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Abstract

This paper presents an error concealment strategy for improving the quality of com-
pressed video data when transmitted over noisy communication channels. Data partitioning
is used to enable the recovery of motion information when the compressed bitstream is cor-
rupted by channels errors. At low bitrates the motion data is a significant part of the
entire video stream and its recovery enables the decoder to perform motion compensated
error concealment and hence maintain adequate video quality. The technique is shown to
provide superior decode video quality over wide variety of channel errors, bit rates and
test sequences. In order to enable effective error concealment the partitioned motion and
texture data are separated a motion marker. The motion marker needs to be unique from
nay valid combination of the motion VLC data. In this paper, we also present an efficient
search algorithm to identify such a motion marker with good error resilience properties.
This error concealment technique was proposed to the ISO MPEG4 standard and based on
its performance, it has been accepted as part of the evolving standard definition.



1 Introduction

Current video compression techniques used in real time video communications [1, 2] achieve
efficient compression by using predictive coding techniques such as motion compensation
and also variable length entropy coding techniques such as Huffman codes. When the
compressed video stream is transmitted over real world communication channels such as
analog phone lines or wireless links to the decoder, it is often corrupted by channel noise and
other channel degradations. Variable length coding schemes are highly susceptible to these
errors introduced into the bitstream due to channel noise. As a result, the decoder loses
synchronization with the encoder. Predictive coding techniques make matters much worse
since the errors in one video frame quickly propagate across the entire video sequence,
rapidly degrading the decoded video quality and rendering it totally unusable. Hence,
unless the video decoder takes proper remedial steps, the video communication system
totally breaks down.

2 Error Resilience Methodologies

In order to make the video codec more resilient to channel degradations the following stages
are typically required at the decoder : 1) error correction 2) error detection and localization
3) resynchronization and 4) error concealment.

Forward Error Correction (FEC) codes such as Reed-Solomon codes, BCH codes etc.
are employed by the encoder to protect the bit stream before transmitting to the decoder.
At the decoder these codes are then used to correct errors in the bitstream due to the
channel noise. FEC techniques prove to be quite effective against random bit errors, but
their performance is usually not adequate against longer duration burst errors. These FEC
techniques also come with an increased overhead in terms of the overall bitstream size and
hence some of the gains achieved by the video compression are lost. Typically we apply
FEC to provide a certain level of protection to the compressed bit stream and the residual
errors are handled by the following stages.

Error detection techniques enable the video decoder to detect when a bit stream is
corrupted by channel errors. In a typical block-based video compression technique that
uses motion compensation and DCT, the following checks are applied to detect bit stream
errors. 1) the motion vectors are out of range 2) an invalid VLC table entry is found, 3)
the DCT coefficient is out of range, 4) the number of DCT coefficients in a block (8x 8)
exceeds 64. When the decoder identifies any of these conditions in the process of decoding
a video bitstream, it flags an error and jumps to the error handling procedure. Due to
the nature of the video compression algorithms, the location in the bitstream where the
decoder detects an error is not the same location where the error has actually occurred
but some undetermined distance away from it. Hence once the decoder detects an error it



loses synchronization with the encoder. Resynchronization schemes are then employed for
the decoder to fall back into lock step with the encoder. The encoder while constructing
the bitstream inserts unique resynchronization words into the bitstream at approximately
equally spaced intervals. These resynchronization words are chosen such that they are
unique from the valid video bitstream. That is, no valid combination of the video algo-
rithm’s VLCs tables produce these words. The decoder upon detection of an error seeks
forward in the bitstream hunting for this known resynchronization word. Once this word
is found the decoder then falls back in synchronization with the encoder.

At this point, the decoder has detected an error, regained synchronization with the en-
coder and also isolated the error to be between the two resynchronization points. Typically
in existing video coding techniques the data corresponding to the macroblocks between
the two resynchronization points is discarded and the pixel values from the same mac-
roblock locations in the previous frame are copied to conceal the effects of the erroneous
macroblocks.

3 Optimal Resynchronization Word

From the above discussion it is clear that resynchronization is an essential part of the
decoding strategy in the presence of channel errors. It is intuitively clear that the resynch
word should be unique from any bit patterns of the bitstream itself; otherwise, part of
the bitstream will be mistaken as resynch word during resynchronization and errors will
continue to propagate. In this paper, we propose a search strategy that identifies these
unique resynch words. Section 3.1 presents the optimal resynch word search strategy in
detail. In Section 3.3, we discuss the theoretical aspects of our proposed search strategy
and also present results of computer simulations are presented to verify the effectiveness of
the resynch word.

3.1 Search Strategy

Since our objective is to identify resynch words that are unique from all possible bit pat-
terns of the bitstream, a natural metric for comparing performance of potential resynch
words is the minimum Hamming distance,H;,,between the proposed resynch word and
the bitstream. A resynch word that is unique from the bitstream is equivalent to one with
Hiy, >= 1 from the bitstream. For a given resynch word length R, we would like to identify
the resynch word that has the largest H,,;, from the bitstream among 2% potential resynch
words. We continue to increment R until we find a resynch word with Hp;, >= 1.

To find H,,;, between a potential resynch word and the bitstream, we need to consider
all possible bit patterns of length R and compare them to the resynch word. Since we



assume the bitstream is composed of codewords from a set of VLC tables, the set of
all possible bit patterns is embedded in a set of finite combinations of codewords. Our
search strategy divides the search space into 3 subspaces: i) subspace containing single
codewords which have individual lengths > R, ii) subspace containing combinations of 2
codewords that have combined lengths > R, iii) subspace containing combinations of 3 or
more codewords such that each of the embedded codewords has length < R. Assuming
that these 3 subspaces span the original space, (see section 7), we see that H;, of the
proposed resynch word from the original space is the minimum of the 3 Hp;,’s from the 3
subspaces. We will now discuss the procedures to find H;,’s of each of the 3 individual
subspaces.

3.1.1 Omne Search

In this subspace, we need to find H,,;, between the proposed resynch word and all possible
bit patterns of length R embedded in single codewords. We will formally denote this
subspace as:

Sy = {cf[i(e}) 2 U(r)} (1)

where [(a) is a function that returns the length of the bit segment a; ¢¥ denotes codeword

i from VLC table k; and, 7 denote the candidate resynch word. So for each cf in S}, we do
the following:

1. Initialize H.

min,c

k to I(r).

i

k

2. Let the total number of shifts, or the number of iterations needed to find Hpin between c;

and r, be N = I(cF) —i(r) + 1.

3. Define function D(a,b) which returns the number of bit difference (Hamming distance)
between bit pattern a and b, assuming /(a) = I(b). Define ¢ as a length /() segment of cf
starting at bit N. Update H ;, .x as:

min,c¢{

H,

min,c

k= Inin[I{min,c’,c ’ D(éa T)] (2)

%

4. Decrement N by 1. If N > 0, goto step 3.

After performing above procedure for all codewords with [(c¥) > I(r), Huy;n, for this subspace

is the minimum of all H,;, ’s in 5.
(]



3.1.2 Two Search

We will define this subspace as the following:
Sp={c+¢f | UeH)+U) 2 1(r);
L(cf,cf") =1} 3)

where L(ab) returns 1 if ab is a permissible combination of codewords, 0 otherwise. * We
will employ a procedure similar to One Search for combinations of codewords in Ss:

1. Initialize Hmin,(cicﬂ;n) to I(r).
2. Let the number of shifts be N = I(cF) +1(c") —i(r) + 1.

3. Define ¢ as a length [(r) segment of combination of (cf,c}-”) starting at bit N. Update
H

min,(ci.C +ch”) as:

H

min, (c¥ +ct)

= min[H

min,(céﬂ—c;") ’

D(é,r)] (4)

4. Decrement N by 1. If N > 0, goto step 3.

Hin, of the subspace is the minimum of all H_;, (ck +Cm)’s in S,.
AN 5

3.2 Multiple Search

This subspace is defined as:
Sz ={cF+ ..+ ci' | if ¢} is embedded,
then I(ch) <I(r);
L(cf..c") =1} (5)

We first define a coherent block as a chosen codeword ¢ from the VLC tables such that
I(ch) < I(r). This is the center piece from which other codewords are concatenated to the
left and right. For every coherent block in the VLC tables, we do the following:

1. Initialize Hp, » to be I(r).

1Because of the predefined structure of ordering of codewords within bitstream, some combinations of
codewords may be illegal. For example, in MPEG4 video coding algorithm [3, 4], a codeword that indicates

no motion vectors in current macroblock cannot be followed by a motion vector codeword.
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2. Let the number of shifts be N = I(r) —I(ch) + 1, where c} is a coherent block.

3. Define 7 as a length [(ch) segment of r starting at bit N. Define 1 as the first N — 1 bits
segment of r. Define 73 as the last I(r) —I(c)) — N + 1 bits segment of 7.

4. We need to find Hcg’ ~» the minimum Hamming distance for the given coherent block cf
at the present shift N. To accomplish that, we need to find the combination of codewords
around the coherent block that yields the smallest Hamming distance. This is done by
recursion: (See Figure 1)

(a) Left Recursion — recursively create a legal combination of codewords to the left of coherent
block until its length > N — 1. Define ¢; as the last NV — 1 bits of this combination.

(b) Right Recursion — for the given combination of codewords, (the present left combination and
the coherent block), recursively create a legal combination of codewords to the right of coherent
block until its length > I(r) — I(ch) — N + 1. Define ¢3 as the first [(r) —I(ch) — N + 1 bits of
this combination.

(¢) Hamming distance of this combination is:
H' = D(é,71) + D(cb,72) + D(c3,3) (6)

After considering all possible combinations around the coherent block at present shift IV,
the minimum Hamming distance is the minimum of all the combinations:

Hgp y =min[H', H?,..] (7)

5. The minimum Hamming distance for the coherent block, cf, is updated:

Hmin,cf; = min[Hmin,cga Hcg,N] (8)

6. Decrement N by 1, If N > 0, goto step 3.

After performing the above procedure for all the coherent blocks in the VLC tables,
the minimum Hamming distance for subspace Sj is the minimum of all Hp, »’s in S;.

To show that the 3 subspaces span the search space, we need to show that any bit
patterns of length R within the bitstream is a member of the 3 subspaces defined. Let
a bit pattern P of length R, be a part of bitstream of a legal combination of codewords,
(¢;...c;). Let @ be the number of codewords in the combination. Clearly if () = lor2, then
PeS; or PeS, respectively; this follows from definition 1 and 3. If @) > 3, then V embedded
codewords, ¢’s,l(cy) < R. The reason is that if I(c;) > R, then ¢, cannot be embedded
and () can be at most 2. Therefore if () > 3, then PeS;. Therefore every bit pattern of
length R must be a member of the 3 classes, and thus the spanning of search space.
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Figure 1: Multiple Search Procedure

codeword | bit pattern
C1 10
Co 011
c3 010
Cq 00
To 1111
Ty 1010

Table 1: VLC Huffman Codewords and Resynch words

3.3 Resynch Word Analysis

Our search strategy relies on the assumption that there exists at least one resynch word
with H;, = 1 for the given set of VLC tables, for arbitrary large resynch word length R.
It can be shown that if the VLC tables is a set of prefix-free code tables with at least one
table being incomplete (at least one codeword entry not being used), then there exists a
resynch word with H;, = 1. In order to detect error in the erred bitstream, the VLC
tables are frequently constructed to be incomplete; an error is detected when one of the
unused codewords are found while decoding. Therefore, given the VLC tables are made
incomplete, our search strategy will always output an optimal resynch word in finite time.

To test the effectiveness of the optimal resynch word, we compare the performance of
the optimal resynch word, r,, to a randomly generated resynch word of equal length, r,.
We construct an arbitrary incomplete Huffman table for testing. (See Table 1).

We first create a bitstream by generating 1.5 million codewords. Each codeword is
—l(c;)
o
entry from the Huffman table. We insert the optimal resynch word for every 10 codewords

for resynchronization at the decoder. We pass the bitstream through a binary symmetric

chosen independently with probability P(c;) = where 2 is the length of the missing



Resynch | error bits | error codewords | skipped bits
To 3188 15871 32566
T 3525 39705 32904

Table 2: Comparison between Optimal Resynch Word and Random Resynch Word

Resync. Combined
Marker Mb. No. | QP Motion and DCT Data

Figure 2: Traditional bitstream organization within the video packet

channel with bit error probability of 1073. When decoding the bitstream, we detect an error
when the missing entry is found. We resynchronize for the next resynch word and continue
decoding. Same procedure is performed for the randomly generated resynch word. Table 2
shows the statistics that are collected from the experiment. We see that for a similar number
of error bits injected into the bitstream, the random resynch word results in more than twice
the number of erroneously decoded codewords. We also see that the number of skipped bits,
which are the number of bits decoder skips without decoding during resynchronization, is
similar for both cases. In the optimal resynch word case, the decoder correctly identifies
the resynch locations and error stops propagating. In the random resynch word case, the
decoder often confuses existing bit sequence as resynch words and continue to decode at
those locations. Error continues to propagate until missing Huffman entry is found again.
So although the number of skipped bits is similar in both cases, the optimal resynch word
has much better performance.

4 FError Concealment by Data Partitioning

As described in the Section 2, the amount of error concealment that can be accomplished
in the existing video coding standards is limited to copying macroblocks from the previous
frame. One of the main reasons for this is that between two resynchronization markers,
the video data is coded in units of macroblocks. In addition, the motion and DCT data
for each of the macroblock units is coded all together. Hence when the decoder detects
an error, whether the error occurred in the motion part or the DCT part, all the data
in the video packet (video data between the two resynchronization markers) needs to be
discarded. Due to the uncertainty of the exact location where the error occurred, we cannot
be sure that either the motion or the DCT data of any of the macroblocks in the packet
is not erroneous. Figure 2 shows the organization of the video data within a packet for a
typical video compression scheme. The Mb No. field denotes the Macroblock number of
the first macroblock of the video packet within the frame. The Q)P field denotes the default



COD MCBP(% CBPY1 DQUANT1 Encoded MV(SB DCT Data1 .....

Figure 3: Bitstream components of each of the Macroblocks within the video packet

Resync. Motion DCT
M arker Mb. No. | QP Data MBM Daa

Figure 4: Bitstream organization with data partitioning for the motion and the DCT data

quantization parameter used to quantize the DCT coefficients in the video packet.

Within the Combined Motion and DCT part, each of the Macroblocks (MBs) motion
vectors and the DCT coefficients are encoded. Figure 3 shows the syntactic elements for
each of the MB. This data is repeated for all the MBs in the packet. The COD is a 1 bit
field used to indicated whether a certain Macroblock is coded or not. The MCBPC'is a
variable length field and is used to indicate two things: 1) the mode of the MB such as
INTRA, INTER, INTER4V (8 x 8 morion vectors), INTRA+Q (the quantization factor is
modified for this MB from the previous MB) etc. 2) which of the 2 Chrominance blocks
(8x8) of the MB (16x16) are coded. DQUANT is an optional two bit fixed length field used
to indicate the incremental modification to the quantization value from the previous MB’s
quantization value or the default QP if this is the first MB of the video packet. CBPY
is a VLC that indicates which of the 4 blocks of the MB are coded. FEncoded MV’s are
the motion vector differences that are by a VLC. Note the motion vectors are predictively
coded with respect to the neighboring motion vectors and hence we only code the motion
vector differences. DCT(s) are the 64 DCT coeflicients that are actually encoded via zig-zag
scanning, run length encoded and then a VLC table. See [4, 3, 1] for more details.

Previous researchers have applied the idea of partitioning the data into higher and
lower priority data in the context of ATM or other packetized networks to achieve better
error resilience [5, 6]. However, this may not be possible over channels such as existing
analog phone lines or wireless networks where it may be difficult, if not impossible, to
prioritize the data being transmitted. Hence, it becomes necessary to resort to other error
concealment techniques to mitigate the effects of channel errors.

We present below a method for achieving much better error concealment properties in
the video coding schemes by the use of data partitioning. The basic idea is to partition the
data within a video packet into a motion part and a texture part separated by a unique
Motion Boundary Marker (MBM), as shown in Figure 4. Now the motion data for all the
macroblocks in the video packet comes first followed by the texture data.

Figure 4 shows the bitstream organization within each of the video packets with data
partitioning. Note that as compared to Figure 2 the Motion and the DCT parts are now
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Figure 5: Bitstream components of the motion data.

CBPY1 DQUANT1 CBPY2 DQUANT2 ..... DCT Dat:aLl DCT Datgl .....

Figure 6: Bitstream components of the DCT data.

separated by an MBM. In order to minimize the differences with respect to the conventional
method, in this methods we maintain all the same syntactic elements as the conventional
method and we organize them to enable data partitioning i.e., all the syntactic elements
that have motion related information are placed in the motion partition and the all the
syntactic elements that relate to the DCT data are placed in the DCT part. Figure 5
shows the bitstream elements after reorganization of the motion part and Figure 6 shows
the DCT part. Note that we now place COD, MCBPC and the MVs in the motion part
and relegate the CBPY, DQUANT, and the DCTs to the DCT part of the packet.

The MBM is computed from the motion VL.C tables using the search program described
above such that the word is Hamming distance 1 from any possible valid combination of
the motion VLC tables. An example of one such word we used is 1111 1000 0000 00001.
It is 17-bits long. This word is uniquely decodable from the motion VLCs and gives the
decoder knowledge of where to stop reading motion vectors before beginning to read texture
information. The number of macroblocks(NMB) in the video packet is implicitly known
after encountering the MBM. When an error is detected in the motion section, the decoder
flags an error and replaces all the macroblocks in the current packet with skipped blocks
until the next resynch marker. Resynchronization occurs at the next successfully read
resynch marker. If any subsequent video packets are lost before resynchronization, those
packets are replaced by skipped macroblocks as well. When an error is detected in the
texture section (and no errors are detected in the motion section) the NMB motion vectors
are used to perform motion compensation. The texture part of all the macroblocks is
discarded and the decoder resynchronizes to the next resynch marker.

If no error is detected either in the motion or the texture sections of the bitstream but
the resynch marker is not found at the end of decoding all the macroblocks of the current
packet, an error is flagged and only the texture part of all the macroblocks in the current
packet is discarded. Motion compensation is still applied for the NMB macroblocks as we
have a higher confidence in the motion vectors since we got the MBM.

Let M B_B denote the number of the first macroblock in the next packet and M B_A
denote the number of the first macroblock in the current video packet. An additional check
can be performed in the case when no error is detected in either the motion or the texture



part of the packet and the next resynch marker is found correctly. In this case, we check
if (MB_B - MB_A) is equal to NMB (computed from MBM). If not, we discard the data
in the next video packet (packet corresponding to M B_B) since there is a high probability
that M B_B is in error. The chance of an error in the current packet is small since we know
that we decoded NMB motion vectors and DCT data correctly and found the resynch
marker in the correct place. Contrast this with the case without data partitioning where
when this error condition occurs, we have to discard both the current packet and the next
packet since we can not rely on either of them.

Hence the two advantages of this data partitioning method are 1) we have a more
stringent check on the validity of the motion data since we need to get the MBM at the
end of the decoding of motion data in order for us to consider the motion data to be valid
and 2) in case we have an undetected error in the motion and texture but don’t end on
the correct position for the next resynch marker, we do not need to discard all the motion
data as we can salvage the motion data as it is validated by the detection of MBM.

5 Results

In this section we present results of testing the error resilient video codec with and without
data partitioning.

The technique has been rigorously tested over a wide variety of test sequences, bitrates,
and error conditions. In this paper we report simulation results obtained when testing a
set of sequences in QCIF format 2 at 24 and 48Kbps. Resynchronization words are inserted
into the bitstream at regular intervals. The test sequences, with corresponding coding
bitrates and video packet lengths, are presented in Table 3.

Test Sequence Target Bitrate | Packet Length
(kbps) (bits)
Silent 24 480
Container Ship 24 480
Mother&Daughter 24 480
Foreman 48 736
Coastguard 48 736

Table 3: The test sequences and corresponding coding bitrates and video packet lengths
used during the testing.

Because of the Motion Boundary Marker insertion in the video packet, the Data Par-
titioning technique results in a higher overall bitrate. The amount of overhead bitrate

2Frame size of 144 x 176 pixels, progressive scan, 4 : 2 : 0 subsampling format.
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depends from the frequency at which the video packets occur. The overhead bitrates re-
sulting from our testing conditions are reported in Table 4.

Test Sequence Bitrate Bitrate Data Partitioning
without Data Partitioning | with Data Partitioning Overhead
(Kbps) (Kbps) (%)

Silent 25.88 26.57 2.65%
Container Ship 22.02 22.63 2.77%
Mother&Daughter 24.36 25.08 2.97%
Foreman 50.17 51.18 2.01%
Coastguard 45.55 46.50 2.10%

Table 4: Bitrates with and without data partitioning.

The compressed bitstream is corrupted using random bit errors, packet loss errors,
and burst errors. A wide variety of random bit errors (BER of 10e2, 10e~3), burst errors
(of durations 1 msec, 10msec, and 20msec), and packet loss errors of varying lengths (96-
400bits) and error rates (10e™2, and 3 x 10e~?) have been tested. To provide statistically
significant results, 50 tests have been performed for each of the mentioned error conditions.
In each test, errors are inserted in the bitstreams at different locations. This is achieved
by changing the seed of the random number generators used to simulate the different error
conditions.

For each test, the Peak Signal to Noise Ratio (PSNR) of the video decoded from the
corrupted stream and the original video is computed. Then, the average PSNR of the 50
runs is computed for each frames in the sequence. To evaluate the performance of the
proposed technique, the average PSNR values generated by the error resilient video codec
with and without data partitioning are compared.

Figures 7 to 10 show the performance of the error resilient video codec with and without
data partitioning when the compressed video stream of the test sequence ” Coastguard” is
corrupted by some of tested error conditions. For the same error conditions, Figures 11 to 14
show the performance of the error resilient video codec with and without data partitioning
when the compressed video stream of the test sequence ” Mother&Daughter” is corrupted.

The data partitioning approach achieves an average of 2 dB performance gain over
the wide range of test sequences and error conditions. To confirm this conclusion, Table 5
to 12 summarize the performance of the error resiliente video codec with and without data
partitioning for the entire set of test sequences and error conditions. Each entry in the
table is the average of the PSNR (Luminance component only) of all the 100 frames across
all the 50 runs. The superior error concealment that is possible due to the data partitioning
showed consistently higher gains in performance over this entire range.

This data partitioning technique was proposed to the evolving ISO MPEG4 standard.
The technique has been rigorously tested over a wide variety of error conditions, test

11



PSNR vs Frame Number Plots for Container Ship Test Sequence and Error Condition 1
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Figure 7: Performance of the error resilient video codec with and without data partitioning
for Random Errors (BER 10e~3) on the test sequence ”Container”.
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PSNR vs Frame Number Plots for Container Ship Test Sequence and Error Condition 3
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Figure 8: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e 2, burst length 10ms) on the test sequence ”Container”.
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PSNR vs Frame Number Plots for Container Ship Test Sequence and Error Condition 5
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Figure 9: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e 2, burst length 1ms) on the test sequence ” Container”.

PSNR vs Frame Number Plots for Container Ship Test Sequence and Error Condition 8
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Figure 10: Performance of the error resilient video codec with and without data partitioning
for Packet Loss (variable length of each packet 96-400 bits, packet loss rate 3*10e %) on
the test sequence ” Container”.
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PSNR vs Frame Number Plots for Mother & Daughter Test Sequence and Error Condition 1
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Figure 11: Performance of the error resilient video codec with and without data partitioning
for Random Errors (BER 10e™2) on the test sequence ”Mother&Daughter”.

PSNR vs Frame Number Plots for Mother & Daughter Test Sequence and Error Condition 3
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Figure 12: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e 2, burst length 10ms) on the test sequence ” Mother&Daughter”.
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PSNR vs Frame Number Plots for Mother & Daughter Test Sequence and Error Condition 5
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Figure 13: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e~3, burst length 1ms) on the test sequence ” Mother&Daughter”.

PSNR vs Frame Number Plots for Mother & Daughter Test Sequence and Error Condition 8
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Figure 14: Performance of the error resilient video codec with and without data partitioning

for Packet Loss (variable length of each packet 96-400 bits, packet loss rate 3*10e~2) on
the test sequence "Mother&Daughter”.
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sequences and bitrates [7]. The results have been independently confirmed by two different
parties and based on this, the technique is now accepted as part of the evolving ISO MPEG4
standard [3, 4].

Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning

(dB) (dB)
Silent 24.81 25.92
Container Ship 25.58 28.30
Mother&Daughter 27.21 29.17
Foreman 19.34 20.19
Coastguard 20.74 22.02

Table 5: Performance of the error resilient video codec with and without data partitioning
for Random Errors (BER 10e 3).

Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning

(dB) (dB)
Silent 24.51 25.58
Container Ship 25.02 27.66
Mother&Daughter 27.05 28.51
Foreman 20.45 20.85
Coastguard 21.55 22.58

Table 6: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e~2, burst length 1ms).

6 Conclusions

In this paper we presented a data partitioning approach that results in much improved er-
ror concealment when transmitting compressed video over noisy communication channels.
We presented a bitstream organization and a syntax that maintains the compatibility of
the existing standards in terms of using the same VLC tables and syntactic elements but
achieves the gains of the data partitioning by a simple and efficient reordering of the bit-
stream components. We also presented the need for resynchronization markers to delineate
the boundary between the motion and the texture parts. The resynch markers need to be
unique from the valid bitstream data and at the same time have superior error resilience
properties. We presented an efficient search program that generates these resynch marker
in a efficient manner from a given set of VLC tables. We also exhaustively tested this data
partitioning approach with our resynch markers across a wide range of bit rates, sequences
and channel error conditions; we showed that on the average for a very small increase in

16



Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning

(dB) (dB)
Silent 28.77 29.17
Container Ship 30.83 32.03
Mother&Daughter 32.00 32.28
Foreman 25.18 24.46
Coastguard 26.06 26.32

Table 7: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e 2, burst length 10ms).

Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning

(dB) (dB)
Silent 29.74 29.88
Container Ship 31.22 32.56
Mother&Daughter 32.75 33.12
Foreman 26.65 26.01
Coastguard 27.46 27.50

Table 8: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e~2, burst length 20ms).

Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning

(dB) (dB)
Silent 29.49 30.23
Container Ship 31.86 32.80
Mother&Daughter 32.96 34.06
Foreman 26.86 27.26
Coastguard 27.00 28.65

Table 9: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e~3, burst length 1ms).
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Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning

(dB) (dB)
Silent 31.76 31.76
Container Ship 33.46 33.60
Mother&Daughter 35.54 35.69
Foreman 31.03 30.86
Coastguard 29.96 29.96

Table 10: Performance of the error resilient video codec with and without data partitioning
for Burst Errors (BER 10e~3, burst length 10ms).

Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning
(dB) with (dB)

Silent 29.75 29.98
Container Ship 31.83 32.66
Mother&Daughter 32.95 33.37
Foreman 25.23 25.35
Coastguard 25.86 26.78

Table 11: Performance of the error resilient video codec with and without data partitioning
for Packet Loss (variable length of each packet 96-400 bits, packet loss rate 1¥10e~2).

Test Sequence Average PSNR Average PSNR
without Data Partitioning | with Data Partitioning

(dB) (dB)
Silent 27.50 27.87
Container Ship 29.32 30.51
Mother&Daughter 30.29 31.16
Foreman 21.98 22.37
Coastguard 23.22 23.92

Table 12: Performance of the error resilient video codec with and without data partitioning
for Packet Loss (variable length of each packet 96-400 bits, packet loss rate 3*10e2).
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overhead (2-3%) the data partitioning approach improves the quality of the compressed
video data by over 2 dB. Based on this performance, this technology is now accepted as
part of the evolving ISO MPEG4 standard.

7 Appendix

To show that the 3 subspaces span the search space, we need to show that any bit patterns
of length R within the bitstream is a member of the 3 subspaces defined. Let a bit pattern
P of length R, be a part of bitstream of a legal combination of codewords, (c;...c;). Let Q
be the number of codewords in the combination. Clearly if ) = lor2, then PeS; or PeS,
respectively; this follows from definition 1 and 3. If () > 3, then V embedded codewords,
¢e’s,l(ck) < R. The reason is that if [(c;) > R, then ¢, cannot be embedded and @ can be
at most 2. Therefore if () > 3, then PeSs;. Therefore every bit pattern of length R must
be a member of the 3 classes, and thus the spanning of search space.
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