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Reference Frame Optimization for Multiple-Path
Video Streaming With Complexity Scaling

Gene Cheung, Senior Member, IEEE, Wai-tian Tan, Member, IEEE, and Connie Chan

Abstract—Recent video coding standards such as H.264 offer
the flexibility to select reference frames during motion estimation
for predicted frames. In this paper, we study the optimization
problem of jointly selecting the best set of reference frames and
their associated transport QoS levels in a multipath streaming
setting. The application of traditional Lagrangian techniques
to this optimization problem suffers from either bounded worst
case error but high complexity or low complexity but undeter-
mined worst case error. Instead, we present two optimization
algorithms that solve the problem globally optimally with high
complexity and locally optimally with lower complexity. We
then present rounding methods to further reduce computation
complexity of the second dynamic programming-based algorithm
at the expense of degrading solution quality. Results show that
our low-complexity dynamic programming algorithm achieves
results comparable to the optimal but high-complexity algorithm,
and that gradual tradeoff between complexity and optimization
quality can be achieved by our rounding techniques.

Index Terms—Communication systems, optimization methods,
video signal processing.

I. INTRODUCTION

DVANCES in video coding and networking technologies

have created many new flexibilities in the design of
streaming algorithms. Examples of such flexibilities abound;
we focus on two particular ones in this paper. The first flexi-
bility is reference frame selection (RFS) of recent video coding
standards such as H.264 [1]. In RFS, each coding block within a
predicted frame can choose among a number of previously en-
coded frames for motion prediction. This allows a live encoder
to avoid using lost frames as references, thereby controlling
error propagation. The second flexibility is multihoming of
clients, where a client may be equipped with multiple network
interfaces, such as CDMA2000 and WCDMA. The flexibility
of using either or both interfaces has several advantages, in-
cluding higher throughput with less variability.!

While it is clear that streaming can potentially be enhanced
by exploiting the aforementioned flexibilities, high complexity
is required to jointly select optimal parameters for different op-
tions afforded by the many flexibilities. To this end, standard
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In some cases, using two transmission paths simultaneously decreases
overall performance because of mutual signal interference. We assume here
that the paths are orthogonal and therefore additive.

Lagrangian optimization procedures can be employed. Never-
theless, there is no general mechanisms to simultaneously bound
the running time of a Lagrangian optimization and bound the
worst case approximation error. As a result, there are practical
challenges in using such optimization schemes for low-latency,
quality-guaranteed media delivery. In this paper, we investigate
an alternative optimization strategy—applying integer rounding
techniques to dynamic programming algorithms. As we will dis-
cuss in detail in this paper, this technique generates a solution
with bounded complexity and worst case error. Moreover, the
strategy is complexity-scalable, where the quality of the ob-
tained approximate solution can be traded off with computation
complexity.

The contribution of this paper is twofold. First, we illus-
trate the aforementioned integer-rounding-based optimization
method through an example scenario in which a streaming al-
gorithm jointly optimizes the use of RFS and multiple network
interfaces. Specifically, based on feedback information, a live
encoder has to choose reference frames based on RFS as well
as to transmit a packet one or multiple times, using one or
multiple interfaces. The second contribution of this paper is the
evaluation of proposed optimization procedure as a practical
algorithm. In this regard, comparisons are made with respect to
a version of the well-cited optimization framework RaDiO [2].

The remainder of this paper is organized as follows. After
discussing related work in Section II, we present in detail our
assumptions of source and network models in Section III. We
present two optimization algorithms in Section I'V: the first al-
gorithm is globally optimal but suffers from high complexity;
the second, based on dynamic programming, is locally optimal
but has lower complexity. In Section V, we discuss a set of
integer-rounding-based procedures to further reduce the com-
plexity of the second developed algorithm at the cost of solution
quality. Results and conclusion are presented in Sections VI and
VII, respectively.

II. PREVIOUS WORK

H.264 [1] is a new video coding standard that has demon-
strably superior coding performance over previous standards
such as MPEG-4 and H.263 over a broad range of bit rates. As
part of the new standard is the flexibility of using an arbitrary
frame to perform motion estimation, a technique that is origi-
nally introduced as Annex N in H.263+ and later as Annex U in
H.263++4. Early works on optimizing streaming quality using
reference frame selection include [3], [4]. Our optimization dif-
fers from these recent works by jointly selecting reference frame
and QoS levels on multiple transmission paths, with the added
feature of computation scalability.
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A recent related work [5] reorganized the prediction structure
of a group of pictures (GOP) such that the effect of a loss of a
single P-frame is minimized. Our work differs from [5] in two
regards: 1) while we maximize the expected performance of a
GOP—the average case, by restructuring the dependencies to
minimize the worst effect of all P-frames, [5] minimizes the
worst case; and 2) [5] performed the restructuring independent
of network loss characteristics, while we optimally adopt our
scheme to observed network conditions.

A related research topic is multiple description (MD), where
video is encoded into two (or more) “descriptions,” and each
description can be decoded independently of the other(s). For
example, an MD stream can be obtained by coding the even
frames into stream 0 and coding the odd frames independently
from the even frames as stream 1. In [6], it is observed that,
when different descriptions are transmitted using different net-
work paths, it is possible to apply error-concealment techniques
at the decoder so that drift error due to losses can be greatly re-
duced. Specifically, such error-concealment techniques can be
applied as long as the losses on the different paths are not con-
current. One advantage of the MD scheme is simplicity, since
path selection is trivial, and compression can be performed in-
dependently of the network conditions. It should be noted that
the joint reference frame and QoS level selection on multiple
paths subsumes the above MD example as a special case, at the
expense of additional computation.

Unlike many previous rate-distortion optimization algorithms
[2], [4], [7] which rely on the use of Lagrange multipliers, our
optimization is unique in that we use an integer-rounding
technique that allows tradeoff between computation complexity
with the quality of the obtained solution. This allows us to
estimate the quality of the obtained solution given fixed com-
putation resources. Conversely, given a target quality of the
solution, we can estimate the amount of resources needed for
the tasks.

It should be noted that our dynamic programming plus
integer-rounding approach is inspired by classical algorithmic
work [8] on the famous NP-hard knapsack optimization
problem, discussed in detail in [9]. While [8] can be viewed
as a starting point, our unique problem requires ingenuity and
unique insights in applying and then extending the notion of
integer rounding to our more complex objective function.

Among our previous work, we have shown that in-
teger-rounding-based complexity scaling can be applied to
reference frame/QoS selection for unipath streaming over
QoS-enabled networks [10] and to reference frame/path selec-
tion for multipath streaming over best-effort networks [11]. This
paper is a noted improvement on our previous work in three
important regards: 1) we are simultaneously selecting reference
frames and QoS levels on multiple transmission paths; 2) by
generalizing to a variable delay model for packet transmission,
we incorporate retransmissions into the optimization; and 3) in
addition to the previously developed dynamic programming
dimension rounding technique, to be discussed in Section V-A,
a new rounding technique called index rounding is introduced
in Section V-B, and the two types of rounding techniques are
compared and combined in Section V-C.

Sender
Network 1
Live | Transmitter
Encoder N Receiver
» )
Reference ,’I Path/QoS
frame selection®, 7 Selection Network 2
Joint D

Optimization feedback

Fig. 1. Application scenario of interest involves live streaming with feedbacks
over multiple network interfaces. The sender is responsible for jointly selecting
the reference frames and associated QoS levels on multiple transmission paths.
An effective scheme to realize such joint optimization is the focus of this paper.

III. ASSUMPTIONS AND PROBLEM FORMULATION

In this paper, our application scenario of interest is shown in
Fig. 1, where a sender is jointly optimizing encoding of video
and its transport over two network interfaces. At the live-en-
coder block, we are choosing previously encoded frames to be
used for references. At the transport block, we assume the avail-
ability of two network interfaces, each with a number of avail-
able QoS levels. There are existing devices with multiple net-
work interfaces already, e.g., 802.11 and GPRS, even though
few current applications seek to use them concurrently. There
are two motivations to consider two network interfaces. First, it
subsumes the more common one-interface case by sending ex-
clusively on one interface. Second, it serves to illustrate how the
proposed optimization procedure functions under multiple path
scenarios. The remainder of this section is organized as follows.
We first present the source and network models, as well as our
objective function for optimization. We then discuss some lim-
itations of choices and why they are preferable.

A. Directed Acyclic Graph Source Model

We assume that the optimization in Fig. 1 is run periodically
with period P, where, during each optimization instance, an op-
timization window of M consecutive frames of a M,,.-frame
video sequence is under consideration for (re)transmission, and
each frame in the window can be coded either as an intra-coded
frame (I-frame) or an inter-coded frame (P-frame). For sim-
plicity of presentation, we will henceforth assume that frames 1
to M are being optimized, though in reality they can be any M
consecutive frames in the M, x-frame sequence. Each frame
i, F;,1 = 1,..., M must be delivered to the client by a play-
back deadline D; or be discarded. At the next optimization in-
stance, the optimization window advances k frames in the video
sequence where k is the number of leading frames with playback
deadlines having expired at the client. Each F; has a transmis-
sion history h; which records the times and types of transmis-
sion the optimization has selected for F; in previous optimiza-
tion instances (more in Section III-B).

Generally, the use of B-frames may improve coding effi-
ciency, but we choose not to include B-frames for two reasons.
First, the use of B-frames incurs additional complexity and
buffering delay at the client. Second, the baseline profiles of
MPEG-4 and H.264 [1] do not include B-frames, meaning
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Fig. 2. DAG source model. The quantities 73 3, 73,2, 73,1 represent, respec-
tively, the number of bytes for three different choices of coding frame 3, namely,
intra-coding, P-frame with frame 2 as reference and P-frame with frame 1 as ref-
erence.
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that 3GPP-compliant handsets [12], [13] cannot be expected to
handle B-frames.

We model the decoding dependencies of the M frames in
the optimization window using a directed acyclic graph (DAG)
model G = (V, &) with vertex set V, [V| = M, and edge set
&, similar to one used in [2]. Specifically, each frame F;,7 =
1,..., M, represented by a node + € V), has a set of outgoing
edges e; ; € £ to nodes j’s. Frame F; can use frame Fj; as
reference if and only if Je; ; € £. We define z; ; to be the
binary variable indicating whether F; uses F; as a reference.
Equivalently, given 7, we define z; ; as

_JL
T = o,

In general, the H.264 syntax allows different coding blocks in a
video frame to use different reference frames. In this paper, we
restrict all coding blocks in a P-frame to use the same reference
frame to reduce complexity of optimization algorithm. The loss
in compression efficiency of this assumption is investigated in
Section III-D. With this assumption, we have the following RF

constraint.
> =1,

Vjlei ;€€

if F; uses F; asRF  Vj € Vl]e;; € €
otherwise.

ey

Vi e V. 2)

We assume that only frames in the past are used for reference,
ie., Ve, ; € £,1 > j. Further, since in practice it is source-
coding inefficient to use a reference frame too far in the past,
we will limit the number of candidate reference frames for any
given predicted frame F; to be E,.x < M. An example of
a DAG model of a four-frame subsequence is shown in Fig. 2
with Ep,,x = 2. We denote by r; ; the integer number of bits
needed to encode frame F; if frame F; is used as reference. This
is an approximation since the number of bits depends not only
on specific F; chosen, but also on the reference frame for F;
and so on. A self-referencing arrow for a frame F; implies an
intra-coded frame, and the size of the I-frame is r; ;. We assume
a sparse rate matrix r of size O(M?) is computed a priori as
input to the optimization algorithm (sparse because each row
has at most F,,, entries). We will discuss how r is generated
for our experiments in Section VI.

B. Network Model

We first assume that the network imposes a maximum trans-
port unit of size MTU bytes, so that a packet of size larger than
MTU will be fragmented. For transmission of packet of size

fewer than MTU bytes on path k, we assume that a time-in-
variant packet erasure channel with random delay similar to the
one used in [2]. More specifically, let 7, be the packet erasure
probability of path k, and let gx () be the shifted Gamma dis-
tribution of parameters ay, A and ky, that describes the proba-
bility distribution of delay random variable 7, of path k as

AZE (y — /{k)ak_l e~ (Ve —Kk)

F(Ozk)
K < Y < 00 3)

k() =

where I'(a,) is the Gamma function
D(ag) = / o le T dr, ay > 0. @)
0

This means that a packet sent on path k£ at time ¢, will have
probability of correct transmission by time T, 6 (¢),t = T —t,,
which is defined by

t

5u(t) = (1 — ) / (). 5)

Kk

On top of the raw transmission path, we assume a set of QoS
levels @ = {0,1,...Q} to improve delivery, either via applica-
tion-level FEC or simple multiple transmissions. For each frame
F;, we selecta QoS level ¢0; and g1; € Q for transmission paths
0 and 1, respectively. QoS level q0; = ¢q1; = 0 denotes the case
where F; is not selected for transmission for the current opti-
mization instance. At a given optimization instance %,, selec-
tion of QoS level ¢0; and g1, and frame size 7; ; (resulting from
selection of reference frame F}), together with F;’s transmis-
sion history h;, will induce a frame delivery success probability
p(hi, q0;, ql;, ’I”i’j) € R, where 0 < p(hi, q0;, q1;, ’I”i’j) <1
There is dependence of p() on r; ; because a large frame size
will likely negatively impact the delivery success probability of
the entire frame as more data are pushed through the network.

Though the optimality of the algorithms to be developed does
not depend on the particular definition of p(h;, ¢0;, ¢1;,7; ;). as
a concrete case study, we now derive p(h;, ¢0;, ¢1;,7; ;) given
our network model assuming that Q consists only of simple
multiple transmissions. We first define F;’s history h; of length
l; as

h; = {(f“ qu(»l), qlgl),tgl)) , (q0§2)7q1§2),t§2)) e
(a0, 1, 1) ) ©

where the reference frame F); selected for F; is denoted by
fi,2 and QoS selections and transmission time of instance k
are denoted by q()gk), ql,gk) and tgk), respectively. Let n;, =
[7i.7, /(8 * MTU)] be the number of packets required to encode
F; using reference frame f;. The frame delivery failure prob-
ability of using QoS ¢0; at time ¢, is then (o(q0;,n;,¢),t =
D; —ty

Co(q0i,mi 1) = (1 — do(t)")7%. @)

2We assume reference frame for a frame F; is selected only once. Subsequent
transmissions of F; use the same earlier selected reference frame.
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p(hy, q0;,¢1;,7; ;) can now be written as (8), shown at the
bottom of the page.

1) Network Resource Constraint: Like any resource-alloca-
tion problems, we impose constraints on the amount of resource
we can use, which in this case is the aggregate ability to properly
deliver the M frames in the optimization window using QoS
until the next optimization instance. Assuming that a QoS as-
signment ¢0; results in a cost of ¢(q0;) € R per bit, the con-
straints for path 0 and path 1 are respectively

M
Z Z z;,;¢(q0i)ri; < Ro

i=1Vjle; ; EE

M
> > mijelgliri,; < Ry ©)

i=1Vjle; ;€EE

Equation (9) represents a bit-rate constraint per path, where
¢(q0;) is the overhead in channel coding or multiple transmis-
sions given QoS level g0;. Constraint parameters Ry and R, are
network-available bandwidths scaled by optimization period P,
where each network bandwidth can be estimated using conges-
tion control algorithms like TCP-friendly rate control (TFRC)
[14], so that the total output bits for M -frame time for paths 0
and 1 do not exceed 2y and R; bits per optimization instance,
respectively. While important, we consider congestion control
orthogonal to our reference frame-selection problem, and we
will merely assume that an available scheme like TFRC period-
ically estimates the available network bandwidths on which we
perform our optimization.

C. Objective Function

Ideally, the objective function would represent perceptive dis-
tortion, the study of which is beyond the scope of this paper.
Another commonly employed objective function is the average
peak signal-to-noise ratio (PSNR). While computing the ac-
tual PSNR between two video sequences is straightforward, the
computation incurred by having to compute the actual PSNR
for many possible loss patterns and choices for reference frames
is prohibitively high. Accurate modeling of PSNR for arbitrary
loss patterns is still an area of active research [15], [16]. The ob-
jective function we selected instead is the expected number of
correctly decoded frames at the decoder. Each frame F; is cor-
rectly decoded if and only if F; and all frames F}’s it depends
on are delivered on-time and drop-free. We write 7 < 1 if frame
F; depends on frame F);. Advantages of this function include
being mathematically tractable, and having simple and intuitive

TABLE I
CODING COMPARISON OF CHOOSING REFERENCE FRAME ON A PER-BLOCK
BASIS (FLEX) AND PER-FRAME BASIS (FIX)

sequence  reference frame @Q; Qp  bitrate PSNR
mother flex 22 18 131.28  44.53
mother fix 1 22 18 13759 4445
mother fix 2 22 18 137.61 4451
mother fix 3 22 18 137.44 4453
mother fix 4 22 18 136.74 4452
mother fix 5 22 18 135.84  44.54
news flex 25 20 138.60  42.47
news fix 1 25 20 140.38 4244
news fix 2 25 20 141.57  42.46
news fix 3 25 20 141.72 4248
news fix 4 25 20 141.57 42.46
news fix 5 25 20 14142 4244

interpretation. Mathematically, maximizing this objective func-
tion means computing

M
ep(hy,q05, 915,75
{mz,j},ﬂgjx},{qli} Z H Z zjkp(hi, 05, gL, 7m5k)

i=1Vj=iVk|e; €€
(10

The problem is then: given precomputed rate matrix r, de-
livery success probability function p(h;, ¢0;, ¢1;,r; ;), and cost
function c(g;), find variables {z; ;},{¢0;} and {q1;} that maxi-
mize (10) while satisfying the integer constraint (1), the RF con-
straint (2), and the network resource constraints (9). This for-
mally defined optimization is called the RF/QoS/Path selection
problem (RQP selection).

D. Consequences of Assumed Models

To show that the RF constraint (2) of using a single reference
frame for all macroblocks in a P-frame during motion prediction
is not excessive in terms of coding efficiency, we compared the
rate-distortion performance of a scheme using flexible reference
frame motion prediction (£1ex) with a scheme using a single
reference frame fixed at frame F;_,, for each P-frame F; (fix
n). Table I shows the coding performance for the two schemes
for MPEG sequences mother and news using the quantization
parameters (); and @ p for I-frames and P-frame at QCI F size.
We see that, in general, the PSNRs for the two schemes are
almost identical; this is expected since the same quantization
parameters were used. What we also observe is that the encoded
bit rate for £ix n deviates from f£lex by at most 4.8% for
mother and 1.3% for news. This shows experimentally that
the overhead in rate-distortion performance by imposing the RF
constraint (2) on the optimization is justifiably small for the two
sequences we use in this paper, even though larger differences
are possible for other choices of sequence or QP.

1

= 1- [Co(q0i7ni’Di _to)Cl(qlhnivDi _to)
TR Ly T )

if F; is ACKed

0. W.

®
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function Sum(i, Ro, R1,w)

I.if (Rop<0O)or(R1<0) /l base case 1
2. { return —oo;

3.9 (i=1) /| base case 2

4. { s=maxgo,q1€0 | e(q0)r1,1 <R, e(a)ry,1 <Ry P(h1,40,q1,m11);
S. returns*(l+w1)+Zj_u:2wj;

6. }

7. S:=0; /| recursive case
8. for each j such that e; ; € &,

9. { foreach q0,ql € Q,

10. {w =w;

1. if (j#4)

12. { w} =w; + p(hi,q0,ql,7;;5)(1 4+ w;);

13. w; =0; }

14. else

15. { w;- =p(hy;,q0,q1,7;;)(1 +w;); }

16. s = Sum(i — 1, Ro — ¢(qO0)r; j, R1 — c(ql)r; ;, w');
17. S = max(S, s);

18.} }

19. return S;

Fig. 3. Globally optimal Sum(i, Ry, R1, w) in strongly exponential time.

IV. GLOBALLY AND LOCALLY OPTIMAL ALGORITHMS

It is perhaps not surprising that the RQP selection problem
is NP-hard. A proof of NP-hardness, similar to that in [10], is
shown in Appendix A. To tackle the problem, our three-step
approach is as follows. First, we construct an algorithm
Sum(i, Ry, Ry, w) that solves the optimization optimally but
in strongly exponential time. Second, we simplify the algorithm
to produce a dynamic-programming-based Sum(i, Ry, R1)
that is locally optimal and weakly exponential. Empirical
results will be shown later in Section VI that suggest the two
algorithms achieve comparable performance despite differ-
ences in complexity. Finally, we introduce rounding techniques
that allow multiple complexity—quality tradeoff points for
Sum(i, Ry, Ry ). Experimental results characterizing the trade-
offs for different rounding techniques will be presented in
Section VI.

A. Globally Optimal Algorithm in Strongly Exponential Time

We begin with the development of the globally optimal but
strongly exponential time algorithm Sum(z, Ro, Ry, W), shown
in Fig. 3. By “strongly,” we mean that the running time is
independent of the parametric values of the algorithm input.
Sum(i, Ry, R1,w) returns the maximum expected number
of correctly decoded frames for the M-frame subsequence
given that resources Ry and R; are available for F} to F;.
w € RM is the weight vector where w; reveals the potential
benefit of correctly decoding F;—benefit from dependees in
subset {F;11,..., Fa}—in addition to F; itself. A call to
Sum(M, Ry, R1,0), where 0 is the zero vector of dimension
M, would yield the optimal objective value to the RQP selec-
tion problem.

For the recursive case (lines 7-18), the algorithm attempts
every possible combination of RF (3) and QoS (q0 and ¢1), re-
sulting in successful transmission probability p(h;, g0, ¢1,7; ;)
and budget consumption ¢(g0)r; ; and ¢(q1)r; ; for paths 0 and
1, respectively. The crux of the algorithm lies in the weight
passing from F; to RF F; using the following equation:

653

Equation (11) essentially states that successful decoding
of F; will reap additional benefits of expected decoding of
Fivp(hiv q07 qu Ti,j)’ and Fi’s dependees’ p(hu q17 (]1, Ti,j)wi~
The first base case (lines 1-2) is when one or both of the budget
constraints is violated, and the algorithm returns —oo to signal
the violation. The second base case (lines 3—6) is when the root
node is reached. Because it has no earlier frame to recurse, the
algorithm simply seeks the maximum transmission probability
for F} in two paths using two leftover budgets R, and R;. At
this point, the benefit of each P-frame has been folded into an
earlier I-frame that is the root of the prediction, so the algorithm
simply returns the sum of benefits from all I-frames (line 5). A
proof of optimality is provided in Appendix B.

The complexity of Sum(M, Ry, R;,0) can be de-
duced as follows. The two nested loops in the recursive
case have ) * @ x FE,x iterations, and each spurts a
recursive call. The total number of recursive calls are:
QZEmax + (QZEmax)z + Tt + (QZEmax)(]w_l) S
O((Q?Emax)™). Since each recursive call has at most
Q? * Foax comparisons in the recursive loop, we can
conclude that the complexity of Sum(M, R, R;,0) is
O((Q2Emax)]u+l)~

B. Locally Optimal Algorithm in Weakly Exponential Time

Given that Sum(é, Ry, R1,w) is strongly exponential, it is
difficult to reduce its complexity in any formal way. Our ap-
proach then is to first simplify it so that it becomes weakly
exponential—and, hence, implementable in dynamic program-
ming—at the cost of losing global optimality. By “weakly,” we
mean the running time is exponential only in the size of the algo-
rithm input bits, used to encode parametric values of the input.
This is also called pseudo-polynomial in some literature [17].

In Sum(z, Ro, R1, w), local information are passed globally
via the weight vector w. If we eliminate weight passing en-
tirely, the algorithm is restricted to local searches and, hence,
is locally optimal; this is the idea behind the simplified version.
It is composed of two recursive functions, Sum(s, Ry, Ry) and
Prod(j, 4, Ro, R1). Sum(i, Ro, R1) returns the locally optimal
expected number of correctly decodable frames for frame F}
to F; given Ry and R, network resource units are available for
paths 0 and 1, respectively. Prod(j, i, Ry, Ry) returns the prob-
ability that F} is decoded correctly given Ry and R; network
resource units of paths 0 and 1 are locally optimally distributed
from Fy to F;. A call to Sum(M, Ry, R1) will yield the lo-
cally optimal solution. Sum(é, Ry, Ry1) and Prod(j,7, Ro, R1)
are shown in Figs. 4 and 5, respectively.

The recursive case (lines 5-15) of Sumn(é, Ry, R1) is similar
to the one in the original Sum(i, Ry, Ry, w); essentially, it lo-
cally tests every combination of RF j and QoS ¢0 and q1 for
F;; for the maximal expected number of decodable frames. For a
given selection of RF j and QoS ¢0 and ¢1, it induces a resource
expense of ¢(q0)r; ; and c(gq1)r; ; for paths 0 and 1 respectively,
and hence a decoding probability for F; of p(h;, 0, q1,r; ;) *
Prod(j,i—1, Ro — c(q0)r; ;, R1 — c(q1)r; ;). That is added to
the expected sum for Fy to F;_;—the recursive term Sum(i —
1, Ry — ¢(q0)r; ;, R1 — c(ql)r; ;). The base case (lines 3-4) is
the same as the first base case in the original Sum(i, Ry, R1, w).
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function Sum(i, Ro, R1)

1. if ( DPsuml[i, Ro, R1] is filled ) /| DP case

2. { return DPsuml[i, Ro, R1]; }

3.if (Rop<0)or(R;<0) /| base case
4. { return —oo; }

5. §5:=0; /| recursive case
6. for each j such that e; ; € £,

7. { foreach ¢0,ql € Q,

8. {s:=Sum(i—1, Ro—c(q0)r;;j, R1 —c(ql)ri;);
9. if (j=1) /I IT-frame

10.  { s:=s+ p(hiq0, g1, r;5); }

11.  else /| P~frame

12 { s:=s+ p(h,q0, q1, r; ;) * Prod(j, i—1, Ro —
c(q0)rij, Ri —c(ql)ri;);

13, if (s>9)

14. { (S> X,Y, Z) = (57j7 q07q1); }

15.} }

16. ( DPsumli, Ro, R1], DPind[i, Ro, R1] ) == ( S, X ):

17. ( DPqosO0[i, Ro, R1], DPqosl[i, Ro,R1] ) = (Y, Z ),

18. return S;

Fig. 4. Locally optimal Sum(i, Ry, R, ) with weakly exponential time.

function Prod(j,i, Ry, R1)
if (Rop<0)or(R;1<0)
. { return 0; '}
if (j=i=1)
{ return DPsum[1, Ry, R1]: }
X := DPind[i, Ry, R1];
(Y,Z ) :=( DPqos0[i, Ro, R1], DPqosll[i, Ro, R1] );
if (7<) /l recursive case
{ P:=Prod(j,i —1,Ro — c(Y)ri, x, R1 — c(Z2)r; x): }
. else /I3 =1
10. { P:=p(h;,Y, Z, 7, x )xProd(X,i—1, Ro—c(Y)ri,x, Ri—c(Z)ri,x): }
11. return P;

/l base case 1

/l base case 2

N N

Nel

Fig. 5. Companion Prod(y. i, Ro, Ry ) for locally optimal algorithm.

Differing from Sum(i, Rg, Ry, w), the results of this
search are stored in the [i, Ry, R1] entries of the four DP tables,
DPsum][ ], DPind[ ], DPqos0[ ], and DPqos1][ | (lines 16-17).
DP tables are lookup tables so that, if the same subproblem is
called again, the already computed results can be simply looked
up and returned (lines 1-2).

Assuming Prod(j, ¢, Ro, Ry ) does not introduce further com-
plexity (to be discussed), the complexity of Sum(M, Ry, R;)
is bounded by the time required to construct the DP tables of
dimension M % Ry = R;. To fill each entry, we call function
Sum(i, Ry, Ry1) as shown in Fig. 4, which has O( Fy,.,Q?) op-
erations to account for the two for loops from lines 6-15 in
the recursive case. Therefore, we can conclude that the com-
plexity of Sum(M, Rg, R1) is O(M EpnaxQ? RoR1). Note that
the complexity is weakly exponential because Ry and R are
encoded in [log, Ry] and [log, R1] bits as input, respectively.
Hence, complexity O( Ry R;) means that the algorithm is expo-
nential in the size of the input.

C. Companion Recursive Function for Locally Optimal
Algorithm

From lines 8 and 12 of Fig. 4, we assume that
Prod(yj,4, Ro, R1) is called after Sum(i, Ry, R1) has been
called, so we will assume entries [i, Rg, R1] of the DP tables
are available during execution of Prod(j,¢, Ro, R1).

The recursive case has two subcases: 1) when j < ¢ (line 8 of
Fig. 5), in which case we recurse on Prod(j,7 — 1, -) given that
we know resources ¢(Y)r; x and ¢(Z)r; x on paths 0 and 1 are
optimally used for node #; and 2) when j = i (line 10), in which

case we know term ¢ of the product term—p(h;,Y, Z,r; x).
The maximum product will be this term times the recursive
term PI‘Od(Y,i — 1,Ry — C(Y)’I”i_’X“Rl - C(Z)’I“Zx) The
two base cases (lines 1-4) are similar to the two base cases for
Sum(i, Ry, Ry).

Though not written in Fig. 5 for simplicity of presentation,
a DP table DPprod|[j, ¢, Ry, R1] can be similarly used to store
solutions to subproblems to avoid solving the same subproblem
twice. Because the number of reference frames is bounded by
Eox, at most Foax * M * Ry * Ry entries of the DP table
will be filled. The complexity of Prod(j,i, Ry, R1) is also
bounded by the time required to fill the O( Epax * M * Ro x Ry)
necessary entries of the DP table. Since there are no loops in
Fig. 5, it takes constant time to fill each entry in the DP table.
Hence, the complexity of Prod(j, M, Ry, R1),Vjs.t.E; j € &,
is O(EmaxM RoRy1). The complexity of Sum(M, Rg, R;)
dominates this complexity; hence the aggregate complexity of
the algorithm is O(M EyaxQ?*Ro Ry).

V. ROUNDING-BASED COMPLEXITY SCALING

Having simplified the globally optimal, strongly exponen-
tial Sum(%, Ro, Ry, w) to the locally optimal DP-based weakly
exponential Sum(é, Rg, R1), we are now ready to perform the
final step of our three-step optimization approach: we perform
rounding-based complexity scaling to trade complexity for so-
lution quality. By manipulating the DP tables used to store par-
tially computed solutions, the two rounding techniques DP di-
mension rounding and DP index rounding reduce the number of
table entries filled and, as a result, reduce complexity. We will
discuss the two techniques in turn.

A. DP Dimension Rounding

The first rounding technique is DP dimension rounding.
We first scale and round down overall budgets Ry and R,
by factor Kpr € R—i.e., |[Ro/Kpr] and |R1/Kpr] —as
input to the optimization. We then scale and round up costs
of transmitting predicted frame F;,c(g;)r; ;’s, by the same
factor Kpr—i.e., [(c(¢i)ri,j)/Kpr]. Implementationally, we
accordingly rewrite lines 8 and 12 of Sumn(i, Ry, R;) of Fig. 4

as

— : c(q0)r; c(ql)r;
8.5:=8S 1. Ry— | 2% R , .
’ - <Z e { Kpr | Kpr ’

12. s := s + p(hy, q0,q1,7; ;)

0)rs i
% Prod <j,i—1,R0— [%W
DR

Similarly, we replace the cost terms in Prod(j,7, Ro, R1) of
Fig. 5 by rewriting lines 8 and 10 as

L. C(Y)m’ X C(Z)T‘i X
8. P:=Prod| j,i—1,Ry— | ——— |, R — | ——=| |;
ro <J7b » 4o { Kor -‘ 1 [ Kon ;
10. P:= p(hi7Y7 Z7 ri,X)

Y)r;
« Prod (X,z'—1,R0— F(Kﬂw
DR

552
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In so doing, instead of solving the original RQP selec-
tion instance [ for locally optimal solution s*, we solve an
approximate instance I# for solution s. Scaling down Ry
and R; means scaling down the dimension of the DP tables,
hence the complexity is reduced by a factor of K3y at the
cost of decreasing solution quality. Using Sum(%, Ry, R1) and
Prod(j,4, Ry, R1) with the rewritten lines, the complexity of
I# is now O(MEmaXQ2R0R1K5I2{).

Note that, in the approximate instance [ 4 the network re-
source constraints (9) become

ST t%k%J

=1 vjle
ql L,j < ]zl

; Vi |GZ
It is shown in Appendix C that solution s is feasible in 1.
Moreover, we can bound the performance difference between
s and locally optimal s* by first obtaining a super-optimal
solution s° in a new problem instance I°, where we replace
Ry and R; with [Ry/Kpr] and [R;/Kpr] and replace
c(gi)ri;’s with |e(gi)ri j/Kpr]. The super-optimal network

resource constraints are
5 > g | AR | < ||
Kpr Kpr
o] = [
Kpr Kpr

i=1 VJ les,s
=1 Vi |5

After obtaining super-optimal solution s° to I°, we can

bound our approximate solution s from the locally optimal s*

in the original problem instance I as follows:

) — obj(s™)]|

where obj(s) is the objective function (10) using solution s. The
proof of performance bound (14) is also found in Appendix C.

12)

(13)

lobj(s*) — obj(s™)| < |obj(s” (14)

B. DP Index Rounding

Instead of reducing the overall dimension of the DP table
to scale down algorithmic complexity, another way is to limit
the number of indexes used in the DP table given the table di-
mension. This rounding technique is called DP index rounding,
and we accomplish that by always subtracting a positive integer
multiple of K1g € Z from Ry or R; during recursive calls in
Sum(i, Ry, R1) of Fig. 4. Implementationally, we do that by
replacing ¢(g;)r;,; with an approximate Kig[c(g:)ri /K]
Rewriting lines 8 and 12 of Sum(i, Ry, R;), we obtain

c(qO)m,j-‘ R
Kmw |’

8. s —Sum< -1 RU—KIR’V
10. s := s + p(h;, 0, q1,7; ;)

* Prod <J,Z — 1,R0 - KIR ’V

c(q0)ri
e R
KIR s L1

Fig. 6. Illustration of DP index rounding.

Similarly, we replace the cost terms in Prod(j,, Ry, R1) of
Fig. 5 by rewriting lines 8 and 10 as
8. P := Prod (J,Z - I,RO - KIR ’V

)

10. P := p(hz Y7 Z7 Ti,X)

C(Y)T@X—‘ Rl
Kir '

* Prod <X7i— 1,Ry — Kir [

As an example, we see an illustration of DP index rounding
in Fig. 6 when K1g = 3. By recursing only on R less multiples
of 3, we are only filling at most 1/3 of all indexes along both the
Ry and R; dimensions. Hence, the new algorithmic complexity
is O(M Epax@Q*RoR1 K 70).

The new network constraints using DP index rounding are as
follows:

C(Y)Ti,X-‘ Rl
Kr '

-Kir {

(q0; T, _

Z Z szKIR’V qK) ]-‘SRO

= 1v;|e R
(qLi)r; _

Z Z ik il <pas)
Kir

i=1Vjle,

Using a similar opposite rounding technique in the previous sec-
tion, we can bound the performance of the approximate solution

4 from the locally optimal solution s* by first constructing a
super-optimal solution s° and evaluating bound (14). The proof
will be similar to that in the DP dimension rounding case (shown
in the Appendix C) and hence is omitted here.

C. Applying DP Dimension and Index Rounding

We can employ both rounding strategies simultaneously:
replace Ry and Ry with |Ry/Kpgr| and | Ri/Kpr|, respec-
tively, as input to the algorithm; and replace c(q)r;; with
KIR [(C(q)ri,]’)/(KIRKDRﬂ in lines 8 and 12 of recursive
function Sum(i, Ry, R1) of Fig. 4 and lines 8 and 10 of
Prod(j,4, Ry, R1) of Fig. 5. The resulting network constraints
are

ﬁ/l: Z K C(Qi)ri,j Ro
S KiKpr |~ | Kpr

<
i=1 Vjle; ;€€
M _
c(qi)ri j Ry
” J| < .
Z Z 7o Km ’VKIRKDR-‘ - {KDR (16)
i=1 V]‘Sq'_jeg
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The resulting complexity is O(M Ep,.xQ? Ro Ry KB%KI_RQ).
An interesting question is then: given a desired complexity re-
duction factor K2, where K = KpgrKigr, what are the tradeoffs
in using different Kpg and Kig?

Because our approximation bound (14) is an a posteriori
bound instead of an a priori one, i.e., we do not know pre-
cisely the extent of the error until approximate solution s*
and super-optimal solution s° are computed and evaluated,
we cannot directly relate the performance of our approximate
solution s4 to Kpgr and Kig analytically. To estimate the
performance of the to-be-constructed approximate solution
st a priori given rounding factors Kpg and Kir, we instead
focus on an alternate performance metric (2., that tracts the
maximum possible rounding error to occur when calculating
network resource constraints (16) instead of the original (9).
In the worst case, (e, is the maximum rounding error on the
right-hand side of (16) plus the maximum rounding error on the
left-hand side. Right maximum error is the maximum rounding
error between Ry and R;; left maximum error is the number
of P-frames (M — 1) times the maximum rounding error of

c(q)ri; )
ffDlRJ ‘}

Qerr:max{
c(qi)ri,j
Nri i — Kin KpR | ol b
clg)ri; = Kin DR[KIRKDR-H

a7

_ R
Ro—Kpr {K—OJ

DR

) ‘RI_KDR {

+ (M — 1) % max
qisTi,j

= Kpr + (M — 1)K1r Kpr.
If we now substitute K1g = K/Kpg into (17), we obtain

Qerr = KDR + (M - 1)K (18)

Hence, ¢, is a linear increasing function of Kpg, i.e., we
should let K1g = K to minimize (2., for fixed K. Depending
on implementation, in practice, we may need to use a larger
Kpg to reduce the amount of memory needed for the DP tables,
each of dimension O(M Eyax Q% Ro Ry K2 ). Thus, a practical
rounding factor selection strategy to achieve a complexity
scaling factor of K?, K = KprKir, is as follows.

1) Select the smallest Kpr € R that sufficient memory can

be allocated for DP tables.
2) Given K and Kpg, calculate K1r := [K/Kpr].

VI. EXPERIMENTATION

A. Numerical Comparison of Optimal and Locally Optimal
Algorithms

In this experimental section, we begin with a nu-
meric comparison between the globally optimal algo-
rithm Sum(i, Ry, R, w) and the locally optimal algorithm
Sum(i, Ry, Ry). For network QoS, we assume simple multiple
transmissions where ¢0;(ql;) means ¢0;(¢q1;) transmis-
sions on path O (1). Accordingly, the cost vector is simply
¢(q) = q. We performed two trials, with raw path loss rates
at (ap, 1) = (0.10,0.06) and («g, 1) = (0.08,0.04), re-
spectively. The total bandwidth of both paths are kept constant
while the bandwidth of path 1 is varied.

For application-level inputs to the optimization—encoding
rates r; ;’s, we use H.264 version JM8.4 [18] to encode two
300-frame QCIF (176 x 144) sequences subsampled in time

by 2: MPEG test sequence news and mother. For news,
we held quantization parameters at 25 and 20 for I-frames
and P-frames, respectively, resulting in source coding rate
140.38 kbps if each P-frame F; is coded using its previous
frame F;_;. For mother, we held quantization parameters at
22 and 18 for I-frames and P-frames, respectively, resulting
in source coding rate 137.59 kbps if each P-frame F; is coded
using F;_.

To get rates r; ;’s, we iteratively force each predicted frame
F; to use reference frame F;_; for motion prediction during
iterationt = {0, 1, 2, 3,4, 5}. The resulting coding rate is ; ;.
We assume a predicted frame F; will use a reference frame no
further back in time than F;_5, or simply E,.x = 5.

For this part of the experiment only, we optimized only
the first seven frames for each data point. The relative small
number of frames (7) being optimized is selected because
optimal Sum(i, Rg, Ry, w) is exponential in the number of
frames. The rounding parameters of the locally optimal algo-
rithm are set at Kjg = 1 and Kpr = 100. We let the total
available bandwidth for both sequences be 150 kbps for the
two trials, which roughly corresponds to a 10% overhead for
loss protection beyond source coding. The objective function
for globally optimal Sumn(4, Ry, R, w) and the locally optimal
Sum(i, Ry, R1) is shown in Fig. 7. We see that the performance
of globally and locally optimal curves are very similar for both
trials 1 and 2; the largest relative difference is only 3.79% and
3.07% for news and 0.83% and 1.10% for mother for the
two trials. We can therefore safely conclude that the developed
locally optimal algorithm is sufficient as a starting point for
later algorithmic development.

An interesting observation in Fig. 7 is that, while all perfor-
mance curves have overall upward movement—this is expected
since path 1 has a lower packet loss rate in both trials—the
curves dip before moving to a higher plateau, resulting in
nonmonotonicity of the performance curves. The reason is that
the optimization is formulated as a discrete resource allocation
problem: a frame in path 0 will be reassigned to path 1 when
sufficient path 0 bandwidth has been reallocated to path 1, but
will not fit in either path when only small increments are shifted
from one path to the other, resulting in lower performance. This
nonmonotonicity of performance curves will be a recurring
characteristic in later experiments as well.

B. Experiment Setup

To test the rounding-based complexity scaling algorithm in
a network simulated environment, we developed a network
simulator called (mu)ltiple-path (n)etwork (s)imulator (muns),
shown in Fig. 8, that was also used in other network exper-
iments [19]. Each transmission path £ is implemented as a
queue of constant service rate yx, followed by an independent
and identically distributed (iid) packet erasure channel with
shifted Gamma distributed delay. Upon each packet arrival,
the client informs the server of its status using ACK with
client feedback delay D = 0. Queue service rates (’s are
set to create bottlenecks if links are utilized more than their
preassigned bandwidths. In our experiment, the volume of
packets in each queue (path) is controlled at the application,
and thus overutilization does not happen. As such, p’s are not
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Fig. 7. Numerical comparison for news and mother for varying path—1 bandwidth for fixed total bandwidth = 150 kbps. (a) Objective value for news.

(b) Objective value for mother.
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Fig. 8. Network simulator muns is used to simulate queuing, transmission, and losses of packets.

necessary, and we set each to 0 ms. The optimization period P
is set to 300 ms, the optimization window size is M = 10, and
the network MTU is MTU = 1500 bytes.

For the application-level inputs, we use the same
encoding rates r;;’s as in Section VI-A. The shifted
Gamma distribution parameters for network delay used in
the experiments are (ag,Xo,ko) = (4,0.1,60ms) and
(a1,A1,k1) = (3,0.1,60 ms) for the two transmission paths.
The delay mean and variance are 100 ms and 400 ms? and
90 ms and 300 ms?, for the two paths, respectively.

C. Experimental Results 1: RQP Selection Comparison

For the first set of simulation experiments, we show that our
optimization, as a streaming optimization scheme, has practical
merits and outperforms two competing ad hoc schemes. For
both sequences news and mother, we first fixed the combined

bandwidth of the two paths Ry + R; at 150 kps as done previ-
ously. Rounding parameters Kpgr and K1r were held constant
at 1000 and 1, respectively. By varying the share of 150-kbps
bandwidth allocated to the second path Ry, we tracked the cor-
responding performance at the client in PSNR. PSNR was cal-
culated as follows. First, a frame F; was deemed correctly de-
coded if and only if F; was timely and correctly delivered and
all its dependent frames were correctly decoded. If a frame F;
was correctly decoded, then PSNR for F; was computed using
the decoded F; and the original uncompressed F;. If a frame
F; was not decodable, the most recent correctly decoded frame
F; was used as a replacement, and the PSNR for F; was com-
puted using the decoded F’; and original uncompressed F;. The
sequence was replayed 300 times for an averaging effect. Two
trials of different packet loss rates of the two paths were per-
formed: (0.10,0.06) and (0.08,0.04).
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"news" PSNR Comparison at 150kbps, loss=(0.1,0.06)
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Fig. 9. Streaming performance for news in PSNR for varying path—-1 bandwidth for fixed total bandwidth = 150 kbps. (a) loss rate =

(b) loss rate = (0.08,0.04).

We compare our locally optimal algorithm opt to two greedy
selection schemes we call fix-greedy and flex-greedy
that contain elements of the simplified version of the RaDiO
framework?3 [2]. The fix-greedy scheme works as follows.
First, fix-greedy assumes a fixed differential coding struc-
ture where an I-frame is inserted every ten frames and other
frames F;’s motion-compensate from previous frame F;_1’s.
Given budgets Ry and R; in the two paths, fix-greedy then
incrementally selects a frame in the optimization window with
the best combination of QoS and delivery path that maximizes
the benefit-to-cost ratio, where the benefit is the increase in ob-
jective value (10), and the cost is the increase in bit expendi-
ture. £ ix-greedy proceeds with the selection until both bud-
gets are expended. £1ex-greedy operates in a similar fashion
as fix-greedy, with the additional flexibility of selecting
a reference frame from set {F;,..., F;_5} greedily for each
frame F; in the optimization window. To the best of the authors’
knowledge, fix-greedy and flex-greedy represent the
best performing complexity-efficient selection algorithms avail-
able in the literature.

The performance for the sequence news in PSNR, as a func-
tion of the first path bandwidth Ry, is shown in Fig. 9(a) and 9(b)
for the two trials, respectively. In both trials, we see that the
PSNR increases as Ry increases. This is expected since path 1
has a lower loss rate than path 0. Further, we see that opt out-
performed fix-greedy in PSNR by up to 7.25 dB and out-
performed flex-greedy by up to 1.21 dB for the first trial,
and outperformed f£ix-greedy by up to 7.47 dB and outper-
formed flex-greedy by up to 1.11 dB for the second trial.
The large performance difference indicates the effectiveness of
opt for the RQP problem.

Under the same test conditions, we next generated the perfor-
mance plots for sequence mother shown in Fig. 10(a) and (b)

3RaDi0 is a packet scheduling algorithm that does not alter the encoding of
the source. We are merely extending the idea of the simplified RaDiO— greedily
selecting the most beneficial grouping per bit overhead—to the RQP problem.

"news" PSNR Comparison at 150kbps, loss=(0.08,0.04)
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for the two trials. We see similar trends as we saw previously
for sequence news. Specifically, we see that opt outperformed
fix-greedy in PSNR by up to 6.16 dB and outperformed
flex-greedy by up to 0.66 dB for the first trial and out-
performed fix-greedy by up to 5.39 dB and outperformed
flex-greedy by up to 0.73 dB for the second trial. The no-
ticeable performance difference again indicates the effective-
ness of opt for the RQP problem.

D. Experimental Results 2: Performance/Complexity Tradeoff
Using Dimension Rounding

We have already discussed how complexity reduction can be
achieved by varying rounding parameters. In practice, we desire
the objective function, such as the number of correctly decoded
frames, to change gradually as we vary the rounding parameter.
Clearly, if there is a drastic drop in objective function when the
rounding parameter is larger than a certain small value, then any
rounding parameter larger than that small value is not likely
to be chosen in practice, resulting in a very limited range of
useful complexity scaling. In the next experiment, we examine
the change in objective function as the rounding parameter is
gradually increased to examine the range of useful complexity
scaling.

We held the bandwidth of the two paths Ry and R; constant
at (50 kps, 100 kps) for sequence news and mother. DP
index rounding parameter K was kept constant at 1, and
Kpr was varied to observe the tradeoff between performance
and complexity; recall the complexity of the optimization is
O(MEpax@Q?RoR1 K2 Ki5). Again, we performed two
trials of different packet loss rates of the two paths: (0.10,0.06)
and (0.08,0.04). The performance in PSNR as a function of
Kpr for both trials can be seen in Fig. 11(a) for sequence
news and in Fig. 11(b) for sequence mother.

We see in both Fig. 11(a) and (b) that, indeed, as DP dimen-
sion rounding factor Kpg increased, the quality of the solution
suffered due to rounding, and the performance decreased for
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"mother" PSNR Comparison at 150kbps, loss=(0.1,0.06)

"mother" PSNR Comparison at 150kbps, loss=(0.08,0.04)
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Fig. 10. Streaming performance for mother in PSNR for varying path-1 bandwidth for fixed total bandwidth = 150 kbps. (a) loss rate = (0.10,0.06).

(b) loss rate = (0.08,0.04)
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Fig. 11. Visual quality degradation of news and mother as dimension rounding parameter (K pg ) increases. (a) PSNR for news. (b) PSNR for mother.

both trials and for both sequences. More importantly, we see
that the approximation error, as indicated by the degradation in
PSNR, decreases gradually over a wide range of rounding pa-
rameters. This suggests that a very wide range of useful com-
plexity scaling can be realized using the dimension rounding
parameter Kpr. We also observed that PSNR does not de-
crease monotonically with increasing rounding parameter. This
can be partially attributed to the fact that rounding is a nonlinear
operation, meaning that the precise degree of the rounding error
will depend on actual numbers 7; ;’s, Ro, and R; as well as
Kpr. The general downward trend of the curves, however, is
in agreement with our analysis in Section V-A that performance
is in general inversely proportional to rounding factor Kpg.

E. Experimental Results 3: Performance/Complexity Tradeoff
Using Index Rounding

In the third experiment, we show that a similar perfor-
mance/complexity tradeoff can be accomplished using the
index rounding parameter Kig instead of the dimension
rounding parameter Kpgr. As in the second experiment, the
bandwidths of the two paths for news were held constant at
(50 kps, 100 kps). Packet loss rates for the two paths were
again held at (0.10, 0.06) and (0.08, 0.04), respectively, for
two trials. This time we held Kpr constant at 1000 as K
is varied. Quality degradation in PSNR as a function of index
parameter K1y is shown in Fig. 12(a) for sequence news and
in Fig. 12(b) for sequence mother.
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Fig. 12. Visual quality degradation of news and mother as index rounding parameter (g ) increases. (a) PSNR for news. (b) PSNR for mother.

We first observed in Fig. 12 that the general downward
trend and nonmonotonicity of the curves are similar to those
in Fig. 11. This is expected since the characteristics of the
gradually increasing round-off error and the nonlinearity of
the rounding operation remain. We also observed that the
curves did gracefully degrade over most range of K. This
is perhaps surprising, since at Kig = 30, we have very large
computation reduction factor K = KpgrKir of 30000. This
means that, using Kpr and Kig, a very large useful range of
performance/complexity tradeoff can be employed in practice.

VII. CONCLUSION

In this paper, we studied the optimization problem of jointly
selecting reference frames for motion prediction, and the path
and QoS level for transport in a multipath streaming scenario.
In particular, we presented a low-complexity approximate op-
timization scheme that produces results comparable to the op-
timal. We also presented and evaluated several rounding tech-
niques to allow multiple complexity—quality tradeoff points for
the approximate optimization scheme. Our approach is novel in
that, unlike conventional Lagrangian approaches, it uses a mix-
ture of two rounding techniques, DP dimension rounding and
DP index rounding, to gradually trade complexity for quality
of the obtained solution. Experiments using H.264 showed that
graceful complexity—quality tradeoff can be achieved over a
wide range.

APPENDIX I
NP-HARD PROOF OF RQP SELECTION PROBLEM

Here, we prove that the RQP selection problem is NP-hard by
proving that the corresponding binary decision problem—does
there exist a solution such that the objective value is larger than
some constant C—is NP-complete. We accomplish that, via a
reduction from a well-known NP-complete problem, Knapsack

problem [17, p. 247]). For completeness sake, the Knapsack

problem is repeated from [17] here.
INSTANCE: Finite set i/, for eachu € U asize s(u) € ZT
and a value v(u) € Z 7, and positive integers B and C.
QUESTION: Is there a subset 4/ C U such that
Yowew S(u) < Band ), o v(u) > C?

The problem remains NP-complete if v(u) = s(u).

For the reduction, we construct a corresponding RQP selec-
tion problem instance as follows. We construct a |/ | + 1-frame
sequence, each frame F;,¢ > 1, having one possible RF, which
is Fi. Each frame F; has arate r; 1 = s(u;—1). We construct the
QoS set to offer only two services: @ = {0,1}. The resulting
rate matrix r is

0 0 0
s(u) 0 0

r—= | s(u2) O 0 (19)
S(U,W‘) 0 ... 0

There is only one path with sufficient bandwidth budget for
packet transmission; i.e., Ry < min;ey s(u;). The corre-
sponding construction for a five-frame subsequence is shown
in Fig. 13. The resulting RQP selection problem under this
construction mathematically becomes

LR Vi
i - t. i b <B 20
;x,,l 3 s ;w,,1r,,1 < (20)

where we set p(hy,1,7; 1) and Ry in (10) to be ri1/B and
B, respectively. The corresponding binary decision problem is:
does there exist a RQP selection—=z; 1 € {0, 1}—such that the
objective value is > 1?

It is clear from (20) that the binary decision problem of the
constructed RQP selection problem is equivalent to the original
Knapsack problem instance when s(u) = v(u). Hence, the RQP
selection problem is as least as hard as the Knapsack problem.
Therefore, the RQP selection problem is NP-hard.

max

{zi1}



CHEUNG et al.: REFERENCE FRAME OPTIMIZATION FOR MULTIPLE-PATH VIDEO STREAMING WITH COMPLEXITY SCALING 661

e

s(uy)
s(uz) 4

Fig. 13. Joint selection selection of RQP for this graph can be shown to be equivalent to the Knapsack problem, which is NP-complete.

APPENDIX II
PROOF OF OPTIMALITY OF GLOBALLY OPTIMAL ALGORITHM

We now prove that Sum (i, Ry, R1,w), described in Fig. 3 of
Section IV, is indeed globally optimal. More precisely, we want
to show that Sum(i, Ry, Ry, w) returns the maximum expected
number of frames for the i-frame sub-sequence {F1,..., F;}
with benefits, given resources %y and R; in paths 0 and 1 are
available to the subsequence. By benefits, designated by benefit
vector w of length M, we mean that, for 1 < ;7 < 4, the suc-
cessful decoding of F}; brings in dependent benefit w; as well,
and for i + 1 < j < M, there is independent benefit w;.

We prove by induction. For the base case, we show that
Sum(1, Ry, Ry, w) is optimal. Since Fj is the only frame
under consideration and it has no previous frame to reference,
by searching through all possible QoS levels ¢q0 and g1 for
F; without exceeding the resource budgets Ry and R; (line 4
of Fig. 3), and subsequently adding the independent benefits
wj,2 < 5 < M (line 5), we can find the optimal solution.

For the inductive case, by assuming Sum(é, Ry, R}, w’) is
optimal, we show Sum(i + 1, Rg, R1, w) is optimal. We con-
sider two subcases. Suppose F; 1 is best selected as a P-frame.
Then the successful decoding of its chosen reference frame
F; would mean F; ¢ can successfully decode with probability
p(hiy1, 40, q1, 7",;+1,j). In turn, the successful decoding of F;
would mean we get one more correctly decoded frame (F;11)
plus F;11’s dependent benefit w; 1. Given F;11’s selection,
the problem is then equivalent to adding the contribution of
Fiv1,p(hit1,90,q1,7i41;)(1 4+ wiy1), into a dependent
benefit for F; (line 12), eliminating any independent benefit
for F; 1 (line 13), and solving the reduced ¢-frame problem
Sum(s, Ry — ¢(¢0)7it1,5, R1 — c(gl)rit1,j, w') with new
benefit vector w’ (line 16).

Now suppose Fj1 is best selected as an I-frame. Then the
successful decoding of F;;; depends on no other frames, and
from its own successful delivery we reap one more correctly
decoded frame (F;11) and its benefit w; 1. Given F;11’s se-
lection as an I-frame, the problem is then equivalent to setting
F;11’s independent benefit to p(h; 41, ¢0, ¢1, ri41 ;) (1+wi1)
(line 15) and solving the reduced i-frame problem Sum(z, Ry —
c(q0)riy1,j, R1 — c(ql)riq1,;, w') with new benefit vector w’
(line 16).

Since we assumed earlier that Sum(i, Rj, R}, w') is
itself optimal, by searching through all possible choices for
F; 1—reference frames and QoS levels, Sum(i+1, Ry, Ry, w)
must necessarily return the optimal solution. Since both
the base and inductive cases are proven, we also proved
Sum(i, Ry, R1,w) is optimal. Finally, since initially no

frames F;’s in the M-frame subsequence has any benefits,
Sum(M, Ry, R1,0) returns the optimal expected number of
correctly decoded frames as claimed.

APPENDIX IIT
PROOF OF ROUNDING-BASED COMPLEXITY SCALING

To prove feasibility of approximate solution s in I and the
performance bound (14), we essentially need to prove two ax-
ioms: 1) that s satisfies original network constraints (9) and
2) that s satisfies super-optimal network constraints (13) in I°.
To prove the first axiom, we first let the approximate solution
be s4 = ({xfj} {g*}, {t*}). Given the s* satisfies the first
network constraint in (12), we can write

53

K
i=1 Vjle; €€ DR

M A =
c(q0:") i ; R
DD I e RAC YL P
i=1Vjle; ;€€ DR DR

Ro
Kpr < | —| K;
DR = {KDRJ DR

where (21) holds since  (c(q0;)ri;)/(KpRr) <
[(c(q0i)ri;)/(Kpr)] and Ro/Kpr = |Ro/Kpr].
Similar steps can be done for the second network constraint.
Therefore, the first axiom holds and s# is feasible in I. Using
a similar argument, one can show easily the second axiom: that
s is feasible in °. By local optimality of s° in solution space
of I°, we have

obj(s%) > obj(s). (22)

By subtracting obj(s*) and taking absolute value on both sides,
we get (14).
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