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Abstract—Recent video coding standards such as H.264 offer can be made available, for example, as a result of application
the flexibility to select reference frames during motion estimation induced overlay routing or network supported source-based
for predicted frames. The application of traditional Lagrangian ting. For wireless networks, mobile terminals can conceiv-
approach to the reference frame selection problem suffers from - . .
either bounded worst-case error but high complexity, or low ably be conne_cted to two nea_rest base-statlon_s via mul'FlpIe
complexity but undetermined worst-case error. In this paper, we antennas, or simultaneously using two network interfaces into
propose a dynamic programming based optimization algorithm two orthogonal wireless technologies such as wireless LAN
that admits trade-offs between computation complexity and and 3G wireless networks. One obvious advantage of multi-
worst-case error using advanced rounding techniques. We also aihs s the potentially larger combined transmission rate in the
evaluate the performance of the algorithm in the context of .
multi-path streaming over QoS-enabled networks. Results show case when each path is rate Constra}n@dlother adva”tage_ .
significant streaming quality improvement over a static reference €an be better fault tolerance, where given the paths are disjoint
frame selection scheme. and possess different and uncorrelated loss characteristics,
simultaneous failure of both paths is less likely than a single
path scenario.

The subject of this paper is to exploit theference frame  We assume the application requires very low network de-
selection(RFS) feature of modern video coding standards tivery delay, to the extent that it cannot tolerate even one end-
improve streaming quality over lossy networks. New videtm-end packet retransmission. One reason can be that a small
coding standards such as H.264 [1] offer many coding flegtayback buffer is employed at the client side, together with
ibilities for better coding and streaming performance. Orthe relatively large transmission delay of wireless links such
of these flexibilities is flexible motion estimation support oas 3G cellular links [3], means that any retransmitted packet
RFS, where each predicted frame can choose among a numiman client request will miss its playback deadline and hence
of frames for motion estimation. Often at the cost of lowebe rendered useless.
coding efficiency, the ability to choose among multiple frames Given the described RFS feature of video coding and the
in the past for motion estimation can potentially avoid erraretwork streaming scenario under consideration, the central
propagation due to packet loss. problem is the following: for each predicted frame in a to-

Given the available RFS feature of video coding, our gohk-encoded video sequence, how to: i) select an appropriate
is to tailor the reference frame selection for a given networkference frame for motion estimation, and ii) a QoS level and
streaming scenario. In this paper, we consider the scenaridr@insmission path for packet delivery, such that the overall
multi-path streaming over QoS networks. By QoS networksireaming performance is optimized? To this end, standard
we mean networks which provide network layer QoS suppdragrangian based optimization procedures can be employed.
like [2], where IP packets experience different packet lo$déevertheless, there is no general mechanisms to simultane-
rates at different service classes and different costs per packessly bound the running time of a Lagrangian optimization
Here, we assume a cost constraint per transmission path. &od bound the worst-case approximation error. As a result,
networks without network-level QoS such as the Internet, etliere are practical challenges in using such optimization
hosts can mimic a QoS network by applying forward errachemes for low-latency, quality-guaranteed media delivery.
correction (FEC) of different strengths to different group$his paper offers an alternative optimization strategy, based
of packets. We consider a transmission rate constraint meradvanced integer rounding techniques, that provides a com-
transmission path in this case. We consider both cases unplexity and worst-case error bounded algorithm. Moreover,
the same QoS network formulation in the paper. the algorithm is complexity scalable, where the quality of

By multi-paths, we mean two (or more) delivery paths 1in some cases. Using two transmission paths simult W d
are simultaneously available to end hosts for packet delivey; s bace B rorforonca o assumo hors

] : ’ ! ) Verall performance because of mutual signal interference. We assume here
during a streaming session. For wired networks, multi-pathit the paths are orthogonal and therefore additive.

I. INTRODUCTION



the obtained approximate solution can be traded off with tig@oS and path for multi-path streaming over QoS-enabled
algorithm’s running time. networks; and, ii) in addition to the previously developed
The rest of the paper is organized as follows. After diglynamic programminglimension roundingechnique, to be

cussing related work in section I, we formulate the optimizatiscussed in Section V-A, a new rounding technique called
tion problem and provide a solution in Section Il and IVjndex roundings introduced in Section V-C, and the two types
respectively. A set of integer rounding-based procedures dabrounding techniques are compared and combined in Section
reduce the complexity of the algorithm at the cost of solutio#D. The new rounding technique will be shown to be superior
quality are discussed in Section V. Results and conclusion a@meperformance in Section VI-D.

resented in Section VI and VII, respectively.
P P Y IIl. PROBLEM FORMULATION

Il. PREVIOUS WORK Regardless of whether network QoS is obtained via network

H.264 [1] is a new video coding standard that has demofechanisms such as DiffServ [2] or application-level mech-
stratably superior coding performance over existing standa®@@sms such as FEC, one important property is that different
such as MPEG-4 and H.263 over a range of bit rates. A0S service levels will likely lead to different packet loss
part of the new standard definition is the flexibility of usingates, which is the primary network impairment we consider
any arbitrary frame to perform motion-estimation, originallyn this work. We begin with a discussion of the source and
introduced as Annex N in H.263+ and later as Annex U ifRetwork models, in Section IlI-A and 11I-B, respectively. Given
H.263++. Early work on optimizing streaming quality usinghe assumed models, we discuss the objective function and
reference frame selection includes [4] [5]. Our work differ§ormalize the optimization in Section I1I-C.
from previous works by employing a Qompleglty-scglablg_ Directed Acyclic Graph Source Model
optimization procedure and also applying optimization to

jointly perform reference frame (RF) and transmission path W€ assume an/-frame video sequence is coded as an intra-
(TP) selection. coded frame (I-frame) followed b/ — 1 inter-coded frames

A related research topic is multiple description (MD), Wherg}frames_). We model_the decoding dependencies of the video
video is encoded into two (or more) “descriptions”, and eadfsing @ directed acyclic graph (DAG) mod&l= (V, £) with
description can be decoded independently of the other. PGIeX setV,|V| = M and edge sef, similar to one used
example, an MD stream can be obtained by coding the ev@nl7]- Specifically, the streaming media is represented by a
frames into stream 1, and coding the odd frames independeri@/ection of framesF;'s, i € {1,..., M}. Each frameF;,
from the even frames as stream 0. In [6], it is observégPresented by ?‘, node & V has a set 9“ outgoing Edges
that when different descriptions are transmitted using diffefi € € 0 nodes;’s. Frame: can use framg as reference iff
ent network paths, it is possible to apply error-concealmerifi.i € €- We definez; ; to be the binary variable indicating
techniques at the decoder so that drift error due to losSiEEtherE; usesk; as reference. Or equivalently, givenwe
can be greatly reduced. Specifically, such error-concealm@@{inezi, as:
techniques can be applied as long as the losses on the different _ [ 1 if F, usesF; as RF Vi€ {Vlei; €&}
paths are not concurrent. One advantage of the MD scherfie/ = { 0 otherwise
is simplicity, since path selection is trivial, and compression (1)
can be performed independently of the network conditionBecause a P-frame can have only one reference frame, we
It should be noted that the joint reference frame and patlave the followingRF constraint

selection subsumes the above MD example as a special case, B ) ) 5
at the expense of additional computation. . Z ij =1 VieV,i#l @
Unlike many previous rate-distortion optimization algo- {gleis el

rithms [7] [5] [8] which rely on the use of Lagrange mul- We assume that only frames in the past are used for
tipliers, our optimization is unique in that we use an integeeference, i.eVe; ; € £,4 > j. Further, since in practice it
rounding technique that allows trade-off between computati@ inefficient to use a reference frame too far in the past, we
complexity with the quality of the obtained solution. Thiswill limit the number of candidate reference frames for any
allows us to estimate the quality of the obtained solution givegiven predicted framé; to be F,,.x < |V|. We also assume
fixed computation resources. Conversely, given a target qualityly frame 1 is intra-coded, and henge; ; € £. An example

of the solution, we can estimate the amount of resourcea DAG model of a 4-frame sequence is shown in Figure 1
needed for the tasks. with E .« = 2.

Among our previous work, we have shown that integer We letr; ; be the integer number of bytes in framevhen
rounding-based complexity scaling can be applied to refererfceme j is used as reference. This is an approximation since
frame / QoS selection for uni-path streaming over QoS-enabld number of bytes depends not only on spegcifichosen,
networks [9], and to reference frame / path selection for multbut also the reference frame for framieand so on. The byte
path streaming over best-effort networks [10]. This paper issize of the starting I-frame is; ;. We assume a sparsate
noted improvement on our previous work in two importannatrix r of size O(M?) is computeda priori as input to
regards: i) we are simultaneously selecting reference frantlee optimization algorithm (sparse because each row has at



3 42 delivered drop-free. We writg < i if frame ¢ depends on
frame 7. Mathematically, maximizing the objective function

1 ) 3 4 means computing:
M
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Fig. 1. Directed Acyclic Graph Source Model b =1 g% {klej re€} (4)

The problem is then: given pre-computed rate matrigeliv-
ery success probability functign, (¢;,r; ;) and cost function
c(gi), find variables{z; ;}, {¢;} and{¢;} that maximize (4)
while satisfying the integer constraint (1), the RF constraint
B. Network Model (2) and the network resource constraints (3). This formally
Regardless of whether QoS is established using networkdgfined optimization is called thBF / QoS / Path selection
application level mechanisms, we assume a set of QoS seryigeblem(RQP selection).
levels @ = {0,1,...Q} to be available for all accessible
transmission paths. We allow each frarfigto select a QoS IV. A DYNAMIC PROGRAMMING SOLUTION
level ¢; € Q and a transmission path € {0,1}. The special  Gijven the RQP selection problem is NP-hard (proof similar
QoS service level; = 0 denotes the case whefi is not tg one in [9]), we first present a pseudo-polynomial algorithm
transmitted at all. For given observable network ConditiOIﬂ,']at solves the optimization prob|em 0pt|ma||y but in exponen-
QoS levelg;, transmission patft; and frame sizer; ; will  tjal time. Methodologies to tradeoff complexity with solution
induce a frame delivery success probability(g:, ;) € R, quality are discussed in later sections.
where0 < p,(gi,ri,;) < 1. There is dependence @) on  The optimization algorithm composes of two recur-
r;,; because a large frame size will likely negatively impact thgye  functions, Sum(i, Ry, R;) and Prod(j,i, Ry, Ry).
delivery success probability of the entire frame as more dad@, (i, Ry, R,) returns the maximum sum of products of
is pushed through the network. It should be noted beforehag\gms in (4) for a subset of framdg to F}, given R, and
that the operation and the optimality of our algorithm arg, network resource units are available for path 0 and 1,
independent of the form ab;, (¢;, 7 ;)- respectively.Prod(j, i, Ry, R1) returns the inner product of
1) Network Resource Constraintike any resource allo- syms term in (4) forF; — probability that F; is decoded
cation problems, we impose constraints on the amount @rectly — given R, and R; network resource units of
resource we can use, which in this case is the aggregate abijfin 0 and 1 are optimally distributed frod, to F;. A
to protect the)M -frame sequence per transmission path frogh| to Sum(M, Ry, R1) will yield the optimal solution.
network losses using QOS. Assuming a QoS assignmentgy (i, Ry, Ry) and Prod(j, i, Ry, R1) are shown in pseudo-
results in a cost of(¢;) € R per byte, the constraints for code in Figure 2 and 3, respectively. We now examine the

most Ey,. entries). We will discuss how is generated in
our experiment in section VI.

path0 and pathl are respectively: pseudo-code closely.
M
Z Z zijolg) 1—t)ri; < Ro A. DissectingSum(i, Ro, R1)
=1 {jlei €EE} The recursive case (line 10-19) is essentially testing ev-

M ~ ery combination of RF, QoS and path fé; for the max-

> > wije@)tivi; < Ri (3 imum sum. The results of this search are stored in the

i=1 {jle; €€} [i, Ry, R1] entries of the four dynamic programming (DP)

In the case of network-level QoS, (3) represents a cddples,.DPsuml ], DPqos| ], DPind[ ] and D Ppathl ] (line

constraint per path, so that total cost to the user)deframe 20-21). DP tables are used so that if the same subproblem
time for path 0 and 1 do not exced and?; monetary units, is called again, the already computed result can be simply
respectively, whereRy, R; € Z. In the case of application- returned (line 1-2). The two base cases (line 3-9) are the
level Q0S, (3) represents a bit rate constraint per path, whépllowing: i) when one or both of the resource constraints are
c(g;) is the overhead in channel coding given QoS layel violated, in which case we returAco to signal the violation;
and constraint parametef®, and R; can be obtained using and, ii) when the root node (I-frame) is reached. Because root
congestion control algorithms like [11], so that the total outpiiode has no RF to choose from, the search for optimal solution
bytes for M-frame time for path 0 and 1 do not exced& (line 6-8) is much simpler.

and R, bytes, respectively. Assuming Prod(j,i, Ry, R1) does not introduce fur-
o ) ther complexity (to be discussed), the complexity of
C. Objective Function Sum(M, Ry, Ry) is bounded by the time required to construct

The objective function we selected is the expected numbiae DP table of dimensiof! « R, * R;. To fill each entry, we
of correctly decoded frames at the decoder. Each fraimes call functionSum(i, Ry, R1) as shown in Figure 2, which has
correctly decoded ift; and all framesF)’s it depends on are O(Enax@) operations to account for the twor loops from



function Sum(i, Ro, R1) function Prod(j,%, Ro, R1)

1. if ( DPsumli, Ro, R1] is filled ) /| DP case 1. if (Ro<0)or(R1<0) /I base case 1
2. { returnDPsumli, Ro, R1]; 2. { return0; }
3.if (Ro<0)or(R1<0) /l base case 1 3.if (j=1=1) /I base case 2
4. { return—oo; } 4. { returnDPsuml[l, Ry, R1];
5. if (i=1) /I base case 2 5. ( X,Y ) = ( DPgqosli, Ro, R1], DPind[i, Ro, R1] );
6. { so0:=max,e(Q|e(g)r1.1<Ro} PO(TT1,1); 6. if (j<i) Il recursive case
7. s1=MaXge(Qle(q)ry, <Ry} P1(ET11); 7. {if ( DPpathli, Ro, R1] = 0)
8. returnmax(sg, s1); 8. { P:=Prod(j,i—1,Ro — c(X)riy,R1); }
9. } 9. else
10.S := 0; Il recursive case 10. { P := Prod(j,i —1,Ro, R1 — c(X)rivy); }
11. for eachj such thate; ; € &, 11} _
12.{ for eachq € Q, 12. else =i
13. { so := Sum(i —1,Ro — c(q)ri,j, R1) + 13.{'if ( DPpathli, Ro, 1] =0)
po(g,7i,j) Prod(j,i — 1, Ry — c(q)rs j, R1); 14. { P:=po(X,ri,y)* Prod(Y,i — 1, Ro — c(X)ri,y, R1); }
14. sy :=Sum(i — 1, Ro, R1 — c(q)ri5) + 15. else
p1(q,r4i,5) Prod(j,i — 1, Ro, R1 — c(q@)Ti,5); 16. { P:=pi(X,7ri,y) * Prod(Y,i—1, Ro, Ri —c(X)rs,y); }
15.  s:= max(so, s1); 17.}
16. t:=(so>s1)? 0:1; 18. returnp;
7. if (s>89)
13} }{ (5, X,Y,2) = (s,4,5,1);  } Fig. 3. DefiningProd(j, i, Ro, R1)
20. ( DPsumli, Ro, R1], DPqos[i, Ro, R1] ) = ( S, X );
21 ( DPind]i, Ro, R1], DPpathli,Ro, R1] ) := (Y, Z );
22. returns; V. ROUNDING-BASED COMPLEXITY SCALING

Maximizing objection function in (4) subject to constraints
(3) is often too complex to be practical. In this section, we
describe two mechanisms for constructing alternate constraints

that allow trade-off between computation and solution quality.

ltlr?e 11_1? |r!tthef ;ecurzs\yel_%ca]%e. ?I'hgri&oga we %ar;%conclu/g\g we will see, the alternate constraints offer multiple trade-
e complexity ofSum(M, Ro, R1) is O(M EmaxQ@RoB1). o points by adjusting a parameter, yield a feasible solution

to the original constraints, and have approximation error that
B. DissectingProd(j,i, Ry, R1) can be determined.

Fig. 2. DefiningSum(i, Ro, R1)

From line 13 and 14 of Figure 2, we assume that. DP Dimension Rounding

Prod(j,i, Ro, R1) is called afterSum(i, Ro, R1) has been  5g previously derived, the complexity @fum(M, Ro, Ry)
called, so we wiI.I assume gntrfy‘g Ry, Ry] of the DP tables g O(M EpaxQRo R, ), which is pseudo-polynomial [12]. This
are available during execution @trod(j, i, Ro, R1). essentially means the complexity looks polynomial but is not.
The recursive case has two sub-cases: i) wheni (line  |n this case, becaus®, (similarly R;) is encoded irflog, Ro]
6-11), in which case we recurse @trod(j,i—1,.) given We pjts as input, complexityO(R,) means the algorithm is
know resourcec(X)r;y is optimally used for node; and, exponential in the size of the input parameters.
ii) when j = i (line 12-17), in which case we know terin |n practice, to scale down the algorithmic complexity when
of the product term —p (X, r;,y) if path 0 andp,(X,7:y)  Rj andR, are large, we perforrmteger rounding-based com-
if path 1. The maximum product will be this term times thgexity scaling The first rounding technique BP dimension
recursive termProd(Y,i — 1, Ry — c(X)r;y, R1) if path 0 younding We first scale and round down overall budg@is
and Prod(Y,i — 1, Ry, R1 — ¢(X)r;y) if path 1. The two and R, by factorKpp € R — i.e. R | and|-BL| — as

. ) L Kpr Kpr
gisn(le(ica;esR(l)me 1-5) are similar to the two base cases i];\op;ut to the optimization. We then scalé and round up costs of
s 410, 411 ).

. . N .. transmitting predicted framg;, c¢(¢;)r; ;'s, by the same factor
Though not written in the code in Figure 3 for simplicity . (qi)ri ; .

of presentation, a DP table Pprod]j][i][Ro][R1] can be sim- LR — I-€ | =+ |. Implementationally, we accordingly
ilarly used to store solutions to subproblems to avoid solvif§Write line 13-14 ofSum(i, Ro, Ry ) of Figure 2:

the same subproblem twice. Because the number of reference 13.s, := Sum(i — 1, Ro — ﬁ;’;};ﬂ ,Ry) +

frames is bounded by, ..., at MOStFE .« * M x Ry * Ry

entries of the DP table will be filled. The complexity of
Prod(j,i, Ro, Ry) is also bounded by the time required t0  14.s, := Sum(i — 1, Ro, Ry — [%W) +
fill the O(Enax * M x Ry x Ry) necessary entries of the

DP table. Since there are no loops in Figure 3, we say
it takes constant time to fill each entry in the DP tableéSimilarly, we replace the cost terms iProd(j, i, Ry, Ry) of
Hence the complexity aProd(j, M, Ry, R1),Vj s.t.E; ; € £, Figure 3 by rewriting line 8, 10, 14 and 16:

is O(EmaxMRORl)' The CompIeXity OfSum(M, R07 Rl) 8. P := Prod(j,i —1,Rg — CO;) kT 4 ,R1);

dominates this complexity, hence the aggregate complexity of D(};)

the algorithm isO(M E.cQRoR;). 10. P := Prod(j, i — 1, Ro, R1 — [ KD;'YW)?

. c(q) rq, .
po(arre) Prodi =1, 1o — [ S0 | mu;

.. cla) r; 5
p1(q,i,5) Prod(j,i — 1, Ro, R1 — [ ;DR’J—‘)J




co(X) riy . é//‘\
o | h: = ==

) riy |y, ‘ R-9: x: x'R-6 x x 'R-3 x xR

Kpr
In so doing, instead of solving the original RQP selection in-
stance/ for true optimal solutiors*, we solve an approximate
instancel4 for solution s4. Scallng downR, and R; means
scaling down the dimension of the dynamic programming
table, hence the complexity is reduced by a factok@f,, at
the cost of decreasing solution quality. Usifigm (i, Ry, R1)
andProd(j, 1, Ry, Ry1) with the rewritten lines, the complexity

14. P = po(X,ri,y) * Prod(Y,i — 1, Ry — ’7

16. P := p1(X,ri,y) * Prod(Y,i — 1, Ro, Ry —

Fig. 4. lllustration of DP Index Rounding

of I* is now O(M EpaxQRoR1 K 7). of Figure 2 and 3 can be reused unaltered for the complexity-
Note that in the approximate instande', the network scaled version as well. This is how DP dimension rounding
resource constraints become: was performed in our earlier work [9].
M (q:) 73 Ry However, the current version of DP dimension rounding
Z Z iy (1 ti){ K ’ﬂ {K J offered two advantages. First, by pulling cost temty;)
=1 {jleuef} b bR inside the rounding function, cost functiefig;) can be real

@) i Ry numbers, while the previous version requi€s;),q¢; € Q,

Z Z Tij ti IVKVDR—‘ = {MJ ®)  tobe integers in order foR;, — c(¢;) [ i |t € {0,1}, to

=1 ilens €8} be integers and indexable to DP tables Second the current
It is shown in the Appendix that? is feasible in/. Moreover, version has smaller round-off error: the largest possible left
we can bound the performance difference betwetand true side rounding error of the current version’s network constraint
optimal s* by first obtaining a super-optimal solutieri in a (5) is Kpr per term, which is smaller than the error of the
new problem instancé®, where we replac&, and R, with ~ previous version's (8)¢maxKpr: Cmax = maxgeo{c(ai)},
LKIZUJ and [ , and replace:(q;)r; ;s with c(qz;:;J . givenChax > 1, Ciax € Z. Since the current version is more

he super- optlmal network resource constraints are: general and more accurate, we prefer the current version of
DP dimension rounding.
S () ri | [ Ro
i (=1 vob < i
Z Z zij ( i) { Kon S\ Kpn C. DP Index Rounding

= len €€} Instead of reducing the overall dimension of the dynamic

M qi) Tij R, programming table to scale down algorithmic complexity,
Z Z Tij bi {KDRJ < IV-KDR—‘ ®)  another way is to limit the number of indices used in the
DP table given the table dimension. This rounding technique
After obtaining optimal solutions® to 7, we can bound is called DP index rounding and we accomplish that by
our approximate solutios” from the optimals* in original always subtracting a positive integer multiple &z € 7
problem instancd as follows: from Ry or Ry during recursive calls ilfum(i, Ry, Ry) of
) 4 Figure 2. Implementationally, we do that by replacirg;)r; ;
IOb](s obj(s” | |0bj obi(s )‘ 0 with an approximateK; [%W Rewrite line 13-14 of
where objs) is the objective function (4) using solutienThe g, (5, Ry, Ry), we get:
proof of performance bound (7) is also found in the Appendix.

i=1 {jle:;€€}

13. 50 := Sum(i — 1, Ry — KR ’VC(;)IT;’J.—‘ s Ri) +
B. Comparing Versions of DP Dimension Rounding

We realize that instead of scaling and rounding up the costs o
c(qi)ri;'s by Kpg, it is possible to scale and round up only ~ 14.s1 := Sum(i — 1, Ro, R1 — K1 [Ef;]) +
the rates; ;'s by Kpg, i.e. [ LR W The network constraints p1(q,ri.;) Prod(j,i — 1, Ro, Ri — Kin [C(;);ﬂ);
will then become:

.. c(q)r;
po(q,7i,5) Prod(j,i —1,Ro — Krr [ ;I;’J—‘ ,Ry);

Similarly, we replace the cost terms Prod(j, i, Ro, R1) of

M Tij Ry Figure 3 by rewriting line 8, 10, 14 and 16:
Z Z Li,j C(Qi) (1 - ti) : < o(X)
i—1 {j|g, e Kpr Kpr 8. P = Prod(j,i —1,Ro — Krn | S50 | Ry);
ird ,
Ry 10. P := Prod(j,i — 1, Ro, Ry — KIn [6(212*" );
Z Z Tig @) K = \|x ® 14.P = po(X, ri v )xProd(Y,i—1, Ro— K1 | SO Y | Ry);
i=1 {jle; €€} DR DR L =Epo(X, Ty > > fio IR Kir s Ity );

e(X)ryy )

16.P =p1(X,ri,y)*Prod(Y,i—1, Ry, R1— KR RKin

Like the scaling and rounding down &f, and R, by factor
Kpr, replacement of; ;'s can be done as a pre-processing As an example, we see an illustration of DP index rounding
step to modify input prior to optimization, and as a result, opp Figure 4 whenK;r = 3. By recursing only onR less
timization algorithmSum(i, Ro, R1) and Prod(j,i, Ry, R1) multiples of 3, we are only filling at most 1/3 of all indices



along bothR, and R, dimensions. Hence the new algorithmic
complexity is:O(M EpaxQRoR1 K 73).
The new network constraints using DP index rounding are

as follows:
- _ c(a:) rw-‘ P
Lzl{jl(ilzjeg}wlj 1 t) KIR ’V KIR SRQ @/@\

€
o

v

IN

Ry (9

Ty x”tK,R[““ﬂ

IR
=1 {jle; ;€E}

Using similar opposite rounding technique in the previous
section, we can bound the performance of the approximate
solution from the optimal by first constructing a super-optimal @
solutions® and evaluating bound (7). Proof will be similar to

the one in the DP dimension rounding case (shown in the

. . . Fig. 5. Snapshot of NAM: Network Graph
Appendix) and hence is omitted here.

D. Applying DP Dimension & Index Rounding

We can employ both rounding strategies simultaneousky;,, = max{ Ro— Kpr {ROJ ’ Ry — KDR{ H}
replace Ry and R, with {KRT;’RJ and {KR;RJ respec- Kpr "
tively as input to the algorithm, and replace(q)r; (M_l)*q?,lixj (¢i) ri,j — KirKpr [KI(ZK;;RH
with K;p [Kfi#w in line 13-14 of recursive function — KDR‘F(M*i)KIRKDR 11)

Sum/(i, Ry, R;) of Figure 2 and line 8, 10, 14 and 16 of . )
Prod(j,i, Ry, Ry) of Figure 3. The resulting network con- If We now substituteK;z = K/Kpp into (11), we get:

straints are:
Qerr = KDR + (M - 1)K (12)

M —
Z Z zi; (1—t) Kir {Ic{(%)KT”-‘ < Lfo J Hence Q... is a linear increasing function of{pg, i.e.
i=1 {j|e- -eS} IRBDR DR we should letK;z = K to minimize €.,, for fixed K.

= Depending on implementation, in practice, we may need to
[Rinieas | = (10| 00

use a largel p r to reduce the amount of memory needed for

the DP tables, each of dimensi@(M Ey,.xQRoR1 K p%).

So a practical rounding factor selection strategy to achieve a
The resulting complexity i$)(M EnaQRoRy K% K;72).  complexity scaling factor of(?, K = KprKpg, is:

An interesting question is then: given a desired complexity 1) Select the smallesk'prr € R that sufficient memory can be

Z Z Tij t; K[R

KirK
=1 {jle; ; €€} IRBDR

Kpr

reduction factork2, where K = KprK;r, What are the ) %”_OC"’“? fO(rj?{P tablels. el o [
trade-offs in using differenfs p and K;? ) Given K and Kpr, calculateir = [ 2551
Because our approximation bound (7) is anposteriori VI. EXPERIMENTATION

bound instead of aa priori one, i.e. we do not know precisely
the extent of the error until approximate solutiohand super-

optimal solutions® are computed and evaluated, we cannot To test the optimization algorithm developed in Section IV,

directly relate the performance of our approximate solutidn we built an experimental testbed using network simulator 2
to Kpr and Kz analytically. To estimate the performance ofns2) [13]. For the network, we use a simple network graph,
the to-be-constructed approximate solutich a priori given shown as a snap shot of network animator (NAM) in Figure

rounding factorsKpr and K;r, we instead focus on an5. First, we constructed a node each for both the streaming
alternate performance metrie.,.,. that tracts the maximum server (node 0) and the client (node 1). To simulate different
possible rounding error to occur when calculating netwometwork path packet loss characteristics, we constructed four
resource constraints (10) instead of the original (3). In thapplication-level forwarding agents (node 2-5), simulating the
worst casef).,, is the maximum rounding error on the rightrole of application nodes in a content delivery network, whose
side of (10) plus the maximum rounding error on the left sideole purpose is to forward packets to the client upon packet
Right maximum error is the maximum rounding error betweearrival from the server. Different network packet losses were
Ry and R;; left maximum error is the number of P-framesimulated using an independent loss model of varying loss
(M — 1) times the maximum rounding error ofg)r; ;: parameter values on the links from the forwarding agents to

A. Experiment Setup



the client. This resulted in four paths of different packet loss __ . L idth for Fixed Total Bandwidih
rates. 095
We did not implement levels of quality-of-service (QoS) at
the network layer in the experiment. Instead, we manually set
the loss rate of the second path to be the effective packet loss |
rate if Reed-SolomorS(3,2) — recall that FEC schemes E
based on Reed-Solomon codes can correct as many losSes
as the number of redundancy packets [14] — is used ovér

a channel with raw packet loss rate of the first path. We thehe-=f % © X e 7

manually enforced a combined rate constraftif for both 5 v owr

first and second path. This is essentially equivalent to a single |° o0 °° Lo “ T

virtual path with one constraint and two QoS classes. Wéj A° 00 Kl T ot |

applied the same methodology to the third and fourth path Oooo OO i

create a second virtual path with rate constrdttand two g e, o © et

QoS classes. We performed all our experiments using this twé- ¥

virtual paths, two-QoS-level network graph. Broost . * o trial 1ot 7
At the application side, we use H.264 version JM4.2 [1] s LD e

to encode the 100-frame QCIRT6 x 144) news sequence, x 7 O triol 2upgreed

sub-sampled in time by, at quantization paramet8t and30 N ‘ ‘ ‘ ‘
for I-frames and P-frames, respectively. I-frame frequency is ° ' ’ o ’ ° ’

once every ten frames, and we optimizitiframes at a time, Pt 0 pandarh o

i.e. one I-frame plus nine P-frames. To generate raje’s as

input to the optimization algorithm, we iteratively force eachig. 6. Streaming Performance for varying Path 1 bandwidth for fixed total
predicted frameF, to use reference framé&;_, for motion bandwidth. Packet Ioss_ rates for paths (1, 2) in trials 1 and 2 are (6%, 10%)
prediction during iterationt = {1,2,3,4,5}. The resulting and (4%, 8%), respectively.

coding rate isr; ;_:. We assume a predicted frani¢ will

use a reference frame no further back in time tians, or  choose transmission path, even frames will use virtual path 0
simply Enax = 5. The resultingr; ;'s are loaded into ns2 asang odd frames will use virtual path 1. If the rate budgets
a preprocessing step prior to optimization. Ry and R; do not permit this path selection, then frames
at the end of the dependency chains will be switched to the
] _ other path until the budget is met. To choose level of QoS,
For the first set of experiment, we show that our optiyp.greedy uses a water-filling method that raises the QoS
mization, as a streaming optimization scheme, has practif@le| of the frames in the front of the dependency chains as
merits and out-performs a competing ad-hoc scheme. Agich as possible until the budge® and R, are empty.
previously mentioned, we assume two virtual paths eachtne performance as a function of the first virtual path
with two levels of QoS: regular packet transmission, anghngwidthR, is shown in Figure 6. First, we see that the two
forward error correctioniS(3,2) protected. First, we fixed performance curves ofiD-greedy is essentially a shifted
the combined bandwidth of the two virtual path$; + Ri,  version of the other. This is expected, MB-greedy 's RQP
at55kps. Rounding parameter&’pr and Ky were constant sejection depends solely on the bandwidth budget and not
at 100 and 1, respectively. By varying the share 6bkbps  network loss rates. On the other hand, at a particular network
bandwidth to the first virtual path bandwidify, we tracked settingopt dynamically performs RQP selection based on all
the corresponding performance at the client in percentage(ifservable factors including bandwidth budgets and network
correctly decoded frames. A framg; is deemed correctly |gss rates. Hence the two performance curveptf have
decoded iff F; is correctly deliveredand all its dependent g;stinct shapes. Second, we see that our optimizatiph
frames are correctly decoded. The sequence was replayed %%ys outperformed the ad-hoc schemi-greedy : in
times for an averaging effect. Two trials of different packet losge first trial, opt outperformedMD-greedy by 3.74% to
rates of the two virtual paths were performéad.06, 0.10) and 13.82%, and the second trial, bg.16% to 12.28%. In both
(0.04,0.08). o trials, we see that the performance increase®&acreased.
We compared our optimization scheme to an ad-hoc schefgs s intuitive since the raw packet loss rate in both trials
we call MD-greedy : to choose reference frames, it dividegyas smaller for virtual path 0 than path 1.
the frames into groups of even frames and odd frames so
that frame F; uses F;,_, as reference, with the exceptionc- Numerical Results 2: Performance / Complexity Tradeoff
of F; which usesF,, and F,, which is an I-frame and has In the second experiment, we held the bandwidth of the
no reference frame. This essentially creates multiple (twbyo virtual pathsR, and R, constant a0kps and 35kbps,
descriptionsof the video that are independently decodeablespectively, DP index rounding parameléfr constant atl,
(with the exception of odd frames’ dependency Bg). To and variedKpg to observe the tradeoff between performance

B. Numerical Results 1. RQP Selection Comparison
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InCreases. Fig. 8. Comparison of Index Rounding and Dimension Rounding for different

values of K = K;rKpR.

and complexity; recall the complexity of the optimization

is O(M EnaxQRoR1 K57 K 7). Again, we performed two that becausek;; has smaller maximum error thaf pp,
trials of different packet loss rates of the two virtual pathsy general it is better to usé;; as opposed tdKpr to
(0.06,0.10) and (0.04,0.08). The performance as a functionreduce complexity. We do observe, however, that the increase
of Kpr for both trials can be seen in Figure 7. in performance of usinds;  as oppose td<p level off and

We see in Figure 7 that indeed as DP dimension roundiig further improvement can be seen beyond a certain point.
factor Kpgr increased, the quality of the solution suffered

due to rounding and the performance decreased for both VIl. CONCLUSION

trials. What is more interesting is that the curves are not|, tnis paper, we consider optimized streaming for H.264
stepwise strictly decreasing. This can be attributed t0 &y over multiple QoS levels and multiple transmission paths
fact that rounding is a non-linear operation, meaning that e gifferent loss characteristics. In particular, we presented
precise degree of the rounding error will depend on actugl gptimization scheme that maximizes the expected number
numbersr; ;'s, Ry and R, as well asKpr. The general of correctly decoded frames at the receiver by selecting the
downward trend of the curves, however, is in agreement Wiffa - optimal reference frame, QoS level and transmission path
our analysis in Section V-A that performance is in generg; each predicted frame. The optimization is novel in the
inversely proportional to rounding factdt p . sense that unlike convention Lagrangian approaches, it uses a
D. Numerical Results 3: Dimension Rounding vs. IndéQiXture O,f two roundi.ng techniques, DP dimension round!ng
and DP index rounding, to gracefully trade off complexity

Rounding . : . : .
with the quality of the obtained solution. Experiments show

In th_e third exp(_arlment, we seek to det.ermlm_e the mef'ﬁ'?]provement over a static reference frame selection scheme.
of DP index rounding as opposed to DP dimension rounding

for given algorithmic complexity. We held the loss rate and APPENDIX
bandwidth of the two virtual paths constant(at06, 0.1) and

(30kbps, 35kbps), respectively. We varied{;z but kept the
complexity reduction factolX = K;r * Kpgr constant by
adjustingKkpr = K/Kr. Recall thatk; g must be an integer

while Kpr needs not be. The result plot for three d|fferen1.0 prove the first axiom, we first let the approximate solution

values of K is shown in Figure 8. A A A A . 7 e '
. . . . be = A1 g}, {t}). Given satisfies the first
We first note in Figure 8 that as the complexity reducUoHetivork cé;{\g{?gnj?ﬁ isi Zw}e) can writZ'

To prove feasibility of approximate solutiost* in I and
the performance bound (7), we essentially need to prove two
axioms: i) thats? satisfies original network constraints (3),
ij) that s satisfies super-optimal network constraints (6)

factor K decreased, the performance curve correspondingly

moved up — i.e. performance increased. This agrees with,, N

our observation in previous part 2 of the experiment that Z 21— 1) [%W Kpn < {KRO JKDR

performance is inversely proportional to complexity reduction’= ;. e, bR b

factor. Second, in all three cases, as DP index rounding \ _

factor K increased for fixeds, the performance increased. Z Z of I g e B g )
: Kpr Kpr

This agrees with our analytical conclusion in Section V-D =i jie; ey



where (13) holds sincé—(;’;;::f < F?&;ﬂ and —KPE;R >

Kpr
constraint. Therefore the first axiom holds asitl is feasible
in 7. Using similar argument, one can show easily the second
axiom: thats is feasible in/*. By optimality of s° in solution
space ofl®, we have:

obj(s®) > obj(s) (14)

{ Ry J Similar steps can be done for the second network

By subtracting oljs#) and taking absolute value on both
sides, we get (7).

REFERENCES
[1

“The TML project web-page and archive,” http://kbc.cs.tu-

berlin.de/ stewe/vceg/.

[2] S. Blakeet al, “An architecture for differentiated services,” December

1998, IETF RFC 2475.

[3] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya, “Long

thin networks,” January 2000, IETF RFC 2757.

T. Wiegand, N. Farber, and B. Girod, “Error-resilient video transmission

using long-term memory motion-compensated prediction,JHEE J.

Select. Areas. Comivol. 18, no.6, June 2002, pp. 1050-1062.

Y. Liang, M. Flieri, and B. Girod, “Low-latency video transmission over

lossy packet networks using rate-distortion optimized reference picture

selection,” in IEEE International Conference on Image Processing

Rochester, NY, September 2002.

J. Apostolopoulos, “Error-resilient video compression via multiple state

streams,” Proc. International Workshop on Very Low Bitrate Video

Coding (VLBV'99) pp. 168-171, October 1999.

P. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized

media,” Microsoft Research, Tech. Rep. MSR-TR-2001-35, February

2001.

Y. Liang, E. Setton, and B. Girod, “Channel-adaptive video streaming

using packet path diversity and rate-distortion optimized reference

picture selection,” inEEE Workshop on Multimedia Signal Processing

St. Thomas, US Virgin Islands, December 2002.

G. Cheung and C. Chan, “Jointly optimal reference frame & quality of

service selection for h.26l video coding over lossy networks [BERE

International Conference on Multimedia and Ex@altimore, MD, July

2003.

[10] G. Cheung, “Near-optimal multipath streaming of h.264 using reference
frame selection,” iINEEE International Conference on Image Process-
ing, Barcelona, Spain, September 2003.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,”ACM SIGCOMM Stock-
holm, Sweden, August 2000.

[12] M. Garey and D. S. Johnso@omputers and Intractability: A Guide to
the Theory of NP-Completeness~reeman, 1979.

[13] “The network simulator ns-2,” August 2003, release 2.26,
http://www.isi.edu/nsnam/ns/.

[14] P. Frossard and O. Verscheure, “Joint source/FEC rate selection for

quality-optimal MPEG-2 video delivery,” iHEEE Trans. Image Pro-

cessing vol. 10, no.12, December 2001, pp. 1815-1825.

[4

[5

[6

[7

8

[9



