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ABSTRACT

While multiview video coding focuses on the rate-distortion

performance of compressing all frames of all views, we ad-

dress the problem of designing a frame structure to enable

interactive multiview streaming, where clients can interac-

tively switch views during video playback. Thus, as a client

is playing back successive frames (in time) for a given view,

it can send a request to the server to switch to a different

view while continuing uninterrupted temporal playback. Not-

ing that standard tools for random access (i.e., I-frame inser-

tion) can be inefficient for this application, we propose a tech-

nique where redundant representations of some frames can be

stored to facilitate view switching. We first present an opti-

mal algorithm with exponential running time that generates

such a frame structure so that the expected transmission rate

is optimally traded off with total storage. We then present

methods to reduce the algorithm complexity for practical use.

We show in our experiments that we can generate redundant

frame structures offering a range of tradeoff points with trans-

mission and storage, including ones that outperform simple I-

frame insertion structures by up to 48% in terms of bandwidth

efficiency for similar storage costs.

Index Terms— Multiview Video, Video Streaming, In-

teraction, Optimization Methods

1. INTRODUCTION

Multiview video consists of sequences of spatially related

pictures captured simultaneously and periodically by multi-

ple closely spaced cameras. Applications of multiview video

include free-viewpoint TV [1], 3D display, immersive video

conferencing, etc. Much of the previous research on mul-

tiview video focuses on compression: to design advanced

motion- and disparity-compensated coding techniques to en-

code all frames and all views of a multiview sequence in a

rate-distortion optimal manner [2, 3, 4].

In this paper, we focus instead on the problem of interac-

tive multiview video streaming (IMVS). In this problem, af-

ter one pre-encoded representation of a multiview sequence

is chosen and stored at the server, streaming clients interac-

tively request desired views for successive video frames in

time. Each client watches and requests one single view at a

time out of possibly many available views, meaning that the

requested data corresponds to only a small subset out of a

large set of available multiview data at the server. The encod-

ing is done once at the server for a possibly large group of

clients, each of which can navigate the content by playing it

back (in time) while switching views, thus resulting in a dif-

ferent traversal of views across time for each user. Our goal is

to provide a desired level of view interactivity with minimum

expected transmission bandwidth cost. The extent of view in-

teractivity is determined by the view switching period M , i.e.,

view switching can only take place at multiples of M frames.

A natural approach to enable this kind of interactive view

switching is to make use of standard random access tools,

i.e., making every M -th frame (in all views) an I-frame. Our

work is based on the observation that random access and view

switching are fundamentally different functionalities, and thus

efficient tools for one problem may not provide the best solu-

tion for the other. For random access to a frame, one can make

no assumptions about which frames are available at the de-

coder; independently coded I-frames are therefore well suited

for this purpose. View switching, on the other hand, arises

when temporal playback is not interrupted, i.e., successive

frames are displayed, but one wishes to switch point of view.

The key difference with respect to random access is that the

decoder has access to some of the frames immediately preced-

ing the requested frame (albeit from a different view) in time.

Thus, since consecutive frames in different views tend to be

correlated, using an I-frame for switching can be inefficient

in terms of bandwidth.

The main focus of our work is then to study alternatives

for view switching that are more bandwidth-efficient than

simple I-frame insertions. Note that our proposed tools do

not support random access, and thus we are not advocating

using these tools instead of random access tools such as pe-

riodic I-frames insertion. Rather, we propose to consider

view switching and random access as two explicitly different

functionalities, supported with different tools. It will then be

up to the system designer to select the appropriate setting for

a given application. For example, one may select a parameter

M for view switching and separately allow random access at

every M ′-th frame, where typically M ≪ M ′.

Since in the case of view switching we know that only

one of a few previous frames could have been decoded, it is



possible to use specific source coding tools such as redundant

P-frames [5] or distributed source coded frames [6, 7]. These

tools can lead to lower bandwidth costs (e.g., as compared

to inserting I-frames) but can require additional storage (e.g.,

the total storage required for insertion of multiple P-frame

representations).

Thus, the design of an optimal multiview representation

to permit interactive view switching involves a tradeoff be-

tween the expected transmission rate and the storage space

required to store the representation. For simplicity consider

the M = 1 case, i.e., we require the ability to switch views

at any time. One extreme case would be to encode all frames

of all views as I-frames, so that the server can simply send

the requested I-frame with no concern for inter-frame depen-

dencies. As an alternative, we can allow each picture to be

encoded and stored more than once (leading to an overall in-

crease in storage), and then use a starting I-frame plus suc-

cessive P-frames to encode every possible frame traversal in

time by the client. (Encoding different versions of a frame de-

pending on the decoding path is required to eliminate decod-

ing drift.) While this results in minimum transmission cost,

the storage required is prohibitive.

Clearly, more practical multiview representations lie be-

tween these two extremes that optimally trade off transmis-

sion and storage costs. In this paper, we develop an opti-

mization algorithm with exponential running time that gen-

erates an optimal frame structure trading off these quantities.

We then present methods to reduce the algorithm complexity

for practical use. In our experiments with several multiview

video datasets, we show that our algorithm can offer a range

of tradeoff points between transmission and storage costs, and

that the generated frame structures outperform the simple I-

frame insertion approach. In particular, we show that in some

cases our algorithm generates frame structures reducing ex-

pected transmission rate by up to 48% compared to I-frame

insertion approach, for similar storage costs.

Note that though we focus exclusively on the use of I- and

P-frames in designing our multiview representation in this pa-

per, other coding tools such as SP-frames [8] and distributed

source coding (DSC) [6] can also be effective for IMVS. In-

vestigation of these tools for IMVS is currently underway [7]

and will be integrated into our optimization framework as fu-

ture work.

The outline of the paper is as follows. We first review re-

lated work in Section 2. We then overview our IMVS system

and models in Section 3. We formulate the problem of opti-

mally generating redundant frame structure for IMVS in Sec-

tion 4 and present our algorithm in Section 5. We discuss our

experiments and conclude in Section 6 and 7, respectively.

2. RELATED WORK

As mentioned, much of the previous research in multiview

video has focused on efficient compression of all frames of all
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Fig. 1. A 4-view, 5-instant Example of Multiview Frame

Structure using Inter-view Prediction for Key Frames in [2].

views using motion- and disparity-compensated techniques

[2, 3, 4]. As in standard video, I-frames can be periodically

inserted, say every M ′-frame interval, to permit some level

of random access. Consider as an example the frame struc-

ture proposed in [2] and shown in Fig. 1, where every M ′-th

frame becomes a “key frame”, providing temporal random

access. In order to facilitate interactive view switching ev-

ery M frames, the structure in Fig. 1 could be generated with

M ′ = M . Clearly, for small M this leads to high bandwidth

usage, which is not desirable.

An alternative strategy is to select a compression-optimized

frame structure with M ′ ≫ M , and send to the decoder all

necessary frames for a specific view switching request (all

frames needed to reconstruct the requested frame). For ex-

ample, in Fig. 1, in order to switch from frame (3,3) to

frame (4,2), a server would send frames (1,2) through (4,2)

to the decoder, but only frame (4,2) would be displayed. We

call this strategy rerouting. Rerouting causes an increase in

transmission rate during a view switch. This is particularly

problematic when using structures optimized for coding effi-

ciency only, such as Fig. 1, since the number of frames that

have to be transmitted but are not displayed is potentially

large.

In contrast, in this paper we explicitly study the optimal

design of frame structures when limited rerouting is permit-

ted. More specifically, our formulation seeks to minimize

the expected transmission rate during an IMVS session for

given desired view interactivity and limited rerouting, at the

expense of a modest and controlled increase in storage. Given

the rate of increase in storage byte per dollar continues to out-

pace bandwidth byte per dollar, offering improved interactiv-

ity to users using more storage is a sensible endeavor.

Study of the conflicting requirements of interactivity and

compression is not new and has been considered in the context

of light fields [9] and virtual walkthroughs [10, 11], where

Intra- and Inter-coding are used to provide the said tradeoffs

given specified interaction models. Our IMVS work differs

in that we allow multiple representations of a single original

picture (at the expense of increased in storage), so that multi-



ple decoding paths demanding the same view frame can each

have their own versions of inter-coded frames, without resort-

ing to a more transmission-expensive intra-coded frame.

We formally posed the IMVS problem as a combinatorial

optimization in our earlier work [5], proved its NP-hardness,

and provided two heuristics-based algorithms to find good

frame structures without enforcing rerouting limits for IMVS.

This paper is a more thorough and analytical treatment of the

same problem with rerouting limits. We have also developed

two novel DSC techniques [7] for IMVS. Integration of these

tools into our framework is left for future work.

We note that the IMVS optimization to be defined in Sec-

tion 4 demands optimal constructions of both a coding struc-

ture and a transmission schedule for the structure—there lies

the intrinsic difficulty of the IMVS problem. IMVS funda-

mentally differs from previous scheduling works [12, 13, 14]

where a fixed pre-encoded structure is first defined based on

one criteria (e.g. compression efficiency), then an optimal

schedule is sought based on another criteria (e.g. expected

distortion at the streaming client) afterwards. A notable

exception is [15], where P-frames’ reference pictures (and

hence inter-dependencies) and their transmission schedules

are searched simultaneously within a short optimization win-

dow for single-view video. We differ in that we focus on

redundant representation of multiview video.

3. SYSTEM & INTERACTION MODELS
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Fig. 2. Interactive Multiview Video Streaming System

3.1. System Model

The system model we consider for our IMVS problem is

shown in Fig. 2. A Multiview Video Source simultaneously

captures multiple pictures of different views at regular in-

tervals. An example of a multiview sequence of two views

across four time instants is shown in Fig. 3(a). A Video Server

sequentially grabs the captured uncompressed pictures from

Multiview Video Source and encodes them either offline or

online. For example, in the online case, the encoder could

operate on non-overlapping windows of M ′ frames. After

selecting an optimized frame structure T , the Video Server

stores a single version of the sequence, with which the server

can serve multiple streaming clients. (An alternative ap-

proach of live encoding a path traversal tailor-made for each

streaming client’s interactivity is computationally prohibitive

if the number of clients is large.) Once a frame window of

M ′ time instants has been encoded, interactive clients can

begin requesting views of that window of consecutive time

instants, so that even in a live streaming scenario, clients only

experience a delay of M ′ frames from the original source.

3.2. View Interaction Model

In what follows, we will use the term frame to denote a spe-

cific coded version of a picture and use the term picture for the

corresponding original captured image. Thus, our system will

have redundant storage, in the sense that there may be mul-

tiple frames representing a given picture. We assume a view

interaction model where, upon watching any decoded version

of the picture F o
i,j , corresponding to time instant i and view

j, an interactive client will request a coded version of picture

F o
i+1,k of view k and next time instant i + 1, where view k

is between j − 1 and j + 1, with view transition probabil-

ity αi,j(k); we call this interactivity forward view switching1.

Another possible interactivity for multiview video is to freeze

video in time and switch view (static view switching); we con-

jecture that this interactivity can be efficiently supported by

novel usage of DSC [7] and is left for future work.

Note that a significant difference between our setting and

that of virtual walkthroughs [10, 11] is that in the latter case

the user is free to explore a static scene in all directions, while

here we play forward in time with only limited switching pos-

sibilities (i.e., among neighboring views).

Though our interactive model presumes a client’s desire

to switch view at single-frame level (M = 1), our model en-

compasses the more general case of a view switching period

M 6= 1. In the more general case, a “frame” Fi,j in our

model can represent M consecutive frames of view j (a care-

fully chosen I- or P-frame determined by our optimization

followed by M − 1 consecutive P-frames of the same view).

4. PROBLEM FORMULATION

We now formulate our IMVS problem as a combinatorial op-

timization problem. We first present necessary definitions in

Section 4.1. We then define IMVS formally in Section 4.2.

4.1. Definitions

4.1.1. Redundant Frame Structure

Suppose we are given a multiview sequence of K views and

N time switching instants2, and corresponding view transi-

tion probabilities αi,j(k)’s as discussed in Section 3.2. We

assume video starts with a single view Ko, and frame Fi,j can

1All video streaming systems today offer forward playback of video,

hence forward view switching is a natural extension.
2Given random access and view switching intervals M ′ and M , respec-

tively, where M ′ > M , we have N =
j

M′

M

k

− 1.
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Fig. 3. Example of Redundant Frame Structure. I- and P-

frames are drawn as circles and boxes, respectively. A solid

edge from Fi+1,k to Fi,j in (b) means a P-frame Fi+1,k is

predictively coded using reference frame Fi,j . A dotted edge

from Fi,j to Fi+1,k in (b) means a schedule G dictates tran-

sition to Fi+1,k if view k is requested after viewing Fi,j .

only transition to neighboring views Fi+1,k , max(1, j− 1) ≤
k ≤ min(K, j + 1). Fig. 3(a) shows an example multiview

sequence where K = 2, N = 3 and Ko = 1.

Given a multiview sequence, one can construct a redun-

dant frame structure T comprised of coded I- and P-frames,

denoted as Ii,j’s and Pi,j ’s, to represent the sequence and en-

able IMVS. Here a P-frame Pi,j is a predictively coded frame

using a selected Fi−1,k as predictor. Note that we do not spec-

ify whether the prediction is motion-based, disparity-based

or both; our framework aims only to capture the dependen-

cies among frames and not the particular encoding tool used.

A structure representing the example multiview sequence in

Fig. 3(a) is shown in Fig. 3(b).

A frame structure T forms a set of dependency trees with

I-frames as root nodes. In Fig. 3(b), there are two root nodes,

I0,1 and I3,2. T is redundant in that an original picture F o
i,j

can be represented by multiple frames, i.e., different Fi,j’s. In

Fig. 3(b), F o
2,1 is represented by two P-frames P

(1)
2,1 and P

(2)
2,1 .

Multiple Fi,j ’s are used to avoid coding drift.

4.1.2. Frame-to-frame Schedule

Associated with a frame structure T is a frame-to-frame

schedule G, which determines which frame Fi+1,k should

be sent by the streaming server, given that the viewer has

just observed Fi,j and requested view k. We denote a sched-

uled frame-to-frame transition as Fi,j
G
⇒ Fi+1,k. A feasible

schedule is one where each possible requested view k from a

frame Fi,j is mapped to a frame Fi+1,k satisfying the request.

If there exists a P-frame Pi+1,k predicted from Fi,j , then

schedule G will instruct server to send Pi+1,k since it is for

this transition that Pi+1,k was constructed in T .

If Pi+1,k predicted from Fi,j does not exist, then schedule

G identifies either an I-frame Ii+1,k or an alternative P-frame

Pi+1,k, one whose predictor is not Fi,j , to send. For example,

in Fig. 3(b), if viewer requests view 1 after observing P2,2,

schedule G will instruct server to send P
(1)
3,1 . For alternative

P-frames, rerouting costs are incurred; in this example, for the

viewer to correctly decode P
(1)
3,1 after observing P2,2, it will be

necessary to send P
(1)
2,1 , which will not have to be displayed.

Given a fixed frame structure T and view transition prob-

abilities αi,j(k)’s, an optimal schedule G∗ using T that min-

imizes the expected transmission cost can be derived. We dis-

cuss this towards the end of this section.

4.1.3. Storage Cost

For a given frame structure T , we can define the correspond-

ing storage cost, B(T ), by simply adding the storage required

by all encoded frames in T :

B(T ) =
X

Fi,j∈T

|Fi,j |, (1)

where |Fi,j | denotes the storage required by frame Fi,j . For

I-frames, the rate only depends on the frame itself (for a given

quantization choice) and so we denote |Ii,j | = rI
i,j . In con-

trast, the rate for P-frames depends also on the frame used

for prediction. Assuming Pi,j is encoded using as a predictor

Fi−1,k, the corresponding rate will be |Pi,j | = rP
i,j(k), that

is, we assume that |Pi,j | depends only on the view of the pre-

dictor Fi−1,k but not on other characteristics of Fi−1,k such

as size |Fi−1,k|. For example, we expect that a more accu-

rate prediction can be obtained if j = k, and so in general

rP
i,j(j) ≤ rP

i,j(k), for k 6= j. We will discuss how rI
i,j ’s and

rP
i,j(k)’s are generated incrementally in Section 6.

4.1.4. Transmission Cost

Given a structure T , we can define a corresponding trans-

mission cost for T as follows. Any feasible frame-to-frame

schedule G associated with T , together with frame transition

probabilities αi,j(k)’s, leads to an expected transmission cost

for T ; we define C(T ) for given T to be the minimum ex-

pected transmission cost possible for all feasible schedules

G’s using T . The optimal schedule G∗ given T can be found

using dynamic programming, which we discuss next.

The minimum expected transmission cost C(T ) is the

sum of the size of the starting I-frame |I0,Ko | and a recur-

sive transmission cost c(I0,Ko), where c(Fi,j) is the min-

imum expected future transmission cost given that a client

has just viewed frame Fi,j . c(Fi,j) in turn can be written as

a weighted sum of recursive transition costs Φ(Fi,j , k)’s of

possible transitions to other views k’s in time instant i + 1:

C(T ) = r
I
0,Ko + c(I0,Ko)

c(Fi,j) =

min(K,j+1)
X

k=max(1,j−1)

αi,j(k)Φ(Fi,j , k) (2)



The recursive transition cost Φ(Fi,j , k) is the smallest

possible expected transmission cost from frame Fi,j to any

suitable frame Fi+1,k and beyond; optimal schedule G∗

records this optimal selection of Fi+1,k given Fi,j to instruct

server during IMVS. For given Fi+1,k, it is a sum of rerouting

cost, φ(Fi,j , Fi+1,k), size of Fi+1,k, and subsequent recursive

transmission cost c(Fi+1,k) after transition:

Φ(Fi,j , k) = min
Fi+1,k

{φ(Fi,j , Fi+1,k) + |Fi+1,k| + c(Fi+1,k)}

(3)

The rerouting cost φ(Fi,j , Fi+1,k) is zero if Fi+1,k is an I-

frame or a P-frame predictively coded using Fi,j . Otherwise,

Fi+1,k is an alternative P-frame, and φ(Fi,j , Fi+1,k) is the

cost of sending enough additional frames for viewer to cor-

rectly decode Fi+1,k. Given that the viewer has just observed

Fi,j , we can assume viewer’s decoder buffer has all frames

along dependency path from Fi,j to root I-frame in T ; we de-

note such path as w(Fi,j). Let r(Fi,j , Fi+1,k) be the sub-path

necessary to decode Fi+1,k given frames on path w(Fi,j) are

available at decoder. We can now write φ(Fi,j , Fi+1,k) as:

φ(Fi,j , Fi+1,k) =

8

<

:

0 if Fi+1,k is I-frame

0 if Fi+1,k → Fi,j

|r(Fi,j , Fi+1,k)| o.w.

(4)

|r(Fi,j , Fi+1,k)| can be determined in one of two ways:

i) if paths w(Fi,j) and w(Fi+1,k) overlap from the same root

I-frame up to a diverging frame Fm,n (i.e., Fi,j and Fi+1,k

are in the same dependency tree), then r(Fi,j , Fi+1,k) is the

sub-path from Fm,n to Fi+1,k, excluding sub-path end nodes

Fm,n and Fi+1,k; or, ii) if paths w(Fi,j) and w(Fi+1,k) do

not overlap, then r(Fi,j , Fi+1,k) is the entire path w(Fi+1,k),
excluding Fi+1,k .

Continuing our earlier example, if a viewer requests view

1 after viewing P2,2, P2,2 can transition to P
(1)
3,1 with sub-path

r(P2,2, P
(1)
3,1 ) = {P

(1)
2,1 }, or transition to P

(2)
3,1 with sub-path

r(P2,2, P
(2)
3,1 ) = {P1,2, P

(2)
2,1 }. In this case, Φ(F2,2, 1) selects

the first option with rerouting cost φ(P2,2, P
(1)
3,1 ) = rP

2,1(1).

4.1.5. Reroute Limit

In addition, for practical purposes we can restrict the number

of frames required for rerouting || r(Fi,j , Fi+1,k) ||—frame

reroute limit—to be no larger than R frames:

|| r(Fi,j , Fi+1,k) || ≤ R (5)

R is the number of overhead frames a decoder must decode

in addition to the frame being displayed, and hence clearly a

small R is desired. If a particular reroute r(Fi,j , Fi+1,k) ex-

ceeds R, it will return ∞ to signal violation of frame reroute

limit to φ(Fi,j , Fi+1,k).

It is now easy to see now that c(I0,Ko) can be efficiently

evaluated using dynamic programming (DP): each time a re-

cursive call c(Fi,j) is made, the solution is stored (also known

as memoization [16]), so that subsequent calls to c(Fi,j) can

simply return the previously computed value. The sequence

of frame-to-frame transitions in (3) that minimizes c(I0,Ko)
is the optimal schedule G∗ for structure T .

4.2. Optimization Problem Defined

We can now formally define the optimal generation of redun-

dant frame structure for IMVS as a combinatorial optimiza-

tion problem: find a structure T in feasible space3 Θ that pos-

sesses the smallest possible minimum expected transmission

cost C(T ) while a storage constraint B̄ is observed. We de-

note this optimization problem as IMVS∗:

min
T ∈Θ

C(T ) s.t. B(T ) ≤ B̄ (6)

Though (6) slightly differs from the definition in [5], a

similar proof to [5] can be easily constructed to show that

IMVS∗ is NP-hard. We see why the optimization (6) is dif-

ficult: the computation of minimum expected transmission

cost C(T ) of a given structure T involves finding the optimal

schedule G∗, where the best frame-to-frame transition from

Fi,j to a selected Fi+1,k is determined only after examining

future transitions from Fi+1,k’s onwards to the end of struc-

ture. This makes the problem tightly coupled, and hence it

is difficult to devise “divide-and-conquer” type strategies to

first divide and then combine locally optimal structures (and

associated schedules) to form globally optimal ones.

Given the computational difficulty of (6), we focus next

on solving the corresponding Lagrangian optimization for

given Lagrange multiplier λ instead:

min
T ∈Θ

J(T ) = C(T ) + λB(T ) (7)

4.2.1. Alternative Expression for Lagrangian Cost

For ease of discussion in Section 5, the Lagrangian cost of

structure T in (7) will be written in terms of display probabil-

ities q(Fi,j)’s—the probabilities that frames Fi,j’s are sent

by server to be displayed at the viewer. We can compute

q(Fi,j)’s from front to back as follows, given the view tran-

sition probabilities, αi,j(k). Given optimal schedule G∗, we

know the frame Fi+1,k into which frame Fi,j will transition,

denoted as Fi,j
G∗

⇒ Fi+1,k , if viewer selects view k after Fi,j .

q(Fi,j) can be computed iteratively from front of the structure

to the back as:

3The feasible space is the set of structures that enable all permissible tran-

sitions from frame Fi,j to frame Fi+1,k , where transitions have been con-

strained depending on desirable application characteristics, e.g., j and k may

be constrained to be neighboring views.



q(F0,Ko ) = 1 (8)

q(Fi+1,k) =
X

Fi,j
G∗

⇒ Fi+1,k

q(Fi,j)αi,j(k)

Given the computed q(Fi,j)’s, the Lagrangian cost can be

written as a sum of frame display Lagrangian costs and rerout-

ing costs:

J(T ) =
X

Fi,j∈T

(q(Fi,j) + λ) |Fi,j | + (9)

+
X

Fi−1,k
G∗

⇒ Fi,j|Fi,j∈T

q(Fi−1,k)αi−1,k(j) φ(Fi−1,k, Fi,j)

To impart intuition in (9), consider the case when there

is no rerouting. A picture F o
i,j can be represented by a

large number X of P-frames, each having a small transmis-

sion cost q(P
(x)
i,j )|P

(x)
i,j |, but together constitute large storage

∑

x |P
(x)
i,j |. When λ is small, the penalty λ

∑

x |P
(x)
i,j | is neg-

ligible and multiple P-frames are attractive. When λ is large,

the penalty of large storage becomes costly, and a single I-

frame Ii,j representing picture F o
i,j with larger transmission

cost q(Ii,j)|Ii,j | but smaller storage |Ii,j | is preferable.

5. ALGORITHM DEVELOPMENT

We now develop algorithms to generate frame structure for

IMVS∗. We first focus on the simpler but nevertheless useful

case when frame reroute limit R = 0. We then generalize the

algorithm to the case when R ≥ 1.

5.1. IMVS
∗ Algorithm: R = 0

Setting R to 0 in (5) means there is no rerouting, and a frame

Fi,j must transition to either an I-frame Ii+1,k or a P-frame

Pi+1,k predictively coded from Fi,j . This case is appropriate

for thin client devices that cannot first decode multiple frames

before displaying a single frame. We first define an optimal

algorithm for IMVS∗ with exponential running time in Sec-

tion 5.1.1. We then discuss methods to reduce its complexity

for practical use in Section 5.1.2.

5.1.1. Optimal Algorithm

We first overview the algorithm to provide intuition. We

exhaustively search for an optimal structure and associated

schedule simultaneously one instant at a time for all instants

from front to back; we call a structure Ti(Gi) constructed

up to instant i, with schedule Gi attached, a scheduled struc-

ture. For a given scheduled structure Ti−1(Gi−1) built up

to instant i − 1, each frame Fi−1,k in Ti−1 has a display

probability q(Fi−1,k) computable using (8).

For R = 0, each frame Fi−1,k will transition to view

j with probability q(Fi−1,k)αi−1,k(j) either via a P-frame

Pi,j(k) predicting from Fi−1,k, or via an I-frame Ii,j , each

with different local Lagrangian costs at instant i. An optimal

scheduled structure Ti(Gi) at instant i given Ti−1(Gi−1) has

the smallest sum of: i) local Lagrangian costs at instant i, and

ii) future Lagrangian costs stemming from Ti(Gi).
We define the minimum Lagrangian cost Li(Ti−1(Gi−1))

from instant i onwards, given scheduled structure Ti−1(Gi−1)
constructed up to instant i−1, as the sum of local Lagrangian

costs li,j(Ti−1(Gi−1),gi,j)’s for all views j’s using local

schedules gi,j’s at instant i (each dictates the transitions from

frames Fi−1,k’s in Ti−1(Gi−1) to frame Fi,j of view j), and

future recursive cost Li+1(Ti(Gi)):

Li(Ti−1(Gi−1)) = min
gi,j

8

<

:

K
X

j=1

li,j(Ti−1(Gi−1), gi,j) + Li+1(Ti(Gi))

9

=

;

(10)

Note that local schedules gi,j’s must be searched exhaustively

to find the global minimum in (10).

Local Lagrangian cost li,j(Ti−1(Gi−1),gi,j)) for view j
is itself a sum of costs of P-frames and of I-frames scheduled

to handle transitions to view j from frames in instant i − 1:

li,j(Ti−1(Gi−1), gi,j) = l
I
i,j(Ti−1(Gi−1), g

I
i,j)+l

P
i,j(Ti−1(Gi−1), gP

i,j)
(11)

where gI
i,j and gI

i,j are the I- and P-frame local schedules

from frames Fi−1,k’s in Ti−1(Gi−1) to I-frame Ii,j and P-

frame(s) P
(x)
i,j ’s, respectively.

The local Lagrangian cost lIi,j(Ti−1(Gi−1),g
I
i,j) for I-

frame Ii,j is the sum of transition probabilities into Ii,j plus

λ times the size of Ii,j :

l
I
i,j(Ti−1(Gi−1), g

I
i,j) =

2

6

6

6

6

4

X

Fi−1,k

gI
i,j
⇒ Ii,j

q(Fi−1,k)αi−1,k(j) + λ

3

7

7

7

7

5

r
I
i,j

(12)

The local Lagrangian cost lPi,j(Ti−1(Gi−1),g
P
i,j) for P-

frames Pi,j’s, on the other hand, is the sum of each transition

probability into a unique P
(x)
i,j plus λ times the size of P

(x)
i,j :

lPi,j(Ti−1(Gi−1), gP
i,j) =

X

Fi−1,k

gP
i,j
⇒ P

(x)
i,j

(k),∀x

ˆ

q(Fi−1,k)αi−1,k(j) + λ
˜

rP
i,j(k)

(13)

Display probabilities for I-frame T I
i,j(Gi,j) and P-frames

T P
i,j(Gi,j) for view j in scheduled structure Ti(Gi) of instant

i in (10) can be derived using local schedules gI
i,j’s and gP

i,j’s:

T I
i,j(Gi,j) =

8

>

>

>

<

>

>

>

:

X

Fi−1,k

gI
i,j
⇒ Ii,j

q(Fi−1,k)αi−1,k(j)

9

>

>

>

=

>

>

>

;

(14)

T P
i,j(Gi,j) =

8

>

>

>

<

>

>

>

:

[

Fi−1,k

gP
i,j
⇒ P

(x)
i,j

(k),∀x

q(Fi−1,k)αi−1,k(j)

9

>

>

>

=

>

>

>

;



where
⋃

( ) denotes the enumeration of terms in ( ), and each

term in T I
i,j(Gi,j) and T P

i,j(Gi,j) is the display probability

q(Fi,j) of a unique frame Fi,j in scheduled structure Ti(Gi).
We make two observations here. First, it is clear from (14)

that there is at most one I-frame Ii,j , but possibly multiple P-

frames Pi,j(k)’s, for view j in Ti(Gi). Second, only frames

and their associated display probabilities in Ti(Gi) at instant i
are needed as arguments for recursive calls to the next instant

i + 1, instead of the entire scheduled structure Ti(Gi).
We claim that a call L0(I0,Ko) using (10) solves the La-

grangian (7) optimally. We state this result formally as a The-

orem below and then provide an intuitive proof.

Theorem 1 Initial call L0(I0,Ko) using (10) returns an opti-

mal solution to IMVS∗ for R = 0.

Proof of Theorem 1 All local schedules gi,j’s at each in-

stant i are searched in (10). Since scheduled structure Ti(Gi)
is constructed from Ti−1(Gi−1) and gi,j’s using (14), this

implies that (10) searches all scheduled structures. All sched-

uled structures include the optimal structure T with optimal

schedule G∗. Hence (10) returns the optimal solution. 2

Though optimal, (10) is nevertheless exponential in run-

ning time; for n potential transitions into instant i and view

j, there are O(2n) local schedules alone—each transition can

be served either with an I-frame Ii,j or a P-frame Pi,j . We

hence discuss strategies to reduce its complexity next.

5.1.2. Complexity Reduction 1

To reduce complexity in (10), one must drastically reduce the

exponential number of local scheduled structures that have to

be tested in order to find the optimal one. To aid us towards

that goal, we have the following lemma:

Lemma 1 If local Lagrangian cost of transitioning from X
frames in instant i − 1 to a single I-frame Ii,j at instant i
and view j is no larger than corresponding local Lagrangian

costs of transitioning to X P-frames P
(x)
i,j ’s, x = 1, . . . , X , at

instant i, then resulting global Lagrangian cost of transition-

ing to Ii,j is also no larger than resulting global Lagrangian

costs4 of transitioning to P
(x)
i,j ’s.

Proof of Lemma 1 We show that for any set of subtrees

stemming from P
(x)
i,j ’s, one can construct a corresponding

subtree stemming from Ii,j such that the resulting global La-

grangian cost is no larger. For given set of subtrees T (x)’s

below P
(x)
i,j ’s, we construct corresponding subtree S for Ii,j

by taking the union of T (x)’s; i.e., for each P-frame Py,z in

T (x), we add a corresponding Py,z of the same size to S if

4Lemma assumes each P-frame Pi,j encoded using predictor Fi−1,k is

of size rP
i,j(k) as described in Section 4.1.3.

(a) multiple P-frames & subtrees (b) I-frame & subtree

Fig. 4. Example of Union Construction of I-frame Subtree

S does not already have Py,z constructed. (See Fig. 4 for an

example.) First, we know |S| ≤ |T (1)| + . . . + |T (X)| since

union of sets is no larger then sum of sets. Further, trans-

mission cost from P
(x)
i,j to any frame Py,z in T (x) is the same

from Ii,j to its corresponding Py,z in S, hence the transmis-

sion cost of using S over T (x)’s can be no worse. Since by

assumption Ii,j alone induces no larger local Lagrangian

cost than P
(x)
i,j ’s, we conclude Ii,j and S also result no larger

global cost than P
(x)
i,j ’s and T (x)’s. 2

The corollary of Lemma 1 is that if transitioning from a

set of frames in Ti−1(Gi−1) to an I-frame Ii,j at instant i
results in no larger local Lagrangian cost than cost of tran-

sitioning to corresponding multiple P-frames Pi,j’s, then re-

cursive calls to later instants for multiple P-frames Pi,j ’s are

not needed. To reduce the number of searches, we combine a

greedy procedure with Lemma 1 as follows for transitions to

view j:

1. Assign all feasible transitions from frames in Ti−1(Gi−1) to

gI
i,j and compute global Lagrangian cost using (10).

2. Repeatedly move a frame transition from gI
i,j to gP

i,j that

yields the largest decrease in local Lagrangian cost and com-

pute global cost using (10). Stop when no such transition is

found.

3. Assign all remaining transitions in gI
i,j to gP

i,j and compare

local Lagrangian cost to step 2. If smaller, compute global

cost using (10).

The last step is needed since termination of step 2 does

not entail that the local Lagrangian cost of only P-frames

Pi,j’s and no I-frame Ii,j is larger than I-frame and some P-

frames. This procedure is applied to transitions to all views

j’s at instant i. Using this procedure for selecting local sched-

ules gi,j’s for scheduled structure Ti−1(Gi−1), the number of

next-level recursive calls for n transitions is now O(n).

5.1.3. Complexity Reduction 2

Though the number of next-level recursive calls from each

call instant is now linear due to procedure in Section 5.1.2,

the number of total calls is still exponential in the depth of



the recursion N . If N is large, then the algorithm is nonethe-

less computationally infeasible. Hence we propose a sliding-

window strategy of lookahead depth h < N as follows:

1. Let sliding index s = 0.

2. Perform algorithm IMVS
∗ for window of depth h; i.e., opti-

mize frames in instants i = 0 + s, . . . , h − 1 + s.

3. Commit frames of the first instant in solution in step 2 to

frame structure T .

4. Increment s by 1. Goto step 2.

We will show in Section 6.2.1 that the sliding-window

strategy produces good approximated results.

5.2. IMVS
∗ Algorithm: R ≥ 1

When R ≥ 1, a feasible transition from Fi−1,k in Ti−1(Gi−1)
to view j can now be mapped to an alternative P-frame Pi,j

not predictively coded from Fi−1,k , incurring a multi-frame

rerouting cost φ(Fi−1,k, Pi,j). As a result, multiple tran-

sitions from multiple frames in Ti−1(Gi−1) can now be

mapped to a single P-frame Pi,j .

To properly account for rerouting to alternative P-frames,

P-frame local schedule gP
i,j is now divided into a set of

sub-schedules gP
i,j(x)’s, where P

(x)
i,j is the key P-frame

where frames in each sub-schedule gP
i,j(x) are rerouted,

and F
(x)
i−1,v(x) of view v(x) is the predictor of P

(x)
i,j . The local

Lagrangian cost li,j(Ti−1(Gi−1),g
P
i,j) is now:

l
P
i,j(Ti−1(Gi−1),g

P
i,j) =

X

x

li,j(Ti−1(Gi−1),g
P
i,j(x)) (15)

where the local Lagrangian cost for sub-schedule gP
i,j(x),

li,j(Ti−1(Gi−1),g
P
i,j(x)), is:

=

2

6

6

6

6

4

X

Fi−1,k

gP
i,j

(x)

⇒ P
(x)
i,j

q(Fi−1,k)αi−1,k(j) + λ

3

7

7

7

7

5

rP
i,j(v(x)) + (16)

+
X

Fi−1,k

gP
i,j

(x)

⇒ P
(x)
i,j

q(Fi−1,k)αi−1,k(j) φ(Fi−1,k , P
(x)
i,j )

Note that the sum of frame display Lagrangian costs and

rerouting costs in (16) is analogous to (9).

It can be shown that given the new definition of local P-

frame Lagrangian cost li,j(Ti−1(Gi−1),g
P
i,j) in (15), one can

still use (10) to exhaustively search through all local sched-

ules gi,j’s at each instant i and find the optimal scheduled

structure for R ≥ 1 as well. But given the complexity of

searching all scheduled structures as previously discussed, we

instead generalize our previous fast IMVS∗ algorithm for R =
0 to the case when R ≥ 1 as follows. For each view j:

1. Assign all feasible transitions from frames in Ti−1(Gi−1) to

gI
i,j and compute global Lagrangian cost using (10).

2. Repeatedly move a transition from gI
i,j either to an exist-

ing sub-schedule gP
i,j(x), or to a new sub-schedule, such that

the resulting decrease in local Lagrangian cost is maximized.

Compute the corresponding global cost in (10). Stop when

no such transition is found.

3. Assign all remaining transitions in gI
i,j to existing or new

sub-schedules gP
i,j(x)’s while minimizing Lagrangian cost

locally, and compare to step 2. If smaller, compute global

cost using (10).

The sliding-window strategy described in Section 5.1.3

for R = 0 is used here as well for R ≥ 1 when the depth

of the recursion N is large.

6. EXPERIMENTATION

6.1. Experimental Setup

Fig. 5. Example Multiview Screen-shots of warsow.

To gather multiview video data for our experiments,

we downloaded three consecutive views of the 100-frame

ballroom sequence from [17] captured at 25fps and down-

scaled to QCIF (176 × 144). In addition, we modified the

game client of Internet game warsow [18] to render and

capture a 100-frame sequence of three views simultaneously

at 10fps, each displaced by 30o. Example screen-shots of

warsow is shown in Fig. 5. The motivation is to supply two

very different data sets: the former is real data with closely

spaced cameras at high frame rate, while the latter is synthetic

data with virtual cameras far apart at low frame rate.

For each sequence, we generated encoding rates rI
i,j ’s and

rP
i,j(k)’s as inputs to our IMVS∗ algorithm using H.264 JM

version 12.4 [19] as follows. Each rI
i,j was obtained when we

encoded picture F o
i,j as I-frame. rP

i,j(j)’s were obtained when

we encoded picture F o
i,j in a single-view sequence where each

Fi,j was motion-compensated from Fi−1,j . For rP
i,j(k)’s, k 6=

j, we first generated four zigzagged sequences as follows:

1. zlc = {I0,1, P1,2, P2,1, P3,2, . . .}.

2. zcr = {I0,2, P1,3, P2,2, P3,3, . . .}.

3. zcl = {I0,2, P1,1, P2,2, P3,1, . . .}.

4. zrc = {I0,3, P1,2, P2,3, P3,2, . . .}.

For each rP
i,j(k), we simply located the zigzagged stream z

that contained the sub-sequence {Fi−1,k, Pi,j} and assigned

the corresponding coding rate.



For transition probabilities αi,j(k)’s, we assume frame

Fi,1 remains at the same view Fi+1,1 with probability 1 − α,

and transitions to neighboring views Fi+1,0 and Fi+1,2 with

probability α/2 each. Frame Fi,0 (Fi,2) transition to the sin-

gle neighboring view Fi,1 with the same probability α. We

assume α = 0.1 throughout our experiment.

6.2. Experimental Results

6.2.1. Approximation Using Sliding-Window Strategy
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Fig. 6. Tradeoffs between Expected Transmission Rate and

Storage Per Picture for ballroom using Sliding-window

Strategy: M ′ = 27, M = 3.

We first examine how closely the fast sliding-window

strategy (fast) discussed in Section 5.1.3 approximates the

IMVS∗ algorithm without the sliding window (orig). Using

ballroom as a test sequence, for random access period of

M ′ = 27 and switch period of M = 3—hence optimization

window depth of N =
⌊

27
3

⌋

− 1 = 8—we generated tradeoff

points between expected transmission rate and storage re-

quired per picture using orig, shown in Fig. 6. Lagrangian

multiplier λ was swept from 0.01 to 10.24 to induce different

tradeoffs. We also generated tradeoff points for fast when

the lookahead depth was h = 5. We see that the convex hull

of fast closely resembled that of orig, demonstrating that

the sliding-window strategy performs numerically close to

the original in practice.

6.2.2. Algorithm Performance Comparison

For algorithm comparison, using first a random access pe-

riod of M ′ = 30 frames and switching period of M = 1
frames, we plotted the tradeoff points for our IMVS∗ algo-

rithm for the ballroom and warsow sequences in Fig. 7(a)

and 7(b), respectively. In time, this corresponds to random ac-

cess periods of 1.2s and 3.0s and switching periods of 40ms
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Fig. 7. Tradeoffs between Expected Transmission Rate and

Storage Per Picture for IMVS∗: M ′ = 30, M = 1.

and 100ms for ballroom and warsow, respectively. We

also plotted the performance of the random access approach

(RA-I) where I-frames were inserted at all switching points

for view switching. We first see that RA-I was represented

by a single point; because the I-frame insertion algorithm was

fixed, it had one corresponding fixed transmission and storage

cost, and therefore could not take advantage of extra storage

capacity if available to lower transmission cost.

Second, we see that our algorithm found tradeoff points

that were to the lower left of RA-I; i.e., our IMVS∗ algo-

rithm generated frame structures that offered lower transmis-

sion rates than RA-I and required smaller storage. This is

particularly noticeable for ballroom, where our algorithm

generated a frame structure with 48% smaller expected trans-

mission rate while requiring smaller storage.

Third, unlike RA-I our algorithm offered a range of

tradeoff points to take advantage of extra storage when avail-

able to further decrease expected transmission rate. In par-

ticular, at twice the storage of RA-I, our algorithm gener-

ated frame structures with 63% and 46% smaller expected

transmission rate than RA-I for ballroom and warsow,

respectively. The performance improvement of IMVS∗ over

RA-I was more dramatic for ballroom than warsow; we

conjecture that this was due to relatively smaller sizes of P-

frames compared to I-frames in ballroom, as a result of the

higher capturing frame rate and closely spaced cameras.

Fourth, we see that as the rerouting limit R increased from

0 to 1, the performance of our algorithm improved. The im-

provement was more noticeable in ballroom, and when

storage required was small. This is intuitive because when

storage is abundant, redundant P-frames will tend to be se-

lected over rerouting due to their smaller transmission costs.

We repeated the experiments when the switching period

was increased to M = 3. The random access periods of 1.2s

and 3.0s for ballroom and warsow remained the same,

while the switching periods were now 120ms and 300ms, re-

spectively. The corresponding results for the two sequences
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Fig. 8. Tradeoffs between Expected Transmission Rate and

Storage Per Picture for IMVS∗: M ′ = 30, R = 0.

when M = 3, as well as when M = 1, are shown in Fig. 8(a)

and 8(b) when no rerouting is permitted. While the trends

we observed earlier also hold here, we can make a couple of

additional observations. First, the transmission and storage

costs overall were lower than results for M = 1; this is ex-

pected since larger switching period means P-frames predic-

tively coded using previous frames of the same view, which

are very coding-efficient, are used until the next switching

point.

Second, the performance gain over RA-I is less dramatic

(though still significant) compared to the case when M = 1.

In particular, at twice the storage of RA-I, IMVS∗ gener-

ated structures lowering expected transmission rate by 40%
and 24% compared to RA-I for ballroom and warsow,

respectively. This is because both RA-I and our generated

structures needed to send M − 1 P-frames predictively coded

in the same view until the next switching point, diluting the

benefit of our view switching optimization.

We conjecture that other coding tools beyond I- and P-

frames, like SP-frames [8] and Distributed Source Coding [6]

would be very useful for IMVS for large values of M . In-

vestigation and integration of these coding tools into our op-

timization framework is ongoing [7].

7. CONCLUSIONS

In this paper, we argued the important functional differ-

ence between view switching and random access in interac-

tive multiview video streaming, and presented an algorithm

that generates good redundant frame structures to enable

bandwidth-efficient view switching. Our algorithm trades off

expected transmission cost with total storage using different

Lagrange multiplier values, and can impose frame reroute

limit to limit the decoding complexity of a streaming client.

Our results show that the generated frame structure outper-

formed the periodical I-frame insertion strategy commonly

used for random access.
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