: Suppose there exists a cluster of points that s
isfy the ending condition. The selection method stated in sé

tion IV-B4 terminates in that cluster.
Proof 3: We first define a special metrid;, as the length of

355
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X*2

Ke]

Rc

i) Quadrangular

Proof of pivot point selection rule: Case 2.

length of distance line segment,. Further, the next distance
line segment}’, must have lengtld;; smaller than or equal

to length ofe;4 ;. We can conclude the following: if next pivot
line segment crosses the current distance line segment, then
div1 £ e;y1 < d;. By Lemma 1, we know such pivot line
segment always exists if we are in case 1. Therefore, we can
conclude that the metric must strictly decrease for the next iter-
ation if we are in case 1.

Notice in case 2, the only time there is no pivot line segment
that crosses the distance line segment is when the new pivot(s)
is(are) in regionB, shown in Fig. 17(ic) and 17(iib). In such
cases, the distance metric might remain the same between itera-
tions. In Fig. 18(b), by selecting* andX 2, the metric remains
the same. However, as the algorithm continues to progress, this
situation cannot remain. Since the search space is continually
ﬁ) ing rotated, it will eventually reach a pivot pair such that the
metric will decrease. In Fig. 18(b), the new pivot pair goes from
*to " to R*. When we reaclit*, the distance line segmentis
a perpendicular drop (case 1) and the metric is decreased. There-
we are in case 2.

Since the metric continues to decrease as the algorithm pro-
gresses, the cluster moves closer to the target. The cluster that
can make no more progress is the one with the ending condi-

Aﬁ_re we can conclude that the metric must eventually decrease

the distance line segment at iteratiot measures how close a : .

cluster of points is from the target. By definition of distance Iingoni Therefo_r_e, the algorithm converges to the cluster with the

segment, if the pivot line segment of the next cluster is closer?gdmg condition. =

the target, then it will have a smaller metric than previous cluster.
If the next pivot line segment crosses the current distance line

segment, then Iength .Of the new dI.St.ance Im.e segment must b([31] R. Cox, J. Hagenauer, N. Seshadri, and C. Sundberg, “Subband speech

smaller than the previous one. This is best illustrated geomet- coding and matched convolutional channel coding for mobile radio
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