
Reference Frame Optimization for Multi-path Video
Streaming using Complexity Scaling

Gene Cheung
Hewlett-Packard Laboratories, Japan

Takaido Office Bldg.#3
3-8-13, Takaido-Higashi, Suginami-ku

Tokyo, 168-0072 Japan
Email: gene-cs.cheung@hp.com

Wai-tian Tan
Hewlett-Packard Laboratories, Palo Alto

1501 Page Mill Rd.
Palo Alto, CA

Email: wai-tian.tan@hp.com

Abstract— Recent video coding standards such as H.264 offer
the flexibility to select reference frames during motion estimation
for predicted frames. The application of traditional Lagrangian
approach to the reference frame selection problem suffers from
either bounded worst-case error but high complexity, or low
complexity but undetermined worst-case error. In this paper, we
propose a dynamic programming based optimization algorithm
that admits trade-offs between computation complexity and
worst-case error using advanced rounding techniques. We also
evaluate the performance of the algorithm in the context of
multi-path streaming over QoS-enabled networks. Results show
significant streaming quality improvement over a static reference
frame selection scheme.

I. I NTRODUCTION

The subject of this paper is to exploit thereference frame
selection(RFS) feature of modern video coding standards to
improve streaming quality over lossy networks. New video
coding standards such as H.264 [1] offer many coding flex-
ibilities for better coding and streaming performance. One
of these flexibilities is flexible motion estimation support or
RFS, where each predicted frame can choose among a number
of frames for motion estimation. Often at the cost of lower
coding efficiency, the ability to choose among multiple frames
in the past for motion estimation can potentially avoid error
propagation due to packet loss.

Given the available RFS feature of video coding, our goal
is to tailor the reference frame selection for a given network
streaming scenario. In this paper, we consider the scenario of
multi-path streaming over QoS networks. By QoS networks,
we mean networks which provide network layer QoS support
like [2], where IP packets experience different packet loss
rates at different service classes and different costs per packet.
Here, we assume a cost constraint per transmission path. For
networks without network-level QoS such as the Internet, end
hosts can mimic a QoS network by applying forward error
correction (FEC) of different strengths to different groups
of packets. We consider a transmission rate constraint per
transmission path in this case. We consider both cases under
the same QoS network formulation in the paper.

By multi-paths, we mean two (or more) delivery paths
are simultaneously available to end hosts for packet delivery
during a streaming session. For wired networks, multi-paths

can be made available, for example, as a result of application
induced overlay routing or network supported source-based
routing. For wireless networks, mobile terminals can conceiv-
ably be connected to two nearest base-stations via multiple
antennas, or simultaneously using two network interfaces into
two orthogonal wireless technologies such as wireless LAN
and 3G wireless networks. One obvious advantage of multi-
paths is the potentially larger combined transmission rate in the
case when each path is rate constrained1. Another advantage
can be better fault tolerance, where given the paths are disjoint
and possess different and uncorrelated loss characteristics,
simultaneous failure of both paths is less likely than a single
path scenario.

We assume the application requires very low network de-
livery delay, to the extent that it cannot tolerate even one end-
to-end packet retransmission. One reason can be that a small
playback buffer is employed at the client side, together with
the relatively large transmission delay of wireless links such
as 3G cellular links [3], means that any retransmitted packet
upon client request will miss its playback deadline and hence
be rendered useless.

Given the described RFS feature of video coding and the
network streaming scenario under consideration, the central
problem is the following: for each predicted frame in a to-
be-encoded video sequence, how to: i) select an appropriate
reference frame for motion estimation, and ii) a QoS level and
transmission path for packet delivery, such that the overall
streaming performance is optimized? To this end, standard
Lagrangian based optimization procedures can be employed.
Nevertheless, there is no general mechanisms to simultane-
ously bound the running time of a Lagrangian optimization
and bound the worst-case approximation error. As a result,
there are practical challenges in using such optimization
schemes for low-latency, quality-guaranteed media delivery.
This paper offers an alternative optimization strategy, based
on advanced integer rounding techniques, that provides a com-
plexity and worst-case error bounded algorithm. Moreover,
the algorithm is complexity scalable, where the quality of

1In some cases, using two transmission paths simultaneously decreases
overall performance because of mutual signal interference. We assume here
that the paths are orthogonal and therefore additive.

the obtained approximate solution can be traded off with the
algorithm’s running time.

The rest of the paper is organized as follows. After dis-
cussing related work in section II, we formulate the optimiza-
tion problem and provide a solution in Section III and IV,
respectively. A set of integer rounding-based procedures to
reduce the complexity of the algorithm at the cost of solution
quality are discussed in Section V. Results and conclusion are
presented in Section VI and VII, respectively.

II. PREVIOUS WORK

H.264 [1] is a new video coding standard that has demon-
stratably superior coding performance over existing standards
such as MPEG-4 and H.263 over a range of bit rates. As
part of the new standard definition is the flexibility of using
any arbitrary frame to perform motion-estimation, originally
introduced as Annex N in H.263+ and later as Annex U in
H.263++. Early work on optimizing streaming quality using
reference frame selection includes [4] [5]. Our work differs
from previous works by employing a complexity-scalable
optimization procedure and also applying optimization to
jointly perform reference frame (RF) and transmission path
(TP) selection.

A related research topic is multiple description (MD), where
video is encoded into two (or more) “descriptions”, and each
description can be decoded independently of the other. For
example, an MD stream can be obtained by coding the even
frames into stream 1, and coding the odd frames independently
from the even frames as stream 0. In [6], it is observed
that when different descriptions are transmitted using differ-
ent network paths, it is possible to apply error-concealment
techniques at the decoder so that drift error due to losses
can be greatly reduced. Specifically, such error-concealment
techniques can be applied as long as the losses on the different
paths are not concurrent. One advantage of the MD scheme
is simplicity, since path selection is trivial, and compression
can be performed independently of the network conditions.
It should be noted that the joint reference frame and path
selection subsumes the above MD example as a special case,
at the expense of additional computation.

Unlike many previous rate-distortion optimization algo-
rithms [7] [5] [8] which rely on the use of Lagrange mul-
tipliers, our optimization is unique in that we use an integer
rounding technique that allows trade-off between computation
complexity with the quality of the obtained solution. This
allows us to estimate the quality of the obtained solution given
fixed computation resources. Conversely, given a target quality
of the solution, we can estimate the amount of resources
needed for the tasks.

Among our previous work, we have shown that integer
rounding-based complexity scaling can be applied to reference
frame / QoS selection for uni-path streaming over QoS-enabled
networks [9], and to reference frame / path selection for multi-
path streaming over best-effort networks [10]. This paper is a
noted improvement on our previous work in two important
regards: i) we are simultaneously selecting reference frame,

QoS and path for multi-path streaming over QoS-enabled
networks; and, ii) in addition to the previously developed
dynamic programmingdimension roundingtechnique, to be
discussed in Section V-A, a new rounding technique called
index roundingis introduced in Section V-C, and the two types
of rounding techniques are compared and combined in Section
V-D. The new rounding technique will be shown to be superior
in performance in Section VI-D.

III. PROBLEM FORMULATION

Regardless of whether network QoS is obtained via network
mechanisms such as DiffServ [2] or application-level mech-
anisms such as FEC, one important property is that different
QoS service levels will likely lead to different packet loss
rates, which is the primary network impairment we consider
in this work. We begin with a discussion of the source and
network models, in Section III-A and III-B, respectively. Given
the assumed models, we discuss the objective function and
formalize the optimization in Section III-C.

A. Directed Acyclic Graph Source Model

We assume anM -frame video sequence is coded as an intra-
coded frame (I-frame) followed byM − 1 inter-coded frames
(P-frames). We model the decoding dependencies of the video
using a directed acyclic graph (DAG) modelG = (V, E) with
vertex setV, |V| = M and edge setE , similar to one used
in [7]. Specifically, the streaming media is represented by a
collection of frames,Fi’s, i ∈ {1, . . . ,M}. Each frameFi,
represented by a nodei ∈ V, has a set of outgoing edges
ei,j ∈ E to nodesj’s. Framei can use framej as reference iff
∃ei,j ∈ E . We definexi,j to be the binary variable indicating
whetherFi usesFj as reference. Or equivalently, giveni, we
definexi,j as:

xi,j =
{

1 if Fi usesFj as RF ∀j ∈ {V|ei,j ∈ E}
0 otherwise

(1)
Because a P-frame can have only one reference frame, we
have the followingRF constraint:∑

{j|ei,j∈E}

xi,j = 1 ∀i ∈ V, i 6= 1 (2)

We assume that only frames in the past are used for
reference, i.e.∀ei,j ∈ E , i > j. Further, since in practice it
is inefficient to use a reference frame too far in the past, we
will limit the number of candidate reference frames for any
given predicted frameFi to beEmax � |V|. We also assume
only frame 1 is intra-coded, and hence6 ∃e1,j ∈ E . An example
of a DAG model of a 4-frame sequence is shown in Figure 1
with Emax = 2.

We let ri,j be the integer number of bytes in framei when
frame j is used as reference. This is an approximation since
the number of bytes depends not only on specificj chosen,
but also the reference frame for framej and so on. The byte
size of the starting I-frame isr1,1. We assume a sparserate
matrix r of size O(M2) is computeda priori as input to
the optimization algorithm (sparse because each row has at

1 2 3 4

r
3,22,1

r r

rr 3,1

4,3

4,2

r1,1

Fig. 1. Directed Acyclic Graph Source Model

most Emax entries). We will discuss howr is generated in
our experiment in section VI.

B. Network Model

Regardless of whether QoS is established using network or
application level mechanisms, we assume a set of QoS service
levels Q = {0, 1, . . . Q} to be available for all accessible
transmission paths. We allow each frameFi to select a QoS
level qi ∈ Q and a transmission pathti ∈ {0, 1}. The special
QoS service levelqi = 0 denotes the case whenFi is not
transmitted at all. For given observable network condition,
QoS level qi, transmission pathti and frame sizeri,j will
induce a frame delivery success probabilitypti

(qi, ri,j) ∈ R,
where0 ≤ pti

(qi, ri,j) ≤ 1. There is dependence ofp() on
ri,j because a large frame size will likely negatively impact the
delivery success probability of the entire frame as more data
is pushed through the network. It should be noted beforehand
that the operation and the optimality of our algorithm are
independent of the form ofpti

(qi, ri,j).
1) Network Resource Constraint:Like any resource allo-

cation problems, we impose constraints on the amount of
resource we can use, which in this case is the aggregate ability
to protect theM -frame sequence per transmission path from
network losses using QoS. Assuming a QoS assignmentqi

results in a cost ofc(qi) ∈ R per byte, the constraints for
path0 and path1 are respectively:

M∑
i=1

∑
{j|ei,j∈E}

xi,j c(qi) (1− ti) ri,j ≤ R̄0

M∑
i=1

∑
{j|ei,j∈E}

xi,j c(qi) ti ri,j ≤ R̄1 (3)

In the case of network-level QoS, (3) represents a cost
constraint per path, so that total cost to the user perM -frame
time for path 0 and 1 do not exceed̄R0 andR̄1 monetary units,
respectively, wherēR0, R̄1 ∈ I. In the case of application-
level QoS, (3) represents a bit rate constraint per path, where
c(qi) is the overhead in channel coding given QoS levelqi,
and constraint parameters̄R0 and R̄1 can be obtained using
congestion control algorithms like [11], so that the total output
bytes forM -frame time for path 0 and 1 do not exceed̄R0

and R̄1 bytes, respectively.

C. Objective Function

The objective function we selected is the expected number
of correctly decoded frames at the decoder. Each frameFi is
correctly decoded iffFi and all framesFj ’s it depends on are

delivered drop-free. We writej � i if frame i depends on
frame j. Mathematically, maximizing the objective function
means computing:

max
{xi,j},{qi},{ti}


M∑
i=1

∏
j�i

∑
{k|ej,k∈E}

xj,k ptj (qj , rj,k)


(4)

The problem is then: given pre-computed rate matrixr, deliv-
ery success probability functionpti(qi, ri,j) and cost function
c(qi), find variables{xi,j}, {qi} and {ti} that maximize (4)
while satisfying the integer constraint (1), the RF constraint
(2) and the network resource constraints (3). This formally
defined optimization is called theRF / QoS / Path selection
problem(RQP selection).

IV. A D YNAMIC PROGRAMMING SOLUTION

Given the RQP selection problem is NP-hard (proof similar
to one in [9]), we first present a pseudo-polynomial algorithm
that solves the optimization problem optimally but in exponen-
tial time. Methodologies to tradeoff complexity with solution
quality are discussed in later sections.

The optimization algorithm composes of two recur-
sive functions, Sum(i, R0, R1) and Prod(j, i, R0, R1).
Sum(i, R0, R1) returns the maximum sum of products of
sums in (4) for a subset of framesF1 to Fi, given R0 and
R1 network resource units are available for path 0 and 1,
respectively.Prod(j, i, R0, R1) returns the inner product of
sums term in (4) forFj — probability thatFj is decoded
correctly — given R0 and R1 network resource units of
path 0 and 1 are optimally distributed fromF1 to Fi. A
call to Sum(M, R̄0, R̄1) will yield the optimal solution.
Sum(i, R0, R1) andProd(j, i, R0, R1) are shown in pseudo-
code in Figure 2 and 3, respectively. We now examine the
pseudo-code closely.

A. DissectingSum(i, R0, R1)

The recursive case (line 10-19) is essentially testing ev-
ery combination of RF, QoS and path forFi for the max-
imum sum. The results of this search are stored in the
[i, R0, R1] entries of the four dynamic programming (DP)
tables,DPsum[], DPqos[], DPind[] andDPpath[] (line
20-21). DP tables are used so that if the same subproblem
is called again, the already computed result can be simply
returned (line 1-2). The two base cases (line 3-9) are the
following: i) when one or both of the resource constraints are
violated, in which case we return−∞ to signal the violation;
and, ii) when the root node (I-frame) is reached. Because root
node has no RF to choose from, the search for optimal solution
(line 6-8) is much simpler.

Assuming Prod(j, i, R0, R1) does not introduce fur-
ther complexity (to be discussed), the complexity of
Sum(M, R̄0, R̄1) is bounded by the time required to construct
the DP table of dimensionM ∗ R̄0 ∗ R̄1. To fill each entry, we
call functionSum(i, R0, R1) as shown in Figure 2, which has
O(EmaxQ) operations to account for the twofor loops from

function Sum(i, R0, R1)
1. if (DPsum[i, R0, R1] is filled) // DP case
2. { returnDPsum[i, R0, R1]; }
3. if (R0 < 0) or (R1 < 0) // base case 1
4. { return−∞; }
5. if (i = 1) // base case 2
6. { s0 := maxq∈{Q|c(q)r1,1≤R0} p0(q, r1,1);
7. s1 := maxq∈{Q|c(q)r1,1≤R1} p1(q, r1,1);
8. returnmax(s0, s1);
9. }
10. S := 0; // recursive case
11. for eachj such thatei,j ∈ E ,
12. { for eachq ∈ Q,
13. { s0 := Sum(i− 1, R0 − c(q)ri,j , R1) +

p0(q, ri,j) Prod(j, i− 1, R0 − c(q)ri,j , R1);
14. s1 := Sum(i− 1, R0, R1 − c(q)ri,j) +

p1(q, ri,j) Prod(j, i− 1, R0, R1 − c(q)ri,j);
15. s := max(s0, s1);
16. t := (s0 > s1)? 0 : 1;
17. if (s > S)
18. { (S, X, Y, Z) := (s, q, j, t); }
19. } }
20. (DPsum[i, R0, R1], DPqos[i, R0, R1]) := (S, X);
21 (DPind[i, R0, R1], DPpath[i, R0, R1]) := (Y, Z);
22. returnS;

Fig. 2. DefiningSum(i, R0, R1)

line 11-19 in the recursive case. Therefore we can conclude
the complexity ofSum(M, R̄0, R̄1) is O(MEmaxQR̄0R̄1).

B. DissectingProd(j, i, R0, R1)

From line 13 and 14 of Figure 2, we assume that
Prod(j, i, R0, R1) is called afterSum(i, R0, R1) has been
called, so we will assume entry[i, R0, R1] of the DP tables
are available during execution ofProd(j, i, R0, R1).

The recursive case has two sub-cases: i) whenj < i (line
6-11), in which case we recurse onProd(j, i− 1, .) given we
know resourcec(X)ri,Y is optimally used for nodei; and,
ii) when j = i (line 12-17), in which case we know termi
of the product term —p0(X, ri,Y) if path 0 andp1(X, ri,Y)
if path 1. The maximum product will be this term times the
recursive termProd(Y, i − 1, R0 − c(X)ri,Y , R1) if path 0
and Prod(Y, i − 1, R0, R1 − c(X)ri,Y) if path 1. The two
base cases (line 1-5) are similar to the two base cases for
Sum(i, R0, R1).

Though not written in the code in Figure 3 for simplicity
of presentation, a DP tableDPprod[j][i][R0][R1] can be sim-
ilarly used to store solutions to subproblems to avoid solving
the same subproblem twice. Because the number of reference
frames is bounded byEmax, at mostEmax ∗ M ∗ R̄0 ∗ R̄1

entries of the DP table will be filled. The complexity of
Prod(j, i, R0, R1) is also bounded by the time required to
fill the O(Emax ∗ M ∗ R̄0 ∗ R̄1) necessary entries of the
DP table. Since there are no loops in Figure 3, we say
it takes constant time to fill each entry in the DP table.
Hence the complexity ofProd(j, M, R̄0, R̄1),∀j s.t.Ei,j ∈ E ,
is O(EmaxMR̄0R̄1). The complexity ofSum(M, R̄0, R̄1)
dominates this complexity, hence the aggregate complexity of
the algorithm isO(MEmaxQR̄0R̄1).

function Prod(j, i, R0, R1)
1. if (R0 < 0) or (R1 < 0) // base case 1
2. { return0; }
3. if (j = i = 1) // base case 2
4. { returnDPsum[1, R0, R1]; }
5. (X, Y) := (DPqos[i, R0, R1], DPind[i, R0, R1]);
6. if (j < i) // recursive case
7. { if (DPpath[i, R0, R1] = 0)
8. { P := Prod(j, i− 1, R0 − c(X)ri,Y , R1); }
9. else
10. { P := Prod(j, i− 1, R0, R1 − c(X)ri,Y); }
11 }
12. else //j = i
13. { if (DPpath[i, R0, R1] = 0)
14. { P := p0(X, ri,Y) ∗Prod(Y, i− 1, R0− c(X)ri,Y , R1); }
15. else
16. { P := p1(X, ri,Y) ∗Prod(Y, i− 1, R0, R1− c(X)ri,Y); }
17. }
18. returnP ;

Fig. 3. DefiningProd(j, i, R0, R1)

V. ROUNDING-BASED COMPLEXITY SCALING

Maximizing objection function in (4) subject to constraints
(3) is often too complex to be practical. In this section, we
describe two mechanisms for constructing alternate constraints
that allow trade-off between computation and solution quality.
As we will see, the alternate constraints offer multiple trade-
off points by adjusting a parameter, yield a feasible solution
to the original constraints, and have approximation error that
can be determined.

A. DP Dimension Rounding

As previously derived, the complexity ofSum(M, R̄0, R̄1)
is O(MEmaxQR̄0R̄1), which is pseudo-polynomial [12]. This
essentially means the complexity looks polynomial but is not.
In this case, becausēR0 (similarly R̄1) is encoded indlog2 R̄0e
bits as input, complexityO(R̄0) means the algorithm is
exponential in the size of the input parameters.

In practice, to scale down the algorithmic complexity when
R̄0 andR̄1 are large, we performinteger rounding-based com-
plexity scaling. The first rounding technique isDP dimension
rounding. We first scale and round down overall budgetsR̄0

andR̄1 by factorKDR ∈ R — i.e.
⌊

R̄0
KDR

⌋
and

⌊
R̄1

KDR

⌋
— as

input to the optimization. We then scale and round up costs of
transmitting predicted frameFi, c(qi)ri,j ’s, by the same factor

KDR — i.e.
⌈

c(qi)ri,j

KDR

⌉
. Implementationally, we accordingly

rewrite line 13-14 ofSum(i, R0, R1) of Figure 2:

13. s0 := Sum(i− 1, R0 −
⌈

c(q) ri,j
KDR

⌉
, R1) +

p0(q, ri,j) Prod(j, i− 1, R0 −
⌈

c(q) ri,j
KDR

⌉
, R1);

14. s1 := Sum(i− 1, R0, R1 −
⌈

c(q) ri,j
KDR

⌉
) +

p1(q, ri,j) Prod(j, i− 1, R0, R1 −
⌈

c(q) ri,j
KDR

⌉
);

Similarly, we replace the cost terms inProd(j, i, R0, R1) of
Figure 3 by rewriting line 8, 10, 14 and 16:

8. P := Prod(j, i − 1, R0 −
⌈

c(X) ri,Y
KDR

⌉
, R1);

10. P := Prod(j, i − 1, R0, R1 −
⌈

c(X) ri,Y
KDR

⌉
);

14. P := p0(X, ri,Y) ∗ Prod(Y, i − 1, R0 −
⌈

c(X) ri,Y
KDR

⌉
, R1);

16. P := p1(X, ri,Y) ∗ Prod(Y, i − 1, R0, R1 −
⌈

c(X) ri,Y
KDR

⌉
);

In so doing, instead of solving the original RQP selection in-
stanceI for true optimal solutions∗, we solve an approximate
instanceIA for solutionsA. Scaling downR̄0 andR̄1 means
scaling down the dimension of the dynamic programming
table, hence the complexity is reduced by a factor ofK2

DR at
the cost of decreasing solution quality. UsingSum(i, R0, R1)
andProd(j, i, R0, R1) with the rewritten lines, the complexity
of IA is now O(MEmaxQR̄0R̄1K

−2
DR).

Note that in the approximate instanceIA, the network
resource constraints become:

M∑
i=1

∑
{j|ei,j∈E}

xi,j (1− ti)
⌈

c(qi) ri,j

KDR

⌉
≤

⌊
R̄0

KDR

⌋
M∑
i=1

∑
{j|ei,j∈E}

xi,j ti

⌈
c(qi) ri,j

KDR

⌉
≤

⌊
R̄1

KDR

⌋
(5)

It is shown in the Appendix thatsA is feasible inI. Moreover,
we can bound the performance difference betweensA and true
optimal s∗ by first obtaining a super-optimal solutionsS in a
new problem instanceIS , where we replacēR0 and R̄1 with⌈

R̄0
KDR

⌉
and

⌈
R̄1

KDR

⌉
, and replacec(qi)ri,j ’s with

⌊
c(qi)ri,j

KDR

⌋
.

The super-optimal network resource constraints are:

M∑
i=1

∑
{j|ei,j∈E}

xi,j (1− ti)
⌊

c(qi) ri,j

KDR

⌋
≤

⌈
R̄0

KDR

⌉
M∑
i=1

∑
{j|ei,j∈E}

xi,j ti

⌊
c(qi) ri,j

KDR

⌋
≤

⌈
R̄1

KDR

⌉
(6)

After obtaining optimal solutionsS to IS , we can bound
our approximate solutionsA from the optimals∗ in original
problem instanceI as follows:∣∣obj(s∗)− obj(sA)

∣∣ ≤ ∣∣obj(sS)− obj(sA)
∣∣ (7)

where obj(s) is the objective function (4) using solutions. The
proof of performance bound (7) is also found in the Appendix.

B. Comparing Versions of DP Dimension Rounding

We realize that instead of scaling and rounding up the costs
c(qi)ri,j ’s by KDR, it is possible to scale and round up only

the ratesri,j ’s by KDR, i.e.
⌈

ri,j

KDR

⌉
. The network constraints

will then become:
M∑
i=1

∑
{j|ei,j∈E}

xi,j c(qi) (1− ti)
⌈

ri,j

KDR

⌉
≤

⌊
R̄0

KDR

⌋
M∑
i=1

∑
{j|ei,j∈E}

xi,j c(qi) ti

⌈
ri,j

KDR

⌉
≤

⌊
R̄1

KDR

⌋
(8)

Like the scaling and rounding down of̄R0 andR̄1 by factor
KDR, replacement ofri,j ’s can be done as a pre-processing
step to modify input prior to optimization, and as a result, op-
timization algorithmSum(i, R0, R1) and Prod(j, i, R0, R1)

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � � � �� �Rx xx x x xR−6 R−3R−9

Fig. 4. Illustration of DP Index Rounding

of Figure 2 and 3 can be reused unaltered for the complexity-
scaled version as well. This is how DP dimension rounding
was performed in our earlier work [9].

However, the current version of DP dimension rounding
offered two advantages. First, by pulling cost termc(qi)
inside the rounding function, cost functionc(qi) can be real
numbers, while the previous version requiresc(qi), qi ∈ Q,

to be integers in order forRti − c(qi)
⌈

ri,j

KDR

⌉
, ti ∈ {0, 1}, to

be integers and indexable to DP tables. Second, the current
version has smaller round-off error: the largest possible left
side rounding error of the current version’s network constraint
(5) is KDR per term, which is smaller than the error of the
previous version’s (8),cmaxKDR, cmax = maxqi∈Q{c(qi)},
givenCmax > 1, Cmax ∈ I. Since the current version is more
general and more accurate, we prefer the current version of
DP dimension rounding.

C. DP Index Rounding

Instead of reducing the overall dimension of the dynamic
programming table to scale down algorithmic complexity,
another way is to limit the number of indices used in the
DP table given the table dimension. This rounding technique
is called DP index rounding, and we accomplish that by
always subtracting a positive integer multiple ofKIR ∈ I
from R0 or R1 during recursive calls inSum(i, R0, R1) of
Figure 2. Implementationally, we do that by replacingc(qi)ri,j

with an approximateKIR

⌈
c(qi)ri,j

KIR

⌉
. Rewrite line 13-14 of

Sum(i, R0, R1), we get:

13. s0 := Sum(i− 1, R0 −KIR

⌈
c(q)ri,j

KIR

⌉
, R1) +

p0(q, ri,j) Prod(j, i− 1, R0 −KIR

⌈
c(q)ri,j

KIR

⌉
, R1);

14. s1 := Sum(i− 1, R0, R1 −KIR

⌈
c(q)ri,j

KIR

⌉
) +

p1(q, ri,j) Prod(j, i− 1, R0, R1 −KIR

⌈
c(q)ri,j

KIR

⌉
);

Similarly, we replace the cost terms inProd(j, i, R0, R1) of
Figure 3 by rewriting line 8, 10, 14 and 16:

8. P := Prod(j, i − 1, R0 −KIR

⌈
c(X) ri,Y

KIR

⌉
, R1);

10. P := Prod(j, i − 1, R0, R1 −KIR

⌈
c(X) ri,Y

KIR

⌉
);

14.P := p0(X, ri,Y)∗Prod(Y, i−1, R0−KIR

⌈
c(X)ri,Y

KIR

⌉
, R1);

16.P := p1(X, ri,Y)∗Prod(Y, i−1, R0, R1−KIR

⌈
c(X)ri,Y

KIR

⌉
);

As an example, we see an illustration of DP index rounding
in Figure 4 whenKIR = 3. By recursing only onR less
multiples of 3, we are only filling at most 1/3 of all indices

along bothR0 andR1 dimensions. Hence the new algorithmic
complexity is:O(MEmaxQR̄0R̄1K

−2
IR).

The new network constraints using DP index rounding are
as follows:

M∑
i=1

∑
{j|ei,j∈E}

xi,j (1− ti) KIR

⌈
c(qi) ri,j

KIR

⌉
≤ R̄0

M∑
i=1

∑
{j|ei,j∈E}

xi,j ti KIR

⌈
c(qi) ri,j

KIR

⌉
≤ R̄1 (9)

Using similar opposite rounding technique in the previous
section, we can bound the performance of the approximate
solution from the optimal by first constructing a super-optimal
solutionsS and evaluating bound (7). Proof will be similar to
the one in the DP dimension rounding case (shown in the
Appendix) and hence is omitted here.

D. Applying DP Dimension & Index Rounding

We can employ both rounding strategies simultaneously:
replace R̄0 and R̄1 with

⌊
R̄0

KDR

⌋
and

⌊
R̄1

KDR

⌋
respec-

tively as input to the algorithm, and replacec(q)ri,j

with KIR

⌈
c(q)ri,j

KIRKDR

⌉
in line 13-14 of recursive function

Sum(i, R0, R1) of Figure 2 and line 8, 10, 14 and 16 of
Prod(j, i, R0, R1) of Figure 3. The resulting network con-
straints are:

M∑
i=1

∑
{j|ei,j∈E}

xi,j (1− ti) KIR

⌈
c(qi) ri,j

KIRKDR

⌉
≤

⌊
R̄0

KDR

⌋
M∑
i=1

∑
{j|ei,j∈E}

xi,j ti KIR

⌈
c(qi) ri,j

KIRKDR

⌉
≤

⌊
R̄1

KDR

⌋
(10)

The resulting complexity isO(MEmaxQR̄0R̄1K
−2
DRK−2

IR).
An interesting question is then: given a desired complexity
reduction factorK2, where K = KDRKIR, what are the
trade-offs in using differentKDR andKIR?

Because our approximation bound (7) is ana posteriori
bound instead of ana priori one, i.e. we do not know precisely
the extent of the error until approximate solutionsA and super-
optimal solutionsS are computed and evaluated, we cannot
directly relate the performance of our approximate solutionsA

to KDR andKIR analytically. To estimate the performance of
the to-be-constructed approximate solutionsA a priori given
rounding factorsKDR and KIR, we instead focus on an
alternate performance metricΩerr that tracts the maximum
possible rounding error to occur when calculating network
resource constraints (10) instead of the original (3). In the
worst case,Ωerr is the maximum rounding error on the right
side of (10) plus the maximum rounding error on the left side.
Right maximum error is the maximum rounding error between
R̄0 and R̄1; left maximum error is the number of P-frames
(M − 1) times the maximum rounding error ofc(q)ri,j :

3

2

1

5

0

4

Fig. 5. Snapshot of NAM: Network Graph

Ωerr = max

{∣∣∣∣R̄0 −KDR

⌊
R̄0

KDR

⌋∣∣∣∣ ,

∣∣∣∣R̄1 −KDR

⌊
R̄1

KDR

⌋∣∣∣∣} +

(M − 1) ∗ max
qi,ri,j

∣∣∣c(qi) ri,j −KIRKDR

⌈
c(qi)ri,j

KIRKDR

⌉∣∣∣
= KDR + (M − 1)KIRKDR (11)

If we now substituteKIR = K/KDR into (11), we get:

Ωerr = KDR + (M − 1)K (12)

Hence Ωerr is a linear increasing function ofKDR, i.e.
we should letKIR = K to minimize Ωerr for fixed K.
Depending on implementation, in practice, we may need to
use a largerKDR to reduce the amount of memory needed for
the DP tables, each of dimensionO(MEmaxQR̄0R̄1K

−2
DR).

So a practical rounding factor selection strategy to achieve a
complexity scaling factor ofK2, K = KDRKIR, is:

1) Select the smallestKDR ∈ R that sufficient memory can be
allocated for DP tables.

2) GivenK andKDR, calculateKIR :=
⌈

K
KDR

⌉
.

VI. EXPERIMENTATION

A. Experiment Setup

To test the optimization algorithm developed in Section IV,
we built an experimental testbed using network simulator 2
(ns2) [13]. For the network, we use a simple network graph,
shown as a snap shot of network animator (NAM) in Figure
5. First, we constructed a node each for both the streaming
server (node 0) and the client (node 1). To simulate different
network path packet loss characteristics, we constructed four
application-level forwarding agents (node 2-5), simulating the
role of application nodes in a content delivery network, whose
sole purpose is to forward packets to the client upon packet
arrival from the server. Different network packet losses were
simulated using an independent loss model of varying loss
parameter values on the links from the forwarding agents to

the client. This resulted in four paths of different packet loss
rates.

We did not implement levels of quality-of-service (QoS) at
the network layer in the experiment. Instead, we manually set
the loss rate of the second path to be the effective packet loss
rate if Reed-SolomonRS(3, 2) — recall that FEC schemes
based on Reed-Solomon codes can correct as many losses
as the number of redundancy packets [14] — is used over
a channel with raw packet loss rate of the first path. We then
manually enforced a combined rate constraintR̄0 for both
first and second path. This is essentially equivalent to a single
virtual path with one constraint and two QoS classes. We
applied the same methodology to the third and fourth path
create a second virtual path with rate constraintR̄1 and two
QoS classes. We performed all our experiments using this two-
virtual paths, two-QoS-level network graph.

At the application side, we use H.264 version JM4.2 [1]
to encode the 100-frame QCIF (176 × 144) news sequence,
sub-sampled in time by2, at quantization parameter31 and30
for I-frames and P-frames, respectively. I-frame frequency is
once every ten frames, and we optimized10 frames at a time,
i.e. one I-frame plus nine P-frames. To generate ratesri,j ’s as
input to the optimization algorithm, we iteratively force each
predicted frameFi to use reference frameFi−t for motion
prediction during iterationt = {1, 2, 3, 4, 5}. The resulting
coding rate isri,i−t. We assume a predicted frameFi will
use a reference frame no further back in time thanFi−5, or
simply Emax = 5. The resultingri,j ’s are loaded into ns2 as
a preprocessing step prior to optimization.

B. Numerical Results 1: RQP Selection Comparison

For the first set of experiment, we show that our opti-
mization, as a streaming optimization scheme, has practical
merits and out-performs a competing ad-hoc scheme. As
previously mentioned, we assume two virtual paths each
with two levels of QoS: regular packet transmission, and
forward error correctionRS(3, 2) protected. First, we fixed
the combined bandwidth of the two virtual paths,R̄0 + R̄1,
at 55kps. Rounding parametersKDR andKIR were constant
at 100 and 1, respectively. By varying the share of55kbps
bandwidth to the first virtual path bandwidth̄R0, we tracked
the corresponding performance at the client in percentage of
correctly decoded frames. A frameFi is deemed correctly
decoded iff Fi is correctly deliveredand all its dependent
frames are correctly decoded. The sequence was replayed 1200
times for an averaging effect. Two trials of different packet loss
rates of the two virtual paths were performed:(0.06, 0.10) and
(0.04, 0.08).

We compared our optimization scheme to an ad-hoc scheme
we call MD-greedy : to choose reference frames, it divides
the frames into groups of even frames and odd frames so
that frame Fi uses Fi−2 as reference, with the exception
of F1 which usesF0, and F0 which is an I-frame and has
no reference frame. This essentially creates multiple (two)
descriptionsof the video that are independently decodeable
(with the exception of odd frames’ dependency onF0). To

0 1 2 3 4 5 6

x 10
4

0.7

0.75

0.8

0.85

0.9

0.95

path 0 bandwidth

p
e
r
c
e
n
t
a
g
e

o
f

c
o
r
r
e
c
t
l
y

d
e
c
o
d
e
d

f
r
a
m
e
s

Performance vs. Path Bandwidth for Fixed Total Bandwidth

trial 1-opt

trial 1-MD-greedy

trial 2-opt

trial 2-MD-greedy

Fig. 6. Streaming Performance for varying Path 1 bandwidth for fixed total
bandwidth. Packet loss rates for paths (1, 2) in trials 1 and 2 are (6%, 10%)
and (4%, 8%), respectively.

choose transmission path, even frames will use virtual path 0
and odd frames will use virtual path 1. If the rate budgets
R̄0 and R̄1 do not permit this path selection, then frames
at the end of the dependency chains will be switched to the
other path until the budget is met. To choose level of QoS,
MD-greedy uses a water-filling method that raises the QoS
level of the frames in the front of the dependency chains as
much as possible until the budgets̄R0 and R̄1 are empty.

The performance as a function of the first virtual path
bandwidthR̄0 is shown in Figure 6. First, we see that the two
performance curves ofMD-greedy is essentially a shifted
version of the other. This is expected, asMD-greedy ’s RQP
selection depends solely on the bandwidth budget and not
network loss rates. On the other hand, at a particular network
settingopt dynamically performs RQP selection based on all
observable factors including bandwidth budgets and network
loss rates. Hence the two performance curves ofopt have
distinct shapes. Second, we see that our optimizationopt
always outperformed the ad-hoc schemeMD-greedy : in
the first trial, opt outperformedMD-greedy by 3.74% to
13.82%, and the second trial, by2.16% to 12.28%. In both
trials, we see that the performance increased asR̄0 increased.
This is intuitive since the raw packet loss rate in both trials
was smaller for virtual path 0 than path 1.

C. Numerical Results 2: Performance / Complexity Tradeoff

In the second experiment, we held the bandwidth of the
two virtual pathsR̄0 and R̄1 constant at20kps and 35kbps,
respectively, DP index rounding parameterKIR constant at1,
and variedKDR to observe the tradeoff between performance

0 200 400 600 800 1000 1200
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

DP dimension rounding parameter

p
e
r
c
e
n
t
a
g
e

o
f

c
o
r
r
e
c
t
l
y

d
e
c
o
d
e
d

f
r
a
m
e
s

Performance vs. DP dimension rounding paremeter

trial 1

trial 2

Fig. 7. Quality degradation as dimension rounding parameter (KDR)
increases.

and complexity; recall the complexity of the optimization
is O(MEmaxQR̄0R̄1K

−2
DRK−2

IR). Again, we performed two
trials of different packet loss rates of the two virtual paths:
(0.06, 0.10) and (0.04, 0.08). The performance as a function
of KDR for both trials can be seen in Figure 7.

We see in Figure 7 that indeed as DP dimension rounding
factor KDR increased, the quality of the solution suffered
due to rounding and the performance decreased for both
trials. What is more interesting is that the curves are not
stepwise strictly decreasing. This can be attributed to the
fact that rounding is a non-linear operation, meaning that the
precise degree of the rounding error will depend on actual
numbersri,j ’s, R̄0 and R̄1 as well asKDR. The general
downward trend of the curves, however, is in agreement with
our analysis in Section V-A that performance is in general
inversely proportional to rounding factorKDR.

D. Numerical Results 3: Dimension Rounding vs. Index
Rounding

In the third experiment, we seek to determine the merits
of DP index rounding as opposed to DP dimension rounding
for given algorithmic complexity. We held the loss rate and
bandwidth of the two virtual paths constant at(0.06, 0.1) and
(30kbps, 35kbps), respectively. We variedKIR but kept the
complexity reduction factorK = KIR ∗ KDR constant by
adjustingKDR = K/KIR. Recall thatKIR must be an integer
while KDR needs not be. The result plot for three different
values ofK is shown in Figure 8.

We first note in Figure 8 that as the complexity reduction
factor K decreased, the performance curve correspondingly
moved up — i.e. performance increased. This agrees with
our observation in previous part 2 of the experiment that
performance is inversely proportional to complexity reduction
factor. Second, in all three cases, as DP index rounding
factorKIR increased for fixedK, the performance increased.
This agrees with our analytical conclusion in Section V-D

1 2 3 4 5 6 7 8 9 10

0.88

0.89

0.9

0.91

0.92

DP index rounding K
IR

p
e
r
c
e
n
t
a
g
e

o
f

c
o
r
r
e
c
t
l
y

d
e
c
o
d
e
d

f
r
a
m
e
s

Performance vs. DP Index Rounding Factor

K = 2347

K = 1897

K = 1369

Fig. 8. Comparison of Index Rounding and Dimension Rounding for different
values ofK = KIRKDR.

that becauseKIR has smaller maximum error thanKDR,
in general it is better to useKIR as opposed toKDR to
reduce complexity. We do observe, however, that the increase
in performance of usingKIR as oppose toKDR level off and
no further improvement can be seen beyond a certain point.

VII. C ONCLUSION

In this paper, we consider optimized streaming for H.264
video over multiple QoS levels and multiple transmission paths
of different loss characteristics. In particular, we presented
an optimization scheme that maximizes the expected number
of correctly decoded frames at the receiver by selecting the
near-optimal reference frame, QoS level and transmission path
for each predicted frame. The optimization is novel in the
sense that unlike convention Lagrangian approaches, it uses a
mixture of two rounding techniques, DP dimension rounding
and DP index rounding, to gracefully trade off complexity
with the quality of the obtained solution. Experiments show
improvement over a static reference frame selection scheme.

APPENDIX

To prove feasibility of approximate solutionsA in I and
the performance bound (7), we essentially need to prove two
axioms: i) thatsA satisfies original network constraints (3),
ii) that s satisfies super-optimal network constraints (6) inIS .
To prove the first axiom, we first let the approximate solution
be sA =

(
{xA

i,j}, {qA
i }, {tAi }

)
. Given sA satisfies the first

network constraint in (5), we can write:

M∑
i=1

∑
{j|ei,j∈E}

x
A
i,j(1− t

A
i)

⌈
c(qA

i) ri,j

KDR

⌉
KDR ≤

⌊
R̄0

KDR

⌋
KDR

M∑
i=1

∑
{j|ei,j∈E}

x
A
i,j(1− t

A
i)

c(qA
i) ri,j

KDR

KDR ≤
R̄0

KDR

KDR (13)

where (13) holds sincec(qi)ri,j

KDR
≤

⌈
c(qi)ri,j

KDR

⌉
and Rt

KDR
≥⌊

Rt

KDR

⌋
. Similar steps can be done for the second network

constraint. Therefore the first axiom holds andsA is feasible
in I. Using similar argument, one can show easily the second
axiom: thats is feasible inIS . By optimality of sS in solution
space ofIS , we have:

obj(sS) ≥ obj(s) (14)

By subtracting obj(sA) and taking absolute value on both
sides, we get (7).

REFERENCES

[1] “The TML project web-page and archive,” http://kbc.cs.tu-
berlin.de/ stewe/vceg/.

[2] S. Blakeet al., “An architecture for differentiated services,” December
1998, IETF RFC 2475.

[3] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya, “Long
thin networks,” January 2000, IETF RFC 2757.

[4] T. Wiegand, N. Farber, and B. Girod, “Error-resilient video transmission
using long-term memory motion-compensated prediction,” inIEEE J.
Select. Areas. Comm., vol. 18, no.6, June 2002, pp. 1050–1062.

[5] Y. Liang, M. Flieri, and B. Girod, “Low-latency video transmission over
lossy packet networks using rate-distortion optimized reference picture
selection,” in IEEE International Conference on Image Processing,
Rochester, NY, September 2002.

[6] J. Apostolopoulos, “Error-resilient video compression via multiple state
streams,” Proc. International Workshop on Very Low Bitrate Video
Coding (VLBV’99), pp. 168–171, October 1999.

[7] P. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized
media,” Microsoft Research, Tech. Rep. MSR-TR-2001-35, February
2001.

[8] Y. Liang, E. Setton, and B. Girod, “Channel-adaptive video streaming
using packet path diversity and rate-distortion optimized reference
picture selection,” inIEEE Workshop on Multimedia Signal Processing,
St. Thomas, US Virgin Islands, December 2002.

[9] G. Cheung and C. Chan, “Jointly optimal reference frame & quality of
service selection for h.26l video coding over lossy networks,” inIEEE
International Conference on Multimedia and Expo, Baltimore, MD, July
2003.

[10] G. Cheung, “Near-optimal multipath streaming of h.264 using reference
frame selection,” inIEEE International Conference on Image Process-
ing, Barcelona, Spain, September 2003.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” inACM SIGCOMM, Stock-
holm, Sweden, August 2000.

[12] M. Garey and D. S. Johnson,Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[13] “The network simulator ns-2,” August 2003, release 2.26,
http://www.isi.edu/nsnam/ns/.

[14] P. Frossard and O. Verscheure, “Joint source/FEC rate selection for
quality-optimal MPEG-2 video delivery,” inIEEE Trans. Image Pro-
cessing, vol. 10, no.12, December 2001, pp. 1815–1825.

