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Presentation Outline 
 • Background & Motivation (3D, not your mother’s 2D) 

• 3D Video representation / coding: 
• Depth map coding 

• HEVC tools for depth maps 
• Graph-based Transform (GBT) for depth maps 

• Depth map denoising 
• Denoising + compression? 
• Why code depth images? 

• 3D Video streaming: 
• Video compression with flexible decoding for interactive streaming 
• Loss-resilient texture-plus-depth video streaming (skip) 

• 3D view synthesis: 
• Robust view synthesis for free viewpoint video 
• Synthesized image interpolation for z-dimension camera movement 
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Biography (how I got started in 3D) 

• MS from UC Berkeley in EECS in 1998. 
• Thesis:  Joint source / channel coding for wireless video. 

• PhD from UC Berkeley in EECS in 2000. 
• Thesis:  Computation / memory / distortion tradeoff in signal compression. 

• Senior researcher in HP Labs Japan from 2000 to 2009. 
• Topic 1:  2D video coding & streaming optimization (2000~2007). 
• Topic 2:  Interactive multiview video, w/ Prof. Ortega (2007~). 

• Faculty in NII from 11/2009 to now. 
• Topic 1:  Immersive visual communication: 

• Free viewpoint video coding, streaming, view synthesis. 

• Topic 2:  Visual saliency & gaze analysis. 
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Multiview Video Streaming 
• Interactive view-switches among captured camera viewpoints. 
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Free Viewpoint Video Streaming 

8 MMSP'13 Plenary 10/02/2013 
*Courtesy of KDDI Laboratories, Japan 

• Interactive view-switches to any virtual camera viewpoints. 
 



Immersive Communication 

• Goal:  ultra-realistic networked visual communication. 

• Application:  HQ teleconferencing, tele-medicine, 
distance learning. 

• Features: 
1. Gaze-corrected view. 
2. Motion Parallax: fast, smooth  interactive view-

switching triggered by tracked observer’s head 
position. 

3. Low-delay, loss-resilient network transmission. 
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Potential Impact 

• Immersive Communication  ≠  Skype calls! 
• Non-verbal means (postures, gestures) are important. 
• Eye-contact is important. 
• Depth perception via motion parallax. 

• Substitute for face-to-face meetings. 
• Reduce travel cost, improve productivity. 
• Reduce carbon footprints. 
• Example apps:  HQ teleconferencing, tele-medicine. 

• Enhance Virtual Reality is 1 of 14 grand challenges chosen 
by National Academy of Engineering for 21st century. 
• Treatment of social anxieties, phobias, children autism. 
• Training & teaching:  virtual surgeries, etc. 
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3D Video Representation 
• Texture + depth maps from 1 or more 

camera viewpoints. 
• Texture map:  color image like RGB. 
• Depth map:  per-pixel distance bt’n captured 

objects in 3D scene & capturing camera.  

• Synthesis of intermediate views via depth-image-
based rendering (DIBR). 

• Computation-efficient. 
• Unlike model-based approach, complexity not 

scene-dependent. 
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Fraunhofer 
Heinrich Hertz Institute 
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Coding of depth or disparity maps 
• Inter-view and additionally  

inter-component correlations are 
exploited by prediction-based coding 

• Tools: 
− Disparity-compensated prediction for 

dependent view 
− Depth modeling modes 
− Motion parameter inheritance 
− Synthesized view distortion 

optimization 
 

 

Coding of depth maps 

08.10.2013 13 K. Müller, “3D High-Efficiency Video Coding for Multi-View Video and Depth Data,” IEEE Transactions on Image Processing, Sep. 2013.  
Courtesy of Fraunhofer HHI, Berlin, Germany. 

view 0 view 1 
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Depth Modeling Modes 
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Depth map properties: 

• Sharp edges 
representing object 
borders 

• Large areas of slowly 
varying values 
representing object 
areas 

• Edges in depth maps are 
correlated with edges in 
video pictures 

New intra prediction modes 
• Representation of depth edges 
• Partition block into two regions with constant sample 

values 
• Prediction based on co-located texture block 
• Optional transform coding of residual 

P. Merkle et al., “Coding of depth signals for 3D video using wedgelet block segmentation with residual adaptation,“ ICME 2013. 
Courtesy of Fraunhofer HHI, Berlin, Germany. 
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Depth Modeling Modes – Intra Wedgelet 
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Explicit Wedgelet signaling 
• Wedgelet partition of current block is estimated  

at the encoder by minimum distortion search  
using original depth signal 

• Pre-defined lists of Wedgelet patterns for  
fast search and efficient signaling 

 

Intra-predicted Wedgelet partitioning 
• Separation line for current block is predicted from 

neighboring blocks 
• Prediction from Wedgelet block by 

continuing separation line in current block 
• Prediction from conventional intra block by 

combining direction and maximum slope point 
• Transmission of line end refinement 

P. Merkle et al., “Coding of depth signals for 3D video using wedgelet block segmentation with residual adaptation,“ ICME 2013. 
Courtesy of Fraunhofer HHI, Berlin, Germany. 
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Depth Modeling Modes – Inter-component 
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Inter-component prediction of Wedgelet 
• Wedgelet partition of current block is predicted  

from co-located block of reconstructed video  
picture by minimum distortion search 

• Disable mode when co-located texture block 
has insignificant texture information 
(using mean absolute difference) 

 

Inter-component prediction of Contour 
• Contour partition of current block is predicted  

from co-located block of reconstructed video  
picture by thresholding segmentation 

• Disable mode when co-located texture block 
has insignificant texture information 

P. Merkle et al., “3D video: Depth coding based on inter-component prediction of block partitions,“ PCS 2012. 
Courtesy of Fraunhofer HHI, Berlin, Germany. 
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Motion Parameter Inheritance 
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reference picture 

current  
picture 

inheritance of 
partitioning and 

motion data 

transmission of new 
partitioning and 

motion data 

Inheritance of partitioning and motion data from co-located video block 
• Block-adaptive signalling 
• Use merge syntax: Insert as first entry in candidate list 
• Only supported if complete co-located video block is inter-coded 

M. Winken et al., “Motion vector inheritance for high efficiency 3D video plus depth coding,“ PCS 2012. 
Courtesy of Fraunhofer HHI, Berlin, Germany. 
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Synthesized view distortion optimization 
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G. Tech et al., “3D video coding using the synthesized view distortion change,“ PCS 2012. 
Courtesy of Fraunhofer HHI, Berlin, Germany. 
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Synthesized view distortion optimization 
• Coding artifacts in depth data are only indirectly perceivable in synthesized 

video data 
• Decoded depth map itself is not visible 
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Synthesized view distortion optimization 
• Coding artifacts in depth data are only indirectly perceivable in synthesized 

video data 
• Decoded depth map itself is not visible 

 
 Consider errors in synthesized views in encoder  
 

Encoder control 

08.10.2013 18 G. Tech et al., “3D video coding using the synthesized view distortion change,“ PCS 2012. 
Courtesy of Fraunhofer HHI, Berlin, Germany. 
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   Graph-Based Transform (GBT) 

 
 

 
• An adaptive transform that avoids filtering across edges 

 
• Equal to KLT under some specific statistic model when         represents pixel correlation 

 
 

G. Shen, W.-S. Kim, S.K. Narang, A. Ortega, J. Lee, and H. Wey, “Edge-adaptive transforms for efficient depth map  
coding,” IEEE Picture Coding Symposium, Nagoya, Japan, December 2010. 
 
D. Shuman, S.K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The Emerging Field of Signal Processing on Graphs,” 

IEEE Signal Processing Magazine, pp.83-98, May 2013. 
 
 

graph connectivity 
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    Depth Map Coding using Graph-Based Transform 

 
• Depth map: Piecewise Smoothness (PWS) 

 
• GBT gives compact compression for depth maps   
      - sparse transform domain representation 
         (avoid filtering across edges)  
       - simple transform description 
         (the statistics of depth maps is simple: pixel correlation is either 0 or 1) 

 
• Example 

 
 
 
 
 

• Complexity issue: real-time eigen-decomposition, only operate on small blocks  
 
 

              

GBT DCT 

a 4x4 block 
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   Multi-resolution Graph-based Transform 

•  Objective: Encode large blocks with GBT in low complexity 
 

•  Key Idea  
  - Encode sharp edges in original high resolution:  
                                                  preserve sharpness 
 
  - Encode smooth surfaces in low-pass-filtered and  
    down-sampled low resolution:  
                                 save bits & reduce complexity 
 
  - At the decoder, the LR surfaces are up-sampled and interpolated while respecting     
    the losslessly encoded HR edges. 
 
W. Hu, G. Cheung, X. Li and O. Au, "Depth Map Compression using Multi-resolution Graph-based Transform for Depth-image-based 
Rendering," IEEE International Conference on Image Processing, Orlando, FL, September 2012.  
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   Experimentation 

LR-DCT MR-GBT 

Experimental Setup 
- H.264/AVC Reference Software JM17.1 
- Test images: Middlebury multiview image sets      
- QP: 24, 28, 32, 36 
- Distortion metric: PSNR of synthesized views 
 

 
      

reduce bitrate by 68% compared to HR-DCT 
                   and  55% compared to HR-GBT 
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Video Enhancement for Depth Camera 

 Problem: Depth images 
from ToF camera are low-
resolution, blurred, noisy 

 Setting: Given a noisy, low-
resolution depth map DL and  
a registered noise-free, 
high-solution color image I 

 Estimate DH 

25 *Courtesy of Prof. M. Do, UIUC, USA 



Proposed Method: Weighted Mode Filtering 

 Generating joint histogram 
• g(p): color value at pixel p 

• f(p): depth value at pixel p 

• fG(p): enhanced depth value at pixel p 

• GI, GS, Gr: Gaussian function 

 

26 

D. Min, J. Lu, and M. N. Do, “Depth video enhancement based on weighted mode filtering,” IEEE Trans. on 
Image Processing, 2012. 

*Courtesy of Prof. M. Do, UIUC, USA 

neighbors of pixel p 

dth bin 

pixel p 

spatial Gaussian 
color Gaussian 

err Gaussian 



Up-sampling results for low-quality depth image (from ‘Mesa 
Imaging SR4000’, 176x144) with corresponding color image 

(from ‘Point Grey Flea’, 1024x768). 

Result Comparison 

*Courtesy of Prof. M. Do, UIUC, USA 
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Depth Processing in 3D Video 
Communication 

Depth Capturing Data Compression & transmission 3D imaging tasks 3D scene 
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Arbitrary 
View Synthesis 

Rendering 

understanding 

• Pipeline of 3D Video Communication System  

• At encoder, depth processing  means denoising & 
compression. 

29 *W. Sun et al, “Rate-distortion Optimized 3D Reconstruction from Noise-corrupted Multiview Depth 
Videos,” ICME, 2013. 
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1. Denoising 
– Acquired depth maps inherently noisy. 

 

 

• Two related but different processing problems concerning 
depth maps (after acquisition): 

30 
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Separate vs. Joint Approach 
• Separate 2-step approach: 

1. Denoise depth maps optimally (e.g. 
MAP formulation) regardless of 
rep. size; 

2. compress computed MAP surface 
in deterministic way via 
conventional codec. 

 
• Joint approach by performing 

denoising / compression as one: 
– Problem inherently probabilistic. 
– Can compress large noise variance 

samples aggressively. 
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x(t) 

x 

compressed signal 
MAP solution 

low noise variance samples 

high noise variance samples 



 

 

 

Rate-constrained Estimation 

Rate-constrained 
MAP 

Rate Term 

32 

• Distortion term: select s to agree w/ observations. 

• Prior term: select s to agree w/ prior.  

• Rate term:  select s that requires few bits for representation. 

)yPr(
)sPr()s|yPr()y|sPr( =

RR ≤)s(

• Given observed depth maps y = [y1, y2, …], find optimal 3D surface s. 

Bayes Rule 

)sPr()s|yPr(max
s

s.t. 

)s()sPr(log)s|yPr(logmin
s

Rλ+−−

search space  
for s 

Rate-constrained  
search space for s 



Experimentation 

Fig. PSNR of synthesized virtual 
views at decoder versus coding 
rate for Lovebird1 (top) and 
Balloons (bottom). 

Fig. Top Row (Lovebird1): synthesized virtual view 5 using texture and depth 
maps at view 4 and 6. Depth maps are of 48kbps: Unprocessed (left), ML-
solution (center), RD-optimized (right). Bottom Row (Balloons): synthesized 
virtual view 2 using texture depth maps at view 1 and 3. Depth maps are of 
100kbps: Unprocessed (left), ML-solution (center), RD-optimized (right). 

33 

Improved virtual view Up to 2.42dB gain in PSNR 
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EPFL – Signal Processing Laboratory (LTS4) 
 

http://lts4.epfl.ch 

Graph-based representation 

 Find an alternative to depth-based representation: 
 

 Main idea 
- describe the inter-view pixel connections as links in a graph 

depth + color 
capture 

(Collaboration,  Antonio Ortega, USC, 
USA) 

http://lts4.epfl.ch
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- view synthesis prediction 
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Known at the encoder 

In that case, luminance is made of: 
- some reference frame 
- some residuals after view  
synthesis prediction 
 

http://lts4.epfl.ch
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EPFL – Signal Processing Laboratory (LTS4) 
 

http://lts4.epfl.ch 

Depth images 
characteristics 

 Depth-based schemes: 
- captured luminance and depth signals at several reference viewpoints 
- depth-based interpolation of intermediate viewpoint at decoder side 

 Depth-based representation drawbacks: 
- an error in depth signal (estimation, compression) leads to spatial shift on the synthesized 

viewpoint 
- the induced error is difficult to model 

Captured luminance + depth images 
viewpoint 1 

3D space 

Interpolated image 
viewpoint 2 

pixel 

depth error 
3D point 

true pixel projection 
shifted pixel projection 

http://lts4.epfl.ch
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images 

luminance 

graph 

Representation Coding decoding 
Reconstruction 

luminance 
rate 

graph 
rate 

channel 

replace depth values by 
connections between pixels of 
different views 

distortion D 

N reconstructed 
images 

- one reference frame 
- innovation pixels whose 
positions are given by the graph 

http://lts4.epfl.ch
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Motivation: Pixel Classification 
 Pixels categories 

- (a) : appearing pixels 
- (b) : disoccluded pixels 
- (c) : occluded pixels 
- (d) : disappearing pixels 

 Warped image description 
- links between these pixels and the reference image 

 

 Proposed graph-based representation 
- links back to previous frames 
- OR explicit new pixels 

http://lts4.epfl.ch
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Graph-based representation 
GRAPH RULES 

 Only new pixels appear in higher levels 

 Connections link these pixels with their neighbor in the previous 
level 

 The (a) appearing and (b) occluded pixels are described in 
the first image/level they appear 

  The (c) disoccluded and (d) disappearing pixels are 
represented in the graph by connections with no 
luminance values 

Describe right view with: 
- a maximum of references to left view pixels 
- Only « new » pixels 

http://lts4.epfl.ch
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View reconstruction 

 Reconstruction policy: 
- start at the level that is to be reconstructed and to fill all the 

appearing pixels 
- follow the connections to upper levels when they occur 
- go down to lower level when it is not possible to continue in the 

current level 

http://lts4.epfl.ch


Summary 
 Graph links between views: 

- Provide a description of the geometry 
- Give an information of neighborhood between pixels 
- Permits a better control of compresion error 

42 



Summary: 
3D Video Representation / Coding 

• Geometry Representation of 3D scene for Image 
Synthesis at Receiver. 

• Depth Images: 
• Piecewise smooth. Compact representation? 
• Auxiliary info. How to characterize err? 
• Joint denoising / compression? 

• Graph-based representation? 
 

43 MMSP'13 Plenary 10/02/2013 



Presentation Outline 
 • Background & Motivation (3D, not your mother’s 2D) 

• 3D Video representation / coding: 
• Depth map coding 

• HEVC tools for depth maps 
• Graph-based Transform (GBT) for depth maps 

• Depth map denoising 
• Denoising + compression? 
• Why code depth images? 

• 3D Video streaming: 
• Video compression with flexible decoding for interactive streaming 
• Loss-resilient texture-plus-depth video streaming (skip) 

• 3D view synthesis: 
• Robust view synthesis for free viewpoint video 
• Synthesized image interpolation for z-dimension camera movement 
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 Multiview Video 
• Closely spaced cameras capturing pictures 

periodically and synchronously. 
• The perception of depth via motion parallax. 

Background to Interactive Multiview Video Streaming 

 Interactive Multiview Video Streaming (IMVS) 
 A client can periodically request one of many captured views, as 

video is played back in time. 
 To reduce transmission BW, transmit only views interactively 

selected by client. 
 The encoding is done once at the server for a possibly large group 

of clients. 

45 
*G. Cheung, A. Ortega, N.-M. Cheung, “Interactive Streaming of  stored multiview video 
Using redundant frame structures,” TIP, March 2011. 



Background to Interactive Multiview Video Streaming 

 Multiview Video Coding (MVC) 
 Strong correlation both in temporal and inter-view domains. 
 Efficiently encoding frames of all views in rate-distortion manner. 

 Are MVC frame structures suitable for IMVS? 
 Insufficient decoding flexibility for 

interactive view-switching. 
 Multiple views transmitted but only one 

single view displayed. 
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IMVS:  1st attempt w/ I + P-frames 

 Frame Structure Optimization [G. Cheung MMSP’08, PV’09] 
 Using I- and P-frames, design redundant structures trading off 

transmission rate and storage. 
 Create multiple decoding paths for likely view transitions. 

(a) 

(b) 

(c) 

47 
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time 



IMVS:  2nd attempt w/ merge frame 
 Merge Frame (M-frame) 

 Identical reconstruction: an identical decoded frame for a set of 
possible predictors at streaming time. 

 Two novel DSC-based implementations of M-frame [N.-M. Cheung 
PCS’09, G. Cheung ICIP’09]. 

 Application of M-frame in IMVS scenario, with superior performance 
over I-frame [G. Cheung TIP’11]. 

(a) (b) 

48 
*W. Dai, G. Cheung, N.-M. Cheung, A. Ortega, O. Au, “Rate-Distortion Optimized Merge Frame 
Using Piecewise Constant Functions,” ICIP’13. 
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 Two novel DSC-based implementations of M-frame [N.-M. Cheung 
PCS’09, G. Cheung ICIP’09]. 

 Application of M-frame in IMVS scenario, with superior performance 
over I-frame [G. Cheung TIP’11]. 

(a) (b) 

48 

Recent Advance:  developed RD-optimal merge frame without bit-plane 
coding and channel coding in conventional DSC. (best student paper @ ICIP 2013). 

*W. Dai, G. Cheung, N.-M. Cheung, A. Ortega, O. Au, “Rate-Distortion Optimized Merge Frame 
Using Piecewise Constant Functions,” ICIP’13. 
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IMVS:  3rd attempt w/ network delay 
 IMVS with fixed network delay 

 Problem: view-switch request suffers one RTT delay. 
 Key idea: upon each feedback, additional data are sent to cover all 

view positions client could select when the data arrive at client. 
 

49 
*Xiaoyu Xiu, G. Cheung, A. Ortega, Jie Liang, “Delay-Cognizant Interactive Streaming of Multiview  
Video using Free Viewpoint Synthesis,” TMM, March 2012. 
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Summary: 
3D Video Streaming 

• High dimensional media navigation problem 
• Asymmetric info:   

• Sender knows statistical model for navigation. 
• Receiver knows exact navigation path. 

• Compression with decoding flexibility 
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Presentation Outline 
 • Background & Motivation (3D, not your mother’s 2D) 

• 3D Video representation / coding: 
• Depth map coding 

• HEVC tools for depth maps 
• Graph-based Transform (GBT) for depth maps 

• Depth map denoising 
• Denoising + compression? 
• Why code depth images? 

• 3D Video streaming: 
• Video compression with flexible decoding for interactive streaming 
• Loss-resilient texture-plus-depth video streaming (skip) 

• 3D view synthesis: 
• Robust view synthesis for free viewpoint video 
• Synthesized image interpolation for z-dimension camera movement 
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 Lossy Conversion  
• Depth Image Based Rendering (DIBR) 
• Depth Estimation from single or multiple viewpoints 

 

Conversion (FTV context) 

52 *Courtesy of Prof. P. Le Callet, UofNantes, France 



DIBR: artefacts  

53 *Courtesy of Prof. P. Le Callet, UofNantes, France 



DIBR: current quality metrics are useless 

Towards a new quality metric for 3D synthesized views assessment – in IEEE ICIP 2011 
Emilie Bosc, R.pépion, P. Le Callet, M. Köppel, P. Ndjiki-Nya, M. Pressigout, L. Morin 
 54 *Courtesy of Prof. P. Le Callet, UofNantes, France 



H. Hadizadeh, I. Bajic, G. Cheung, “Saliency-cognizant Error Concealment in Loss-corrupted Streaming Video”, ICME’2012  
(Best paper runner-up award), “Video Error Concealment Using a Computation-efficient Low Saliency Prior,” accepted to TMM, June 2013. 

Goal: Packets are dropped in network during 
video streaming. Reconstruct a missing pixel block 
b by minimizing some cost function: 

Problem: The problem is under-determined.  
Solution: Add a convex saliency term as follows: 

Advantages: 
1. Potential wrong candidates become less attention-grabbing. 
2. It serves as a true prior in an ROI-based streaming application. 

min
𝒃
𝑓𝑓𝑓_𝑒𝑒𝑒(𝒃) 

min
𝒃

{𝑓𝑓𝑓_𝑒𝑒𝑒 𝒃 + 𝜆 𝑠𝑠𝑠𝑓𝑒𝑠𝑠𝑠(𝒃)} 

Saliency-based Error Concealment 

high saliency 
region 

lost MBs 

Apply low-saliency prior  
during EC 
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Experiment: up to 3.6dB improvement in PSNR.  

Saliency-based Error Concealment 

56 
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SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Background: Free Viewpoint Video Streaming 

Background 

3D  
scene 

channel 

texture + 
depth 

2. transmit over 
bandwidth-
constrained, loss-
prone network. 

1. encode texture + depth of 2 views (left & 
right) out of N, according to the desired 
virtual view at receiver. 

3. Synthesize virtual 
view from decoded left 
and right views. 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
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Background:  Packet Loss 
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SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Background:  Packet Loss 

Background 

V0 

V1|2 

V2 

V1|0 Virtual View 

Correlated  
Loss 

Uncorrelated 
Loss 

Q: What is a good view  
synthesis strategy given  
losses in reference views? 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Retransmission of lost packets (ARQ) leads to interactive 
delay. 

Foward error correction (FEC) code is used. 
 
Unequal error protection (UEP) is applied, where more 
important regions are protected more using FEC. 

System Assumption 

System Overview 

Low salient region:  weak FEC 

High salient region:  strong FEC 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Formulation 

Formulation 

1. Identify lost 
pixels. 

2. For each lost pixel patch p, 
construct two patch candidates: 
 

• Weighted Pixel Blendng 
(WPB) 
 

• Examplar-Based Matching 
(EPM) 

3. Select between 2 
candidates: 
 
 
 
D – Expected Distortion 
Z – Computed Saliency 
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SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Low-saliency prior 

Formulation 

Formulation 

1. Identify lost 
pixels. 

2. For each lost pixel patch p, 
construct two patch candidates: 
 

• Weighted Pixel Blendng 
(WPB) 
 

• Examplar-Based Matching 
(EPM) 

3. Select between 2 
candidates: 
 
 
 
D – Expected Distortion 
Z – Computed Saliency 
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SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Weighted Pixel Blending 

WPB 

0
tX 1

tX

),(),()1(),( 1100 jivXjiXvjiS tt
v
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SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Weighted Pixel Blending 

WPB 

0
tX 1

tX

),(),()1(),( 1100 jivXjiXvjiS tt
v
t +−=

Key idea: adjust weights based on pixel reliability 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

A similar algorithm as [8] is applied. 
[8] A. Criminisi, P. Perez and C. Gomila., “Region filling and object removal by examplar-based image 

inpaiting”, in IEEE Transactions on Image Processing, September 2004, vol 13., no 9, pp 1-13. 

 
The order in which patches in the target region Ω is filled is done 
according to a priority factor P(p). 
 
 
 
 
 
 

Examplar-Based Patch Matching 

EPM 

)()()( pDpCpP =

C(p) denotes 
 confidence 

D(p) is the data term 
 which is a function of the 
 strenght of isophotes. 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

We determine the patch around a missing pixel with the 
highest priority.  
 
Then, the two possible candidates using WPB and EPM 
are seltected based on: 
 
 
 

 D() for WPB is the average estimated distortion of pixel in patch 
 

 D() for  EPM is the average estimated distortion of the copied patch 

Low-Saliency Prior 

Low-Saliency Prior 
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SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Packet Losses manifest themselves as isolated MBs 
due to FMO. 
 
Packet Losses occur only in low-saliency regions (black 
regions in the image) due to UEP. 
 

Experimental Results 

Experimental Results 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Results (uncorrelated losses) 

Experimental Results 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Results (correlated losses) 

Experimental Results 



SALIENCY-COGNIZANT ROBUST VIEW SYNTHESIS IN 
FREE VIEWPOINT VIDEO STREAMING 

Experimental Results 

Experimental Results 

Using Co-located Blocks.  
PSNR 34.70 dB 

Proposed 
PSNR 35.39 dB 



Presentation Outline 
 • Background & Motivation (3D, not your mother’s 2D) 

• 3D Video representation / coding: 
• Depth map coding 

• HEVC tools for depth maps 
• Graph-based Transform (GBT) for depth maps 

• Depth map denoising 
• Denoising + compression? 
• Why code depth images? 

• 3D Video streaming: 
• Video compression with flexible decoding for interactive streaming 
• Loss-resilient texture-plus-depth video streaming (skip) 

• 3D view synthesis: 
• Robust view synthesis for free viewpoint video 
• Synthesized image interpolation for z-dimension camera movement 
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DIBR and its difficulty with z-movement 
DIBR 
1. Texture + Depth  
2. DIBR to project known pixels  
3. Inpainting at decoder or intra-coded 

blocks sent from server to fill in pixels in 
disoccluded regions. 

 
View-switch along the z-dimension is very 
natural, but it is missing in the current 
systems. 
 
Difficulty:  
Pixels get scattered far apart 
 

P. Merkle, A. Smolic, K. Mueller, and T. Wiegand, “Multiview video plus depth 
representation and coding” in IEEE International Conference on Image Processing, San 
Antonio, TX,2007 
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Reference 
view  

Requested 
virtual view 



Our Work 

• Goal:  
Design a new interpolation method 
that supports z-dimension 
navigation  
With better quality of interpolation, 
less information is need to be sent to 
enhance the quality  
• Challenges: 

1. Distinguish between expansion 
holes and disocclusion holes 

2. How to interpolate the hole area 

70 

Example of expansion holes 
 

Disocclusion: region not 
visible in reference 
 
Expansion: low sample 
rate 



Distinguish between expansion holes and disocclusion holes 

Block based processing : 
1. construct a 

histogram of depth 
values of the 
synthesized pixels in 
the block,  

2. separate depth 
pixels into layers 

3. Convex set based 
identification 
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Expansion Hole Interpolation 

Interpolation: 
1. Construct a Graph G, with pixels as its vertices, and connect the 

vertices with weighted edges 
2. Use the eigen-vectors of the Graph Laplacian as the transform 

matrix 

72 

         Calculation of Graph Laplacian  



Expansion Hole Interpolation 

73 

Non-local means: exploit the self-similarity in the images 

Experiment results 



Summary: 
3D View Synthesis 

• Inverse 3D imaging problem 
• Not enough info for perfect reconstruction 
• Leverage on image interpolation, inpainting, super-resolution 

• Co-design with signal representation at sender? 
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Presentation Summary 

• 3D Video representation / coding: 
• Depth map coding: standard + non-conventional coding tools. 
• Depth map denoising 
• Q:  Denoising + compression?  
• Q:  Why code depth images? 

• 3D Video streaming: 
• Video compression with flexible decoding for interactive streaming 
• Q:  High-dimensional media navigation problem? 

• 3D view synthesis: 
• Robust view synthesis w/ low-saliency prior 
• Synthesized image interpolation using graph transform 
• Q:  Inverse 3D imaging problem? Co-design w/ representation? 
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Q & A 

• Contact me at:   
• Email:  cheung@nii.ac.jp 
• Homepage:  http://research.nii.ac.jp/~cheung 

 
 

• CfP for Special Issue on “Interactive Media Processing 
for Immersive Communication” in IEEE Journal on 
Selected Topics in Signal Processing. 

• Submission deadline:  April 2nd, 2014 
• Guest Editors:  Gene Cheung, Dinei Florencio, Patrick Le Callet, Chia-

Wen Lin, Enrico Magli 
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