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Bit Allocation for Joint Source/Channel Coding of
Scalable Video

Gene Cheung, Student Member, IEEE,and Avideh Zakhor, Member, IEEE

Abstract—We propose an efficient bit allocation algorithm for
a joint source/channel video codec over noisy channels. Our ap-
proach is to distribute the available source and channel coding bits
among the subbands in such a way that the expected distortion is
minimized. The constructed distortion curves bound the perfor-
mance degradation should the channel be estimated incorrectly.
The algorithm can be used in other similar distortion minimiza-
tion problems with two constraints, such as power or complexity.

Index Terms—Allocation, optimization methods, video codecs.

I. INTRODUCTION

T HE ADVENT of wireless personal communication ser-
vices in recent years has created a number of challenging

research problems; a major challenge presented by the wireless
channel is its inherent unreliability. This contrasts with wired
networks, which have very low error rates. In a large class
of wireless video applications, users move at relatively slow
speeds, rather than at tens of miles per hour. Consequently,
the resulting channels suffer from slow fading and shadowing
effects. By estimating the condition of this slowly changing
channel, one can adapt any aspect of the transmission scheme
to the channel condition. In particular, one can change the
source coding and the channel coding algorithms according
to the channel condition to minimize the distortion of the
received signals. Because the importance of different bits
within a bitstream often varies, one can protect different source
bits using unequal error protection (UEP) schemes such as
rate compatible punctured convolutional (RCPC) codes [17]
to further enhance performance. Indeed, several researchers
have applied this idea to speech [1], [2] and image [3], [14],
[13] transmission over wireless links. With the exception of
[1], which deals with speech, the remaining papers mentioned
above explicitly require the source coder to adapt to the channel
condition. As an example, in [3] a whole new codebook might
have to be designed in order to optimally accommodate each
new channel condition.

With highly scalable video compression schemes [15], it is
possible to generate one compressed bitstream such that dif-
ferent subsets of the stream correspond to the compressed ver-
sion of the same video sequence at different rates. Thus, if one

Manuscript received November 21, 1997; revised July 19, 1999. This work
was supported by AFOSR under Contract F49620-96-1-0199, Sun Microsys-
tems, Philips, Hughes Research Laboratories, and California State Programs
MICRO and DIMI. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Antonio Ortega.

The authors are with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720 USA (e-mail:
avz@eecs.berkely.edu).

Publisher Item Identifier S 1057-7149(00)01514-1.

uses such a source coder in the wireless scenario, there is no
need to change the source coding algorithm as the channel con-
ditions change. This is particularly attractive in heterogeneous
multicast networks where the wireless link is only a small part
of a much larger network, and the source rate cannot be easily
adapted to the individual receiver at the wireless node.

In this paper, we develop an algorithm for optimal partitioning
of source and channel coding bits for the scalable video compres-
sion algorithm described in [15] and an unequal error protection
channel coding scheme. By “optimal,” we mean a partitioning
which results inminimumexpected valueofdistortion,which we
chose to be mean squared error (MSE). We will consider the case
where the header files of the encoded bit stream are protected ad-
equately so there is no loss of synchronization, and the channel
state is known. Under these conditions, the joint source/channel
codec will adapt to the estimated channel and optimally transmit
video for the current channel state. In Section II, we formalize
our optimization problem and relate our approach to the current
literature. In Section III, we discuss our formulation of the bit al-
location problem for joint source/channel codec. In Section IV,
wedescribeourproposedbit-allocationalgorithm.Section Vdis-
cusses some implementation issues and results. Section VI pro-
vides concluding remarks.

II. RELATED WORK

The study of bit allocation addresses the general problem of
finding the optimal distribution of resources (e.g., bits) among
a set of competing users (e.g., quantizers) that minimizes
the objective function (e.g. distortion), subject to resource
constraints. Many existing bit allocation algorithms [4]–[7]
tackle a common special case when the objective functionis
the sum of individual user functions ’s, and the one resource
constraint requires the sum of individual user resources’s
not to exceed the resource limit

s.t. (1)

where is the number of users. This formulation has practical
applications such as bit distribution among quantizers [5], sub-
bands [6] and coders in a classification-based coding scheme.

Recent papers [9], [10] describe a class of optimization prob-
lems in signal processing of a similar framework, but with two
constraints:

s.t.

(2)
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In [9], the constraints are power and bandwidth. In [10], the
constraints are complexity and bit rate. [9] offers a greedy al-
gorithm that extends the one-dimensional (1-D) bit allocation
algorithm in [6] to another dimension, but the algorithm con-
verges to a local minimum and does not guarantee a global
minimum. In this paper, we present a new bit allocation algo-
rithm that solves (2) optimally up to a convex-hull approxima-
tion. Our algorithm is an extension of the popular one-dimen-
sional integer programming algorithm in [5]. Similar to [5], our
algorithm exploits the discreteness of the user functions’s,
and, as such, it is especially efficient when the user functions

’s are sparse. Since user functions are operational RD char-
acteristics in many applications, which are often sparse due to
the computational complexity in generating them, our algorithm
performs efficiently in these scenarios. In particular, we will
present our algorithm in the context of a third practical signal
processing problem: optimal distribution of source and channel
bits among subbands for transmission of scalable video over
noisy channels.

Tradeoff between source and channel coding has been
studied from a theoretical standpoint in [11], [12] for vector
quantizers. Practical systems for transmission of images based
on this optimal tradeoff have been implemented in [13], [14].
With bandwidth being the only constraint, one can solve the op-
timal source/channel bit distribution problem in the framework
of (1). For example, in [13], the approach is to first construct
the operational distortion-rate curve as function of bits for
each subband of a wavelet decomposition, then apply 1-D bit
allocation algorithm in [6]. The optimal distribution of bits
within a subband is done by using exhaustive search through
all combinations of channel coding rates and quantization step
sizes. One common thread among these analyses is that the
joint source/channel codec is adaptive to the channel condition,
which is assumed to be known perfectly. In the case when
the channel is estimated incorrectly, it is difficult to evaluate
the performance of the incorrectly adapted system without
simulations.

In this paper, we formulate the bit allocation problem for
joint source/channel codec in the framework of (2) instead. The
added advantage is that one can estimate the performance of the
joint source/channel codec during channel mismatch. This is im-
portant when evaluating the performance of a codec in scenarios
where the channel condition cannot be estimated correctly, or
where channel variation is too fast for the codec to adapt.

III. JOINT SOURCE/CHANNEL CODING

In scenarios where the transceiving codec has a complexity
constraint or the transmitted signal is delay sensitive, the sepa-
rate source/channel coding theorem does not hold; as such, one
must jointly design the source and channel codecs to achieve
optimal performance. A common approach for building joint
source/channel codecs is to cascade an existing source codec
with a channel codec [14]. An important question then is how
to distribute the source bits and channel bits between the source
and channel codecs so that the resulting distortion is minimized.
We formulate this problem formally in the framework of (2). In

Section III-A, we discuss the chosen source codec—a rate scal-
able three-dimensional (3-D) subband coder described in [15].
The unequal error protection channel codec we use is rate-com-
patible punctured convolutional codes (RCPC) [17]. The for-
mulation of the problem using the chosen source and channel
codecs is presented in Section III-B.

A. Scalable Video Coder

The scalable source coder described in [15] has been shown to
generate rates anywhere from tens of kilo bits to a few mega bits
per second with arbitrarily fine granularity. In addition, its com-
pression efficiency has been shown to be comparable to stan-
dards such as MPEG-1 [15]. The fundamental idea is to apply
three dimensional subband coding to the video sequence to ob-
tain a set of spatio-temporal subbands. Subsequently, each sub-
band coefficient is successively refined via layered quantiza-
tion. Finally, conditional arithmetic coding is applied to code
different quantization layers. In so doing, the spatial and tem-
poral correlations, as well as correlation between quantization
layers are accounted for to maximize compression gain.

We opt to use the 3-D scalable video codec in our analysis
for a number of reasons. First, the embedded bitstream that the
encoder generates is highly scalable. Depending on the esti-
mated channel condition, the bit allocation scheme can easily
extract varying subsets of the bitstream representing the signal
of varying quality. Second, because the codec is wavelet based,
the total distortion is roughly the sum of the distortion of the
individual subbands, which fits the optimization framework in
(2). Finally, the codec is well documented and readily available
at the Video and Image Processing Laboratory, University of
California, Berkeley [16].

B. Source/Channel Bit Allocation

The main problem we solve is: for our chosen source and
channel codecs, and for a given total bit budget and channel
condition, what is the optimal distribution of source and channel
bits among the subbands that minimizes distortion? To solve this
optimization problem we must determine i) how many source
bits goes into each subbandand ii) to what extent do we pro-
tect each source bit of subbandWe first assume a total bit
budget of and a memoryless channel with known channel
state; we will later consider both a binary symmetric channel
(BSC) and an additive white Gaussian noise (AWGN) channel.
For each channel statewe first construct the distortion func-
tion as a function of the ratio of source rate to channel rate

where is the source bitrate (channel bitrate) in
bits per second1. Each point on the curve repre-
sents the minimum distortion attainable from the best distribu-
tion of source and channel bits among the subbands such that
the sum of source bits (channel bits) does not exceed
If we enforce then would

1Channel code rate is usually defined as a ratio of source bits to channel
bits. We decide to use a nonconventional notation for two reasons: 1) bit al-
location algorithms discussed later can be directly applicable to other optimiza-
tion problems if the two constraint variables are defined as absolute quantities;
and 2) we are using unequal error protection within a subband; the conventional
relative definition may misleadingly give the illusion that all source bits are
channel-coded equally at the same rate.
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Fig. 1. Distortion as function of source to channel rate.

merely be a function of one variable, namely and each
point on the curve will satisfy the bit budget
requirement, This is shown in Fig. 1 for two channel states
1 and 2. By empirically locating the minimum points on these
curves, we can find the optimal source to channel bit ratio

denoted by and for channel states 1 and 2, re-
spectively, in Fig. 1. The corresponding minimum distortion for
the two states are and If the channel estimate is incorrect,
we can approximate the performance of the codec using the
constructed distortion curves ’s. Suppose the channel state is
incorrectly estimated to be state 2 when it is in fact state 1. We
will erroneously use the source to channel bit ratioand the
distribution of source and channel bits associated with point

Since the channel state is actually state 1, the distortion
of the system is lower bounded by The reason
is that represents the best possible performance from
the optimal distribution of source and channel bits for source to
channel ratio Similarly, if we assume the channel to be state
1 when it is in fact state 2, then the distortion of the system
is lower bounded by and upper bounded by
The performance bounds obtained in this fashion provide a
first-order evaluation of the joint source/channel codec during
channel mismatch without actual simulations.

In computing each point on the above curves for
we must determine how to distribute

source bits and channel bits among the subbands
and quantization layers, such that the distortion, expressed
below, is minimized:

(3)

(see Table I for notations).
To perform the optimization above, we need to construct

the subband distortion functions, ’s. Since each
subband has an integer number of quantization layers and there
is an integer number of channel protection levels, distortion
functions are discrete. Let be the distribution of channel
bits used to protect source bits in subband The total
number of channel bits for that subband is

(4)

For the same number of source bits and same total number
of channel bits in a given subband there may exist many
different distributions of channel bits within the subband, cor-
responding to different levels of protections for different source

TABLE I
TABLE OF NOTATIONS

bits. As a result, for given can take on more
than one value. Since our goal is to minimize distortion, we will
take the smallest value of as the function’s value at

Because the computational complexity of the to-be
discussed bit allocation algorithm depends on the number of
points on the distortion functions, we will reduce the number
of points in each distortion function by making the following
assumptions.

1) The same level of protection will be applied to all the bits
within a quantization layer of any given subband.

2) Higher quantization layers, which constitute refinement
layers, cannot have higher level of protection than lower
layers.

The first assumption assumes that all source bits within a
given quantization layer have the same importance. The second
assumption does not affect optimality because higher layers
cannot be decoded if lower layers are not received correctly.
Thus it is intuitively clear that lower layers need to be protected
at least as much as the subsequent higher layers. Further
details of the distortion function constructions are deferred to
Section V-A.

Given distortion functions ’s, the optimization
problem is to find the optimal allocation of source and channel
bits among subbands:

s.t.

(5)

In the next section, we will focus on solving (5).

IV. L AGRANGIAN OPTIMIZATION

There are many approaches to solve (5). If one assumes con-
vexity of distortion functions, one can obtain fast algorithms
[7], [8] for bit allocation problems in general. For example, [7]
demonstrates that there is a complexity reduction in the gen-
eralized BFOS algorithm if one assumes convexity. However,
we have found experimentally that the operational distortion
surfaces, with respect to the channel rate axis are not convex.
An intuitive explanation is the following: in very poor channel
conditions, adding a small amount of channel bits to the sub-
band will barely affect the bit error rate, and the subband dis-
tortion remains close to the distortion with no channel bits. As
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the amount of channel bits increases, the effect of the forward
error correction kicks in, and the distortion will decrease more
dramatically. This results in a nonconvex surface. As a result of
the nonconvexity, we chose not to develop our algorithm relying
on this assumption.

Instead of solving the original problem in (5), we will solve
the corresponding Lagrangian problem instead:

(6)

If there exist multipliersλ andµ such that the source and channel
bit budgets in (5) are satisfied with equality, then the optimal
solution to the Lagrangian problem is also the optimal solution
to the original problem [5].

The appeal of solving the Lagrangian problem is that the
problem is now unconstrained. Moreover, for a givenλ andµ,
we can find the set that minimizes (6) by solving
separate equations individually in the form

for (7)

The resulting source and channel rate will be called theopera-
tional source and channel rate, expressed as

(8)

The problem is to findλ andµ such that the resulting
from (6) will be the same as our target source and channel rate

In cases where such multipliers do not exist,
then we have to settle for an approximate solution. Although the
solution is not optimal, the error is bounded by the following
theorem.

Theorem 1: Suppose the approximate solution has opera-
tional source rate channel rate and distortion :

(9)

Let the resulting distortion of the ideal solution be and
the source and channel rate constraint beand , respec-
tively. In addition, let and be the distortions of two other
Lagrangian solutions resulted from two different sets of multi-
pliers, such that their operational source and channel rates obey
the following inequalities:

(10)

The error of our approximate solution can be bounded by the
following:

(11)

The proof is a natural extension of the proof of Lemma 7 in
[5]. In practice, such errors are often negligible.

The distortion functions ’s are empirically com-
puted discrete nonlinear functions; most general bit allocation
problems do involve these kind of functions. One approach is
to fit analytic continuous functions to these discrete functions,
and to perform optimization on the continuous counterpart. In
this paper, we provide a method for selecting the Lagrange mul-
tipliers without fitting analytic continuous functions to the dis-
tortion functions.

To search for the best possible multipliers, we develop two
methods in the next two sections. The first method, described in
Section IV-A, converges very fast when it is far from the so-
lution but performs poorly when near the solution. The second
method, described in Section IV-B, converges slowly when it
is far from the solution but converges to the optimal or near-op-
timal solution efficiently when near it. We will then discuss a hy-
brid of the two solutions in the Section IV-C, which provides an
efficient algorithm for finding an approximate, error-bounded
solution in finite time.

A. Linear Approximation of Lagrangian Functions

We will begin with the description of the algorithm in Sec-
tion IV-A1. Then we will discuss the difficulties with the algo-
rithm in Section IV-A2. See [18] for a proof of the algorithm.

1) Development of Algorithm:The first method uses two
properties of the rate functions to search for the multipliers: 1)
the rate function is more sensitive to changes in its
primary multiplierλ (µ) and 2) the rate functions are convex,
nonincreasing functions, and they are inversely proportional to
their multipliers. The first property is based on empirical obser-
vations; the second property is a theoretical result of Lagrange
multipliers. With these properties, we can approximate opera-
tional source rate (channel rate as function of multiplier
λ (µ) only:

(12)

where and and are chosen constants to fit two
empirical data points. The algorithm iteratively selects two
points: and and constructs a
linear function in the form of (12). Given the linear function,
the algorithm computes the multiplier,λ (µ), that will yield the
target rate, Using the computed multipliers,
it finds the corresponding operational rate by solving (6). This
gives another data point, and the algorithm repeats. The details
of the algorithm are as follows.

Step 0: Initialize iteration index: Start with initial
guess for multipliers,

Step 1: Find the corresponding operational If the
condition

(13)

does not hold, then

(14)
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Fig. 2. Example of linear Lagrange multiplier search.

where Repeat step 1. This is point in Fig. 2.
Otherwise, update multipliers

(15)

Step 2: Find the corresponding operational and If
the condition

(16)

does not hold, then

(17)

Repeat Step 2. This is pointin Fig. 2. Otherwise, let
Step 3: Notice now

(18)

Using two source data points, and find
and This is the line that connects pointsand in Fig. 2.
Use similar procedure to find and

Step 4: For given and find that yields
This is in Fig. 2 in the first iteration. Similarly, find
that yields Get and by using and

as multipliers to solve (6). This is pointin Fig. 2.
Step 5: Check exit conditions

if

and exit

else

goto step 3

where
2) Difficulties of Algorithm: In practice, two problems pre-

vent the algorithm from reaching the optimal solution. The first
one is that the assumption of the operational source rate
(channel rate ) being function of its primary multiplier only
λ (µ), is only a local approximation. can be approximated as
function ofλ only when changes inµ is small. As the algorithm
progresses, however, it is inevitable thatµ will change. One
remedy is to restart the algorithm every iterations with
and as initial starting multipliers. This way, is up-
dated with current values ofµ. Similar procedure is performed

Fig. 3. Example of 1-D Lagrange multiplier problem.

to update The other more serious drawback is that
the source and channel rate are in practice discrete rather than
continuous functions with respect to their multipliers. As the
algorithm approaches the optimal multipliers (λ, µ), the discon-
tinuity of the discrete source and channel functions may create
difficulties for it. We address this problem with an improved al-
gorithm presented below.

B. Generalized Shoham–Gersho Algorithm

Our proposed algorithm is a generalization of Shoham–
Gersho Integer Programming Algorithm [5] which yields
optimal or near-optimal solutions to the source bit allocation
problem in the framework of (1). We will begin with a brief
review of Shoham–Gersho algorithm in Section IV-B1. In
Section IV-B2, we will define our generalized algorithm, which
we denote as the GSG algorithm. See [18] for proofs of the
algorithm.

1) Shoham–Gersho Algorithm:The Shoham–Gersho Algo-
rithm is an integer programming algorithm for the source bit al-
location problem. The algorithm solves the Lagrangian problem
by finding the best possible Lagrange multiplier; the algorithm
always terminates with an optimal solution or an error-bounded
approximate solution. Unlike previous bit allocation algorithms
[4], this algorithm addresses a more general class of problems
because it does not fit the subband distortion curves to contin-
uous analytic functions, nor does it make any assumptions about
the nature of the distortion curves such as convexity.

It is important to understand the geometrical interpretation of
the application of Lagrange multiplier to problems of form (1).
The Lagrangian problem can be viewed as a minimization of
the sum of subband distortions plus a penalty function

:

(19)

The penalty function translates into adding a penalty line of
slopeλ to each of the distortion functions. Fig. 3 shows that
for a given multiplier we found minima in subband 1 and 2
to be and If these two are the only subbands, then the op-
erational source rate for this multiplier is If

is smaller than our budget rate then we decrease the mul-
tiplier value to decrease the effect of the penalty function. Geo-
metrically, that would mean decreasing the slope of the penalty
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Fig. 4. Example of 1-D singular point multipliers.

lines. The Shoham–Gersho Algorithm addresses the problem of
exactlyhowthemultiplier,or theslopeof thepenalty lines,should
be adjusted.

The crux of the algorithm is the notion ofsingular points—a
special set of multiplier values such that the optimal set of
solutions is non-unique. Geometrically, such multipliers create
a slope on the subband distortion curves such that a pair of
adjacent convex-hull data points on a particular distortion
curve are simultaneously minimum. Fig. 4(a) shows the
original distortion function with respect to source bits. To
make and simultaneously minimum, we first find slope

Fig. 4(b) shows the effect
of adding a line of slope to —there are now two minima
in the distortion function. This implies that a singular point
such as has more than one operational source rate.

An important property of singular points is that neighboring
singular points always share one solution. Fig. 4(c) shows an ad-
jacent singular point to the one in Fig. 4(b), and they share one
solution, namely Another property is that there can be no
additional solutions in between the neighboring singular points.
We see that as we decrease to the only possible min-
imum is which is the common solution for the two adjacent
singular points. Another interpretation of this property is that
the set of nonsingular multipliers in between two neighboring
singular multipliers does not yield any more solutions that is
not covered by the two singular multipliers. Therefore, the set
of singular points leads to the entire set of solutions to the La-
grangian problem in (6) for all possible values of multipliers.
We can now make the following important conclusion:

Instead of sweeping the multiplier valueλ from zero to in-
finity continuously in search of an operational rate that is close
to our target rate, it is sufficient to look only at the singular
points, since they alone lead to all possible Lagrangian solu-
tions anyway.

Fig. 5 shows the operational rate as a function of multiplier
λ. Notice the singular points, etc, each have multiple
solutions, denoted by circles. Notice also that nonsingular point
multipliers do not lead to solutions that is not already covered
by the singular points.

Since operational source rate is monotonically nonincreasing
with respect to the multiplier, at any given point on the oper-
ational rate plot, we only need to search neighboring singular
points iteratively in the direction towards our target rate in-
stead of traversing all of them. Geometrically, to go to a neigh-

Fig. 5. Operational source rate vs. multiplier.

boring multiplier, we are decreasing (increasing) the slope of
the penalty lines gradually in all subbands until nonunique so-
lutions appear in a subband. With the new nonunique solutions
in hand, we compute the new operational source rates and check
against the target. In Fig. 5, we start at multiplier then move
to neighboring then to neighboring each time we drive
our operational rate closer to our target rate Upon reaching

we notice that the two associated operational rates encloses
our target rate. These are the closest solutions we can find by
solving the Lagrangian; we will settle with the solution set cor-
responding to to be our approximate solution. See [5] for
more details.

2) Development of GSG Algorithm:Our algorithm extends
the Shoham–Gersho Algorithm to another dimension. Similar
to the 1-D case, the multiplier problem in the form of (6) can
be viewed as minimizing the sum of subband distortions plus a
penalty function With the added
dimension, the penalty function now translates into adding el-
evated penalty planes in and axes to all subbands with
slopesλ and µ, respectively. Our goal is to iteratively make
adjustments to the slopes of the penalty planes such that our
operational rate pair converges to our target rate pair

Similarly, we would like to make these ad-
justments using singular points. The notion of singular points
for two dimensions, however, is slightly more complicated and
needs to be explained further.

Singular Points: A nonsingular set of multipliers, (λ, µ),
similar to the 1-D case, implies that there is a corresponding
set, that uniquely minimizes (6). If the set of mul-
tipliers is singular, then there is at least one subband, called
the pivot subband, where there is more than one point in the
subband that minimizes it. For example, there are two points,
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Fig. 6. Geometrical interpretation of singular points in 2-D.

and that are comin-
imum of subband

s.t.

(20)

Points that satisfy (20), and in the example, are each
calledpivot point. Two-point pivotingis the case where the mul-
tiplier pair yields only one pivot subband, having only two pivot
points.

Note that we have two degree-of-freedom (DOF) in choosing
the multiplier pair (λ, µ). To satisfy (20) for two pivot points in
a subband, we essentially have one equation, and only one DOF
is needed to satisfy it. To exploit the additional DOF in selecting
our multiplier pair, we have two alternatives. First, we can find
another point within the pivot subband such that together with
the original two pivot points, we have three pivot points that are
simultaneously minimum for a multiplier pair. We call this case
triangular. This implies that we can move from a two-point piv-
oting case to a triangular case by using up the remaining DOF
in multiplier selection. Second, we can use up the remaining de-
gree of freedom by finding two pivot points in a different sub-
band. We again have two equations, each in the form of (20). We
denote the case asquadrangular. We can move from a two-point
pivoting case to a quadrangular case by using up the remaining
DOF.

Geometrically, a two-point pivoting case means adjusting
slopes of the penalty planes in theand axes of all subbands
such that there are two minimum points in a subband. Fig. 6(a)
shows that originally there is one unique minimum in subband

In Fig. 6(b), we create slopes in the two axes such that there

are two minima. As indicated by the arrow, we can continue
to decrease the tilt of the plane surface by changingλ and µ
while keeping these two points minimum. In Fig. 6(c), we
reach a triangular case; there are three pivot points that are
simultaneously minimum for subbandIn Fig. 6(d), we reach
the other alternative; instead of finding a third pivot point in
subband we find two pivot points in another subbandNote
also that if the case is two-point pivoting, then the resulting
operational source channel rate pair, calledpivot rate pair, are
in two distinct pairs

(21)

where denotes the index of the pivot subband. Similarly, if
the case is triangular or quadrangular, there will be three or four
corresponding pivot rate pairs of , respectively.

Similar to the 1-D case, singular points lead to all possible
solutions to the Lagrangian problem. Therefore, instead of
sweeping multiplier pair (λ, µ) continuously for all possible
values, it is sufficient just to look at the singular points. Instead
of considering all singular values, however, we will only need
to step through a sequence of singular points such that we
iteratively approach the best possible solution.

Lines and Regions of Eligibility: We now introduce the
notion of lines and regions of eligibility for the - plane
and the - plane of any subband Suppose we are in a
two-point pivoting case with singular pair resulting in
two pivot points, and in pivot subband and unique
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Fig. 7. Line and region of eligibility for GSG algorithm.

Fig. 8. Change of basis for GSG algorithm.

optimal points for nonpivot subbands. For the -
plane,line of eligibility is the line passing through pivot rate
pairs and The line
divides the plane into two regions. The region that contains the
target rate pair is the region of
eligibility, as shown in Fig. 7(c). We draw corresponding line
of eligibility on - plane of each subband as well: the
line goes through the currently optimal point(s) with the same
slope as the line on - plane. We identify the regions of
eligibility in - planes as the same corresponding side of
the line as the one in - plane. Fig. 7(b) illustrates this for
nonpivot subband Fig. 7(a) illustrates this for pivot subband

Note that by definition of pivot rate pairs for two-point
pivoting in (21), line with slope of line of eligibility in -
plane and passes through optimal point of pivot subband
must necessarily pass through as well.

Description of Algorithm: Armed with the definitions
above, we can now sketch the outline of our algorithm in words
as follows.

1) Start with initial multiplier and that yield a two-
point pivoting subband This uses up one DOF.

2) Use the remaining degree of freedom by searching
through regions of eligibility of all subbands to find
either (a) the next pivot point in the 2-point pivoting
subband (triangular) or (b) two new pivot points in a new
subband (quadrangular).

3) Use pivot selection scheme of Section IV-B to choose
two pivot points out of the three pivot points in triangular
case, or out of the four pivot points in quadrangular case.

4) Repeat step 2 and 3 until we get sufficiently close to
in the - plane.

The essence of the algorithm is to choose the new pivot point(s)
in step 2 in such a way that the resulting pivot rate pair(s) are
in some sense closer to the target rate then
previous pivot rate pairs. For this to happen, the new pivot rate
pair(s) must be in the region of eligibility of the - plane.
This means that for each subband, to search for the next potential
pivot point, we only need to search among the points that are in
the region of eligibility.

Finding Candidate Pivot Points: Geometrically, the next
pivot point is the first point that, as the tilt of the planes is
being decreased (increased) gradually, becomes cominimum of
its subband together with the original minimum point(s):
and in the case of pivot subband (triangular), or, in the
case of nonpivot subband (quadrangular). Keep in mind that we
are doing so while keeping the pivot points cominimum in the
pivot subband, thus we are decreasing the tilt in one dimension
only. This is illustrated in Fig. 8(a). We first define atilted dis-
tortion functionfor each subband as

(22)

where are the pivoting singular pair. In Fig. 8(a),de-
notes the line of eligibility of this subband. Suppose we perform
a change of basis to- axes, as shown in Fig. 8(a), such thatis
parallel to line and is perpendicular to it. Consider the set of
all the planes passing through theaxis, each having a different
tilt angle with respect to the- plane. Since is parallel to in
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Fig. 9. Example of pivot change in triangular and quadrangular case.

TABLE II
TABLE OF NOTATIONS FORGSG ALGORITHM

all these planes, the two pivot points will evaluate to the same
value no matter how large the tilt of the plane is. Therefore, if
we search for the next pivot point by gradually changing the tilt
of the plane passing throughaxis, we will be doing so while
keeping the original pivot points cominimum.

To find out which point of which subband will be the next
pivot point mathematically, we do the following. For each sub-
band we elect a candidate pivot point . For each point in
the region of eligibility, we find out how much the plane passing
through axis must tilt for that point to become a minimum. The
point that requires the minimum tilt in order to become min-
imum is the first point that will become cominimum of the sub-
band. In the new coordinate system, finding the minimum tilt
point is equivalent to finding the minimum slope point in the
1-D case. Fig. 8(b) shows the 2-D view of the tilted distortion
function of pivot subband in the new coordinate system;axis
is pointing out of the page, andaxis is pointing along the page.
We first observe that the two pivot points are on top of each
other: they evaluate to the same value, and they have the
same coordinate, Note also the region of eligibility in this
coordinate system is the set of points whosecoordinate values,

’s, are larger then the minimum points’ To find the point
with the minimum slope, we evaluate the slopes of all points

where slope is

slope (23)

Note that in the original coordinate system, is the pro-
jected distance of the point to the line of eligibility. The point
with the minimum slope is the candidate pivot point of the sub-
band. The same procedure applies for non-pivotal subbands. To

choose a pivot point among thecandidates, we pick the point
that requires the smallest tilt. This corresponds to the first point
that would become cominimum if we actually change the tilt of
the plane passing throughaxis gradually as mentioned before.

Selecting Pivot Points:If the new pivot point is found in
the pivot subband, then we have a triangular case. We now
have three pivot rate pairs, points and as shown
in Fig. 9(a). If the new pivot point is found in a subband other
than the pivot subband, then the original minimum point of
that subband becomes a pivot point as well, and we have a
quadrangular case. We have four pivot rate pairs, points

and as seen in Fig. 9(b). In the triangular case,
apivot point selection rulepicks two of three pivot points in the
pivot subband as new pivot points. In the quadrangular case, it
picks one of two pivot subbands, each of which contains two
pivot points, as the new pivot subband. The planes tilt again in
the direction of the target pair using the new pivots, and the
process continues. The algorithm stops when an enclosed area,
whose corners are denoted by the pivot rate pairs, includes
our target rate; this indicates that we have reached the closest
convex-hull surface to the target, whose corners are the pivot
rate pairs.

Details of Algorithm: (see Table II for notations).

1) Multiplier Initialization : Initialize multipliers and
that yields a two-point pivoting case, say in subband

(soon to be discussed). Find the set that
minimizes (6), and the corresponding operational source
and channel pairs, denote

2) Definition of Tilted Distortion Function : For each sub-
band introduce atilted distortion functionas defined in
(22).
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3) Definition of Eligibility Region : Let theslope of eligi-
bility line, shown in Fig. 7(b), be

(24)

For each subband construct aline of eligibility,
that goes through the optimal point(s)

Identify a region of eligibility, in each sub-
band that corresponds to the region of eligibility in the

- plane.
4) Identification of Candidate Pivot Point: For each sub-

band find a point such that

proj on line of elig.
(25)

Among these points from subbands, find one that
yields the minimum slope (the minimum value in (25)).
Call it

5) Pivot Selection: If is in the pivot subband, then it is a
triangular case. Define a point as

(26)

where denotes the index of the pivot subband. We
choose two of three points among the set
in the - plane, and specify the new region of
eligibility, based on the pivot point selection rule (to be
discussed).

If is not in the original pivot subband, then it is a
quadrangular case. Define points
and as

(27)

where is the index of the original pivot subband, andis
the index of the new pivot subband. We use the pivot point
selection rule to select two points in the set

and then specify the region of eligibility.
The algorithm stops if pivot point selection rule signals
termination.

6) Multiplier Reinitialization : For the newly selected pivot
points in the pivot subband, find any multiplier pairs

such that the resulting tilted distortion function
for the pivot subband evaluated at the pivot points will
have the same value. Goto step 2.

Initialization: For step 1 of the algorithm, the goal is to
initialize multipliers and such that it results in a two-point
pivoting case. We will assume we already have optimal set

(optimal solution to (6)) for a given nonsingular
point multiplier pair A simple method is the following:
first define a slightly different tilted function than (22) for each
subband as

(28)

For each subband, find such that

(29)

Geometrically, this is first point in subbandthat will become
cominimum with the present minimum if the slopeλ of the
penalty plane on the axis is gradually changed. Among these

points, find one that minimizes (29). Call it This is the
first point in all subbands that will become cominimum if the
slopeλ is gradually changed. The subband of is the pivot
subband. Let
evaluated at The two-point pivoting multiplier values for
step 1 of the algorithm can now be expressed as:

Pivot Point Selection Rule:In either the triangular or quad-
rangular case, we must select two pivot rate pairs in the-
plane, and hence the corresponding pivot points in subbands,
out of three or four possible pairs for step 5 of the algorithm.
The selection rule must select pivot rate pairs in such a way that
it ensures the algorithm will make progress, and therefore will
converge to the best possible solution.

We will begin with a few necessary definitions. Definepivot
line segment, labeled in Fig. 10, as the line segment between
two current pivot rate pairs, Definedistance line seg-
ment, labeled in Fig. 10, as the line segment that minimizes the
distance between the target and the pivot line segment.
The selection rule is as follows.

• Triangular: To avoid stagnation, the new pivot rate pair
must be one of the two pairs selected. To choose be-

tween the two original pivot rate pairs, and we se-
lect one that yields a new pivot line segment that crosses
the current distance line segment. If such point does not
exist, then we select the pivot rate pair that yields a pivot
line segment that touches the current distance line seg-
ment. In Fig. 10(a), by selecting pivot rate pairs and

the new pivot line segment, crosses the current
distance line segment,

• Quadrangular: Again, to avoid stagnation, one of the two
new pivot rate pairs, and must be selected.
Similarly, we select two pairs that yield a new pivot line
segment that crosses the current distance line segment. If
such pivot rate pairs do not exist, then we select the two
that yield a pivot line segment that touches the current
distance line segment. In Fig. 10(b), there are no two pivot
rate pairs that yield a pivot line segment that crosses the
distance line segmentSo we select and to yield
pivot line segment which touches
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Fig. 10. Pivot point selection algorithm.

Fig. 11. Time sharing between neighboring approximate solutions.

• Ending Condition: When the triangle or the parallelo-
gram whose corners are denoted by the three or four pivot
rate pairs encloses the target rate, we terminate the algo-
rithm.

Using this selection rule, one can show that the length of the
distance line segment decreases during the procession of the
algorithm, meaning the algorithm is making progress at each
iteration. See the Appendix for convergence of the algorithm
using this pivot point selection rule.

Time-Sharing of Operational Points: Instead of settling
for an approximate solution without using up the available
bandwidth, i.e., and we can use
time-sharing to divide time among the neighboring pivot rate
pairs so that average rate equals the target rate, and the distor-
tion is lowered. This is permissible in coding schemes where
the increase in overhead for time-sharing does not overburden
the implementation complexity of the system.

Suppose we exit the algorithm with the set of operational
points shown in Fig. 11. Instead of settling with the solution
associated with operational rate pair we do time-sharing
among and In general, we select three of the pos-
sible four pairs using the following criteria: among the groups
of three points that enclose the target, select the group that mini-
mizes the total distance between the target and individual points
of the group. Denote the three selected pairs as
Suppose we spend fractionα of time at β of time at and

of time at The distortion is the weighted average
of the three

(30)

where t.s. stands for time-sharing. The fractionsα, β must
satisfy the following equations so that the average source and
channel rate equal the constraints

(31)

Rewriting the above equation, we can solve forα, β as follows:

(32)

C. Hybrid Algorithm

The GSG algorithm has one major disadvantage that discour-
ages its exclusive use: because it painstakingly searches through
every singular multiplier pair on the search trajectory toward
to the optimal solution, the algorithm is slow if the initial op-
erational source-channel pair is very far from the optimal. To
remedy this problem, we propose a hybrid algorithm that first
uses the linear approximation algorithm in Section IV-A to find
an approximate solution, then uses the GSG algorithm to refine
the estimate into an optimal or near-optimal solution. The linear
approximation algorithm has efficient convergence until it en-
counters the discreteness of the rate functions near the optimal.
The GSG algorithm performs poorly when far from the solution,
but finds the optimal solution efficiently when near it. There-
fore, the hybrid algorithm combines the advantages of both al-
gorithms while avoiding their respective pitfalls.

V. IMPLEMENTATION

A. Operational Distortion-Rate Functions

In practice, there are two possible approaches for arriving at
the operational distortion functions for various subbands. In the
first approach, we analyze each video clip individually off-line
in order to compute its exact distortion curves. In the second ap-
proach, we can arrive at a set of distortion curves for a class of
video sequences, say large motion or head and shoulder. To ob-
tain an accurate estimate of the class distortion curves, we take
the ensemble average of a long representative sequence. The
computations of these distortion curves are performed off-line,
and therefore do not introduce excessive delay in the transmis-
sion system. Clearly, the second approach is more suitable for
real time, interactive application than the first approach.
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The distortion metric we chose is MSE. While we realize
MSE may not the best metric for video quality evaluation, due
to its wide use in the literature and the lack of a well accepted
metric for video in the research community, we decided to use
it for our application. Note that our algorithm can be applied to
any metric, given the distortion can be expressed as the sum of
individual distortions as shown in (2). The distortion functions
can now be expressed as

(33)

where is the th subband component of the original signal,
and is the quantized and channel corruptedth
subband component of the signal givensource bits and
channel bits. We can first expand the expected distortion of sub-
band as the sum of conditional distortions for a collection of
error events. According to the Total Probability Theorem, the
events in the collection are disjoint, and they collectively span
the sample space

(34)

where denotes the event that bitof subband is received
incorrectly, and denotes the corresponding complement
event. We will assume the usage of conditional arithmetic
coding in the coding of subband coefficients. Since conditional
arithmetic coding is a variable length code, it is a good ap-
proximation to assume that if bitis corrupted, all bits in the
remaining codeword are rendered useless due to loss of syn-
chronization. So we can assume that the resulting error when
bit and some other bits after bitare flipped is approximately
equivalent to the resulting error when only bitis flipped.

We will now define three functions to ease our notations. Let
be the distortion function of subbandif source bits are

used under noiseless condition. Let be the resulting distor-
tion function of subband if only bit is flipped. To obtain this
function, we experimentally inject an error at bitof the corre-
sponding subband, and average out the error over 200 frames to
get an approximate value. Let be the resulting error prob-
ability of a source bit if, on average, channel bits are used to
protect it. This function will obviously depend heavily on the
particular implementation of the channel codec and the channel
condition. In our experiment, we use RCPC for our unequal
error protection codec. Since RCPC is a convolutional code, bit
error can be bounded using [17]

(35)

where is the puncturing period, is the probability that
the wrong path at distanceis selected, and is the distance
spectra. Depending on the channel coding rate,will be dif-
ferent. For BSC, is simply where is the cross

over probability. For AWGN channel with BPSK modulation
and soft decoding, is

erfc (36)

where is the signal-to-noise ratio of the channel. With
the above two function definitions, we can write2:

(37)

(38)

where is the resulting error probability if channel
bits are used to protect bitof subband Substituting into the
previous equation

(39)

B. Results

To demonstrate the effectiveness of the GSG algorithm, we
construct Fig. 12. The two plots represent two subband distor-
tion functions as functions of source bitsand channel bits
Our goal is to to minimize the sum of the two distortions in the
form of (5), such that the sum of source bits and sum of channel
bits do not exceed Fig. 13(a) shows
the pivot rate pairs we obtain in each iteration. For each itera-
tion, Fig. 13(b) maps the corresponding three or four pivot rate
pairs onto the - plane. If the algorithm yields a triangular
case for one iteration, Fig. 13(b) draws a triangle whose corners
are denoted by the three rate pairs. If it yields a quadrangular
case, Fig. 13(b) draws a quadrangle whose corners are denoted
by the four rate pairs. The target rate pair is denoted by the *
symbol. We see in Fig. 13(b) that iteration 1 yields a triangular
case. When we move to iteration 2 (another triangular case), we
found pivot (2, 4), which is in the direction of the target rate.
Iteration 6 is a quadrangular case, denoted by the parallelogram
6. We see that the next cluster of pivots is closer to the target
pair that the previous. In Fig. 13(b), we see that the algorithm
terminates after 15 iterations. In this case, we found the optimal
solution.

To test the overall algorithm numerically, we combined the
3-D scalable video codec [15] and rate-compatible punctured
convolutional codes [17] to build our joint source/channel
codec. For source coding, we used three levels of spatial and
two levels of temporal subband decomposition as shown in
Fig. 14. We used 200 frames of the digitized video “Raiders
of the Lost Ark” to construct the operational distortion-rate
surfaces, ’s, and applied our bit allocation strategy
to compute the distortion curve as function of source to channel

2The resulting error pattern after Viterbi decoding is correlated. To precisely
calculate the probability of long sequence of correlated bit errors is difficult, and
as such, we estimate the probability that the firsti bits of subbandk received
error-free to� [1 � g(m )]:
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Fig. 12. Original distortion functions.

Fig. 13. Procession of GSG algorithm.

Fig. 14. Spatial and temporal subband decomposition.

coding ratio for various BSC with to
0.05. The total bit budget is 250 kbits/s. We see in Fig. 15(a) that
there exist unique distortion minima for various channel state.
The distribution of source and channel bits among subbands
for channel state and source to channel ratio 0.6 is
shown in Table III.

We now compare our bit allocation algorithm with the one in
[9]. The Lervik and Fischer algorithm solves the 2-D optimiza-
tion problem in two steps: first, keeping channel bits for each

subband fixed, it finds the optimal distribution of source bits
by tracing the convex-hull along the source axis; then, keeping
source bits fixed, it finds the optimal distribution of channel
bits by tracing the convex-hull along the channel axis. The re-
sulting operational source rate, channel rate and distortion for
BSC and is shown in Table IV. No-
tice that while the operational source and channel bits for the
two algorithms are similar, the distortion is much higher for the
Lervik and Fischer algorithm. There are two reasons: first, by
solving the 2-D problem in two steps, the algorithm converges
to a local minimum instead of a global minimum; second, since
the algorithm solves the problem one axis at a time, it can only
find solutions that are on a rectangular grid, a subset of all pos-
sible solutions.

To show that our optimization strategy is essential in poor
channel condition, we compare its performance
with other codecs that uses ad-hoc bit allocation strategies in
Fig. 15(b). Curve a in Fig. 15(b), shows the PSNR of the scalable
codec under ideal noiseless conditions for 100 frames. The av-
erage PSNR in this case is 29.7 dB. Curve b in Fig. 15(b) shows
the PSNR of our proposed optimized codec operating at the op-
timal with unequal error protection as described
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Fig. 15. Experimental results.

TABLE III
DISTRIBUTION OF SOURCE AND CHANNEL BITS USING GSG

ALGORITHM (IN bits/s)

TABLE IV
COMPARISON OFBIT ALLOCATION ALGORITHMS: (R ;R ) =

(94744 bps, 156240 bps)

in earlier sections. The average PSNR in this case is about 2
dB lower than the ideal noiseless case. Curve c in Fig. 15(b)
shows the performance of a codec operating at
using equal error protection. This codec distributessource
bits using one-dimensional bit allocation algorithm that assumes

a noiseless channel, then channel codes these source bits with
channel bits equally. As seen, the PSNR is about the same

as case b for most frames, except for occasional drops of 25
dB. These drops are a direct consequence of the fact that im-
portant source bits not adequately protected. Finally, curve d
in Fig. 15(b) shows the performance of the same equal error
protection codec as in c but operating at In
this case, the source bits are protected adequately, but the insuf-
ficiency of source bits causes the quantization error of source
coding to dominate the resulting error. Curve d has a 3 dB drop
from curve b. The main conclusion to be drawn from Fig. 15(b)
is that optimal source/channel bit distribution does make a sig-
nificant difference in poor channel condition scenarios.

VI. CONCLUSION

In this paper, we have presented a methodology to optimally
allocating source and channel bits for video transmission over
noisy channels. In particular, an optimal bit allocation strategy
that is efficient and yields near-optimal solutions is presented.
Our development of the theory shows that our solution is very
close to optimal, and our results prove that in poor channel con-
ditions, an optimal bit allocation scheme is essential to maintain
good visual quality. Although we have discussed our algorithm
in the context of video transmission over noisy channels, we feel
that our strategy can be applied to other optimization problems
with two constraints, such as power or complexity.

APPENDIX

PROOF OFPIVOT POINT SELECTION RULE

We now prove that the using the pivot point selection rule we
described in in Section IV-B enables the algorithm to converge
to the ending conditions. We accomplish that by showing a spe-
cial metric, which tracks the progress of the algorithm at each
iteration, decreases or remains the same at each iteration. This
indicates that the algorithm yields a cluster of points that are at
least as close to the target as the previous set.

We will start by showing that the selection rule is feasible:
until we reach the ending condition, there always exists two
pivot rate pairs that yields a pivot line segment that crosses or
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Fig. 16. Proof of pivot point selection rule: Case 1.

touches the distance line segment at every iteration. We will di-
vide the proof into two cases: 1) when the distance line segment
is a perpendicular drop from the target to the interior of
the pivot line segment, and 2) when the distance line segment
is a line connecting the target and one of the current pivot pairs

Lemma 1 proves the first case; Lemma 2 proves the
second.

Lemma 1: Given the relative locations of the pivot pairs and
the target are as in case 1. Then either we have reached ending
condition, or there exists one set of pivot pairs such that it cre-
ates a pivot line segment that crosses the current distance line
segment.

Proof 1: Let suppose the two pivot pairs, and are
on the axis, as shown in Fig. 16(ia). We can do that without
loss of generality because a simple change of basis and a linear
translation can move any set of points to this configuration. We
first divide the search space of new pivot rate pair(s) into three
disjoint subspaces, and as seen in Fig. 16(ib). These
subspaces resulted from lines that connect the pivot rate pairs
and the target and the distance line segment.

We can discover one or two pivot rate pairs, resulting in tri-
angular or quadrangular case. Let us suppose it is the former
first. If the next pivot pair is found in region as in Fig. 16(ic),
then it is clear that we have reached the ending condition. If the
next pivot pair is in region as in Fig. 16(id), then selecting
pivot pairs and we have a new pivot line segment,
that crosses the current distance line segmentBy symmetry,
we can also conclude that if pivot pair is found in Regionby
selecting and we have a new pivot line segment that
crosses the current distance line segment as well.

Suppose two pivot pairs are found, resulting in the quadran-
gular case. If either one of the left or right pivot pairs, or

is found in region [Fig. 16(ia)], then we have reach the
ending condition. If is found in region with in re-

gion such that the line connecting them is above the target
[Fig. 16(iib)], we have again reached ending condition. If the
line is below the target [Fig. 16(iic)], then that line is the new
pivot line segment and it crosses the distance line segment. If

and are both in Region then by selecting
and as pivot pairs, we have a new pivot line segment that
crosses the distance line segment. Finally, by symmetry, if
and are both in Region then then by selecting and

as pivot pairs, we have a new pivot line segment that crosses
the distance line segment.

Lemma 2: Given the relative locations of the pivot pairs and
the target are as in case 2. Then at least one of three cases must be
true: i) we have reached ending condition; ii) there exists at least
one set of two pivot pairs that yields a pivot line segment that
crosses the current distance line segment; and iii) there exists at
least one set of two pivot pairs that yields a pivot line segment
that touches the current distance line segment at the end point.

Proof 2: We follow similar procedure as in Proof 1, and di-
vide the space into three subspaces, and First suppose
it is Triangular case, as seen in Fig. 17(i). If pivot pair lands
in region we have reached ending condition. If pivot pair
lands in region by selecting and the new pivot line
segment touches distance line segmentat If pivot pair
lands in region then by selecting and the new pivot
line segment crosses Suppose it is quadrangular case, as
seen in Fig. 17(ii). If either or lands in region
then we have reached the ending condition. If is found in
region with in region such that the line connecting
them is above the target [Fig. 17(iia)], we have again reached
ending condition. If the line is below the target [Fig. 17(iic)],
then that line is the new pivot line segment and it crosses the
distance line segment. If and are both in Region
[Fig. 17(iib)], then by selecting and as pivot pairs,
we have a new pivot line segment that touches the distance
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Fig. 17. Proof of pivot point selection rule: Case 2.

Fig. 18. Proof of Theorem 3.

line segment. Finally, if and are both in Region
[Fig. 17(iid)], then then by selecting and as pivot pairs,
we have a new pivot line segment that crosses the distance line
segment.

Using Lemma 1 and 2, we can now prove that the selection
rule ensures the algorithm is making progress.

Theorem 3: Suppose there exists a cluster of points that sat-
isfy the ending condition. The selection method stated in Sec-
tion IV-B4 terminates in that cluster.

Proof 3: We first define a special metric, as the length of
the distance line segment at iterationIt measures how close a
cluster of points is from the target. By definition of distance line
segment, if the pivot line segment of the next cluster is closer to
the target, then it will have a smaller metric than previous cluster.

If the next pivot line segment crosses the current distance line
segment, then length of the new distance line segment must be
smaller than the previous one. This is best illustrated geomet-
rically. In Fig. 18(a), we see pivot pairs and yields a
pivot line segment that crosses the current distance line seg-
ment. We denote the point of intersection asClearly distance
between target and is strictly smaller than the

length of distance line segment, Further, the next distance
line segment, must have length smaller than or equal
to length of We can conclude the following: if next pivot
line segment crosses the current distance line segment, then

By Lemma 1, we know such pivot line
segment always exists if we are in case 1. Therefore, we can
conclude that the metric must strictly decrease for the next iter-
ation if we are in case 1.

Notice in case 2, the only time there is no pivot line segment
that crosses the distance line segment is when the new pivot(s)
is(are) in region shown in Fig. 17(ic) and 17(iib). In such
cases, the distance metric might remain the same between itera-
tions. In Fig. 18(b), by selecting and the metric remains
the same. However, as the algorithm continues to progress, this
situation cannot remain. Since the search space is continually
being rotated, it will eventually reach a pivot pair such that the
metric will decrease. In Fig. 18(b), the new pivot pair goes from

to to When we reach the distance line segment is
a perpendicular drop (case 1) and the metric is decreased. There-
fore we can conclude that the metric must eventually decrease
if we are in case 2.

Since the metric continues to decrease as the algorithm pro-
gresses, the cluster moves closer to the target. The cluster that
can make no more progress is the one with the ending condi-
tion. Therefore, the algorithm converges to the cluster with the
ending condition.
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