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Estimating Visual Attention using Inter-Frame Saliency Map Analysis for
Gaze-based Video Streaming
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Abstract: A viewer's ability to perceive details deteriorates as function of the viewing angle away from his eye gaze
focal point. Thus, a smart video coding scheme can allocate more bits to the spatial area enclosing his gaze focal point
(region of interest ROI) and fewer bits elsewhere, without any degradation in perceived visual quality. In a
server-client streaming scenario, however, a viewer's eye gaze must be predicted one round-trip time (RTT) into the
future to avoid delay between ROI-based bit allocation at server and viewer’s gaze movements at client. In our
previous work, we devised a Hidden Markov Model (HMM) to predict a viewer's gaze focal point one RTT into the
future, using real-time collected eye-gaze data as input. However, HMM parameters must be trained a priori using
acquired gaze data. In this work, leveraging on recent research in visual saliency maps, we derive HMM statistics by
analyzing saliency maps offline. Our analysis can also detect an abrupt change in gaze statistics, so that a video can be
appropriately segmented into clips, each with stationary gaze statistics.

1 Introduction
It is known that a viewer's ability to perceive visual
details deteriorates as a function of the viewing angle away
from his eye gaze focal point. Thus, a smart video coding
scheme can allocate more bits to the spatial area enclosing
his gaze focal point (region of interest ROI) and fewer bits
elsewhere, without any degradation in perceived visual
quality. In a server-client streaming scenario, however,
given a viewer's eye gaze can change often, even if gaze is
tracked in real-time at client, the response in reallocation of
bits at server will necessarily suffer a round-trip time
(RTT) delay. Ino ur previous work [1], we devised a
Hidden Markov Model (HMM) to predict a viewer's gaze
focal point one RTT into the future, using real-time
collected eye-gaze data as input, for smart bit allocation at
server. Our experiments show that bit rate can be reduced
by up to 21% without noticeable visual quality degradation
when end-to-end network delay is as high as 200ms. HMM
must be trained off-line to derive suitable parameters for
each video clip, however, leading to a complex process.

In this work, leveraging on recent research in visual
saliency maps [2]—estimation ofvi ewers' ROI via
synthesis of detected low-level features in the video like
motion and flickers—we derive HMM  statistics by
saliency maps offline without

analyzing collecting

eye-gaze data. Our methodology is simple and intuitive,
and has been shown to be effective for a range of videos
with drastically different gaze statistics. Our analysis can
also detect an abrupt change in gaze statistics (by
calculating the Kullback-Leibler divergence of neighboring
frame statistics), so that av ideo can be appropriately

segmented into clips, each with stationary gaze statistics.

2 HMM for Eye-gaze Prediction

Fig.1: HMM for eye-gaze movement

We first discuss how we model eye gaze of a video viewer
using a hidden Markov model (HMM). An HMM models
transitions of sequential states X,’s in discrete time, where
X, 1s the state variable at time n. Each X, can take on one
of three possible latent states. State F (fixation) models the
case when eye gaze is fixated at a stationary object. State P
(pursuit) models the case where gaze follows motion of a
moving object. State S (saccade) models the case where
gaze rapidly transitions from one fixation point to another.
Broadly speaking these are the three major types of eye

movements. See Fig.1 for an illustration.
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An HMM is Markovian in that the determination of state
variable X, ; at time n+1/ depends solely on the value of X,
of previous time n. In particular, given X,=i, the
probability of X,.,=j is represented by state transition
probability «a;; of switching from state i to j. «;;’s are
the HMM parameters we sought to derive via visual
saliency map analysis next.

3 Analysis of Saliency Maps

We first compute visual saliency maps for all video
frames using methodology in [2]. We then normalize each
one, so the sum of all saliency values in a frame equals to
one. We then find a set of saliency objects in each map:
spatially connected regions with per-pixel saliency value
larger than a pre-defined threshold ¢ ;. As an
approximation, we assume these are the only objects a
viewer will observe in the given frame. A viewer may of
course have gaze location outside of these saliency objects;
we assume such occurrence means the viewer is in the
process of switching from one saliency object to another;
i.e., he is in saccade state S at this frame time.

We can establish correspondence among saliency objects
in consecutive frames by matching RGB pixel values of
candidate objects. We can then use motion information of
corresponding saliency objects in consecutive frames to
label each object either as a stationary or moving object. A
viewer's gaze following a saliency object that is stationary
or moving will be in state F or P, respectively.

Having identified saliency objects across frames, we
now derive state transition probabilities «;;’s in the eye
gaze HMM. Essentially, we write equations to establish
consistency in probabilities during HMM state transitions
from objects in frame ¢ to objects in frame ¢+/, relative to
the sizes of saliency objects in two frames. See [3] for
details.

4 Segmenting Video via KL Divergence

We can determine how gaze statistics are changing in a
video by computing the Kullback-Leibler (KL) divergence,
treating consecutive motion-compensated saliency maps as
probability density functions. If the computed KL
divergence exceeds a certain threshold 7 g, then we can

divide the video into segments of different gaze statistics.

5 Results

We compare the computed steady probabilities = for
state S (a measure of how often aviewer switches gaze
location) using saliency map analysis with ones trained
using gaze traces for two MPEG test sequences, Silent and
Table. In Table 1, we see that the two sets of probabilities

are similar, validating our saliency map analysis approach.

Table 1: HMM Parameter Comparison.

s
Gaze trace (silent) 0.0628
Saliency map (silent) 0.0788
Gaze trace (table) 0.4318
Saliency map (table) 0.4767

We have also compute the KL divergence for a
300-frame video that is a concatenation of 3 100-frame
segments: 100 frames of Silent, 100 frames of 7able, and
100 frames of Silent. Because of the change in content at
frame 101, and 201, we expect computed KL divergence
using computed motion-compensated saliency maps to
have large values at these locations. In Fig. 2, we indeed
see that this is the case, showing the utility of using KL
divergence to divide a video into different segments of

different statistics.
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Fig.2: Kullback-Leibler(KL) divergence
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