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Abstract—Novel coding tools have been proposed recently to
encode texture and depth maps of multiview images, exploiting
inter-view correlations, for depth-image-based rendering (DIBR).
However, the important associated bit allocation problem for
DIBR remains open: for chosen view coding and synthesis
tools, how to allocate bits among texture and depth maps
across encoded views, so that the fidelity of a set of V views
reconstructed at the decoder is maximized, for a fixed bitrate
budget? In this paper, we present an optimization strategy to
select subset of texture and depth maps of the original V views
for encoding at appropriate quantization levels, so that at the
decoder, the combined quality of decoded views (using encoded
texture maps) and synthesized views (using encoded texture and
depth maps of neighboring views) is maximized. We show that
using the monotonicity property, complexity of our strategy can
be greatly reduced. Experiments show that using our strategy,
one can achieve up to 0.83dB gain in PSNR improvement over
a heuristic scheme of encoding only texture maps of all V views
at constant quantization levels. Further, computation can be
reduced by up to 66% over a full parameter search approach.

I. INTRODUCTION

In a typical multiple view imaging scenario, an image
sequence of V views is captured by a set of closely spaced
cameras. Because inter-view spatial correlations exist inher-
ently, novel coding tools and structures [1], [2] for encoding
of texture maps have been proposed to exploit this redundancy
using disparity compensation for a compact representation of
the captured V views.

Besides texture maps, depth information of a captured view
(physical distance between camera and object corresponding to
each captured pixel) can also be captured or estimated. Using
pixel and depth maps of neighboring views, intermediate
views can be synthesized via depth-image-based rendering
(DIBR) [3] at high fidelity. Efficient coding tools for depth
maps, with unique characteristics such as smooth surfaces and
sharp edges, have also been proposed recently [4], [5].

Given efficient coding tools for texture and depth maps at
the encoder and a view synthesis tool at the decoder, a natural
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question is the following: how to select texture and depth
maps of a designated set of V captured views for encoding at
encoder at appropriate quantization levels, so that at decoder,
the distortion of the reconstructed V views—one subset are
decoded views (decoded using corresponding encoded texture
maps) and the other subset are synthesized views (synthesized
using encoded texture and depth maps of neighboring views)—
is minimized, subject to a rate constraint?

One can see that depending on the efficiency of the chosen
coding and view synthesis tools and complexity of the captured
scene, different optimal selections are possible. For example,
if synthesis tool constructs views poorly and/or the captured
scene is too complex for view interpolation, then encoding
only texture maps for all V views (and no depth maps) is
a good selection. On the other hand, if synthesized views
can be constructed at sufficiently high fidelity, then encoding
texture and depth maps for the first and last views only (1 and
V )—at fine quantization levels for high-quality synthesized
intermediate views—is a good selection. An optimal strategy
should find the best selection possible for given desired rate-
distortion (RD) tradeoff.

In this paper, we propose an optimization algorithm that
finds the best possible subset of texture and depth maps
of V captured views for encoding, and assigns appropriate
quantization levels for selected maps. We first establish that
the optimal selection of texture and depth maps for encoding
at appropriate quantization levels is equivalent to the shortest
path in a specially constructed three-dimensional (3D) trellis.
Given that the state space of the 3D trellis is nonetheless
enormous, we then show that using lemmas derived from
monotonicity property in predictor’s quantization level and
distance, sub-optimal states and edges in the trellis can be
eliminated respectively from consideration during shortest path
calculation without loss of optimality. Experimental results
show that optimal selection of texture and depth maps and
associated quantization levels for encoding outperformed a
heuristic scheme that selects only texture maps of all V views
for coding and assigns fixed constant quantization levels for
all maps by up to 0.83dB. Further, our algorithm can reduce
computation complexity over full trellis calculation by up to
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66% without loss of optimality.
The paper is organized as follows. After describing re-

lated work in Section II, we formulate our bit allocation &
view selection problem in Section III. Then, we discuss the
construction of a corresponding 3D trellis, where an end-to-
end shortest path corresponds to the optimal solution, and
the important monotonicity property in Section IV. Using the
discussed monotonicity property, we propose an efficient opti-
mization algorithm in Section V. We present our experimental
results in Section VI and conclude in Section VII.

II. RELATED WORK

Novel tools for encoding texture maps [1], [2] and depth
maps [4], [5] of multiview images have been recently pro-
posed, but how bits should be optimally allocated among
texture and depth maps for maximum fidelity is not addressed.

In [6], a view synthesis distortion model has been con-
structed and two quantization parameters have been have
been assigned correspondingly, one for texture maps and one
for depth maps. In contrast, our proposed scheme selects
a unique quantization level for each chosen encoded map,
taking dependent quantization into consideration, where a
coarsely quantized predictor would lead to worse prediction,
resulting in higher distortion and/or rate for the predicted view.
Moreover, we do not construct any analytical models, but rely
instead on real data (rate and distortion) collected using actual
coding and view synthesis tools as the optimization is run.
While our operational approach avoids modeling errors, the
task of data collection can be overwhelming. Hence our focus
is on complexity reduction so that only a minimal data set is
required to find the optimal solution.

Optimal bit allocation among independent [7] and depen-
dent [8] quantizers in an operational approach has been studied
for RD-optimized media compression. Our work differs in that
bit allocation for both pixel and depth maps are considered
simultaneously, such that the resulting distortion of both
encoded and synthesized views at the decoder is minimized
for a desired RD tradeoff.

III. FORMULATION

1 2 3 4 5 6 7 8

Fig. 1. An Example Selection of Coded (Gray) and Uncoded (White) Views.
J = {1, 2, 4, 5, 6, 8}, J s = {2, 4, 6, 8}, J ′ = {3, 7}. Solid and dash
arrows show texture and depth map dependencies, respectively.

The setting of our bit allocation problem is as follows. A
desired set of views V = {1, . . . , V } in a 1D-camera-array ar-
rangement are to be conveyed from sender to receiver, using a
set of chosen compression and view synthesis tools, at highest
possible fidelity for a given bitrate constraint. Views V are to
be optimally divided into K coded views, J = {j1, . . . , jK},
and V −K uncoded views J ′ = V \J . The first and last view
in V must be selected as coded views; i.e., 1, V ∈ J ⊆ V .

Texture and possibly depth maps of a coded view ji are
encoded using quantization level qji

and pji
, respectively. qji

and pji
take on discrete values from quantization level set

Q = {1, . . . , Qmax} and P = {0, 1, . . . , Pmax}, respectively.
We assume the convention that a larger qji

or pji
implies a

coarser quantization, with the exception that pji
= 0 means

no depth map is encoded for view ji.
An uncoded view j′ ∈ J ′ is not encoded at sender but

is synthesized at receiver, using texture and depth maps of
the closest left and right coded views, l, r ∈ J . We will
assume both texture and depth maps from the same closest
coded views l and r are needed to synthesize uncoded view
j′ in-between.

We assume inter-view differential coding is performed sep-
arately for texture and depth maps. Texture map of view 1 is
always encoded as I-frame. Texture maps of each subsequent
coded view ji—view 2, 4, 5, 6 and 8 in Fig. 1—are encoded as
P-frame, each using texture map of previous coded view ji−1

as predictor for disparity compensation. Depth maps of coded
views that are chosen for encoding are similarly differentially
encoded. Note, however, that because not all depth maps of
coded views are selected for encoding—coded view 1 and 5
in Fig. 1 are not used for view synthesis and hence their depth
maps are not encoded—view dependency for depth maps is in
generally different from view dependency for texture maps.

More formally, we define the subset of indices J s where
depth maps are chosen for encoding from the coded view
indices J as follows:

J s = {j ∈ J | pji > 0} (1)

Hence depth map of the first view js
1 in J s will be coded as

an I-frame, and subsequent depth maps js
i > js

1 will be coded
as P-frames.

A. Visual Distortion

Given the coded view dependencies, we can now write
distortion Dc of the coded views as a function of the texture
map quantization levels, q = [qj1 . . . , qjK

]:

Dc(q) = dc
1(q1) +

K
X

i=2

dc
ji,ji−1(qji , qji−1) (2)

(2) states that distortion dc
1 of the starting I-frame depends

only on its own texture quantization level q1, while distortion
dc

ji,ji−1
of P-frame ji depends on both its own texture quan-

tization level qji
and its predictor ji−1’s level qji−1 . A more

general model [8] is to have P-frame ji depends on its own qji

and all previous quantization levels q1, . . . , qji−1 . We assume
here that truncating the dependencies to qji−1 only is a good
first-order approximation.

Similarly, we now write the distortion of the synthesized
(uncoded) views Ds as a function of q and depth quantization
levels, p = [pj1 , . . . , pjK

]:

Ds(q,p) =
X

j′∈J ′

ds
j′,l,r(ql, pl, qr, pr) (3)

l = arg min
js∈J s

|j′ − js| s.t. js < j′

r = arg min
js∈J s

|j′ − js| s.t. js > j′
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where l and r are indices of the closest coded views to the
left and right of synthesized view j′ with both texture and
depth maps encoded. In words, distortion ds

j′,l,r of synthesized
view j′ depends on both texture and depth map quantization
levels of the two spatially closest coded views l and r, where
l, r ∈ J s.

B. Encoding Rate

As done for distortion, we can write the rate of texture
and depth maps of coded views, Rc and Rs, respectively, as
follows:

Rc(q) = rc
1(q1) +

K
X

i=2

rc
ji,ji−1(qji , qji−1) (4)

Rs(p)= rs
js
1
(pjs

1
) +

X

∀js
i ∈J s|js

i >js
1

rs
js
i ,js

i−1
(pjs

i
, pjs

i−1
) (5)

(4) states that the encoding rate rc
ji,ji−1

for texture map of a
coded view ji depends on its texture map quantization level,
qji

, and its predictor’s level, qji−1 . Similarly, (5) states that the
encoding rate rs

ji,ji−1
for depth map of coded view ji depends

on its depth map quantization level, pjs
i
, and its predictor’s

depth map level, pjs
i−1

.

C. Rate-distortion Optimization

Given the above formulation, the optimization we are in-
terested in is to find the coded view indices J ⊆ V , and
associated texture and depth quantization vector, q and p,
such that the Lagrangian objective is minimized for given
Lagrangian multiplier λ ≥ 0:

min
J ,q,p

Φλ = Dc(q) + Ds(q,p) + λ [Rc(q) + Rs(p)] (6)

IV. TRELLIS AND MONOTONICITY

We first show that the optimal solution to (6) can be
computed by first constructing a three-dimensional trellis (3D
trellis), and then finding the shortest path from the left end of
the trellis to the right end using the famed Viterbi Algorithm
(VA). Nevertheless, the complexity of constructing the full
trellis is large; we will then discuss the important monotonicity
property, using which a fast algorithm will be designed.

A. Full Trellis & Viterbi Algorithm

F 3F2
F

1 F 4

q

p

(2, 4) (2, 4)

(3, 4) 5

1 3

s t

Fig. 2. 3D trellis for the selection of coded views with both texture and
depth maps encoded. Start state s, end state t, and planes of states for four
views are shown.

1) Trellis Construction: We can construct a 3D trellis—a
four-view example is shown in Fig. 2—for the selection of
coded views J s with both texture and depth maps encoded,
and corresponding texture and depth quantization levels q and
p, as follows. Each view j ∈ V is represented by a plane of
states, where each state represents a pair of levels (qj , pj)j for
texture and depth maps. Because each state (qj , pj)j indicates
view j has both texture and depth map encoded, pj > 0. In
addition, there is a single start state s and an end state t, from
which a path in the 3D trellis must start and end.

From each state (qj , pj)j of view j, there are forward edges
to all states (qk, pk)k of view k, k > j. Selecting such an edge
in an end-to-end path in the 3D trellis would mean view j and
k are both selected as coded views with both texture and depth
maps encoded, and views i’s in-between, j < i < k, are either
coded views with texture maps encoded only, or uncoded
views to be synthesized using encoded texture and depth maps
of view j and k at receiver. The exact configuration for each
edge—which in-between views i’s are selected as coded views
and which are uncoded views—and the Lagrangian cost of the
edge will be discussed in Section IV-A2.

There are also forward edges from start state s to all other
states (including t), as well as forward edges from all states
to end state t. Selecting an edge from s to a state (qj , pj)j

of view j means views prior to view j are coded views with
texture maps encoded only. Selecting an edge from a state
(qk, pk)k of view k to t means views after view k are coded
views with texture maps encoded only. We discuss edge cost
in the 3D trellis next.

2) Calculating 3D Edge Cost: To calculate the Lagrangian
cost of an edge in the 3D trellis from state (qj , pj)j of view
j to (qk, pk)k of view k, k > j, we need to select in-between
views i’s, j < i < k, to be coded views with texture maps
encoded only (at appropriate texture map quantization levels
q’s), with remaining views to be synthesized at receiver using
encoded texture and depth maps of view j and k, such that the
Lagrangian cost of this 3D edge is minimized. We accomplish
this by constructing a corresponding two-dimensional trellis
(2D trellis) and finding the shortest end-to-end path within it.

The 2D trellis is constructed as follows. Each in-between
view i, j < i < k, is represented by a column of states (qi)i’s,
one state (qi)i for each texture map quantization level qi ∈ Q.
Trellis has a start state (qj , pj)j for view j and an end state
(qk, pk)k for view k. Each state of view i has forward edges
to all states of view i′, i′ > i. An example is shown in Fig. 3.

To calculate edge costs for the 2D trellis, we first define
φji,ji−1(qji

, qji−1) to be the Lagrangian cost of coded view
ji using view ji−1 as predictor for differential texture map
coding, i.e.,

φji,ji−1 (qji
, qji−1 ) = dc

ji,ji−1
(qji

, qji−1 ) + λrc
ji,ji−1

(qji
, qji−1 ) (7)

An edge from state (qi)i of view i to state (qi+1)i+1

of neighboring view i + 1 will carry cost φi+1,i(qi+1, qi).
Selecting such an edge in an end-to-end path in the 2D trellis
would mean view i+1 is selected as coded view with texture
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(1) (1)(1)

(3) (3) (3)

(2) (2)(2)
(2, 1)

Fig. 3. Calculating a 3D edge cost via a 2D trellis. Only edges from start
state (2, 1)1 and state (3)3 are shown.

map quantization level qi+1. An edge from state (qi)i of
view i to state (qi′)i′ of a further-away view i′ will carry
similar cost φi′,i(qi′ , qi), plus synthesized view distortions∑

i<x<i′ ds
x,j,k(qj , pj , qk, pk). Selecting such an edge would

mean view i′ is selected as coded view with texture map level
qi′ , and views between i and i′ are uncoded and must be
synthesized using texture and depth maps of view j and k.

The cost of the shortest path in the corresponding 2D trellis
from start state (qj , pj)j of view j to end state (qk, pk)k of
view k (found using VA also) plus the cost of encoding depth
map of view k, λrs

k,j(pk, pj), will be assigned the cost of
the 3D edge in the original 3D trellis. Note that the shortest
path in the corresponding 2D trellis means the best possible
combination of coded and uncoded views are selected for
in-between views i’s, j < i < k, and each selected coded
view i is assigned the best possible quantization level qi in a
Lagrangian sense.

3) Shortest Path in 3D Trellis: Having discussed the cal-
culation of a 3D edge cost in the 3D trellis in Section IV-A2,
the definition of the 3D trellis is complete. We argue that the
shortest path in the 3D trellis, found using VA, is equivalent
to the optimal solution to (6). The reason is quite straight-
forward; every possible selection (including the null set) of
coded views with both texture and depth maps encoded, J s,
with associated quantization level pairs (qj , pj)j’s, can be
represented by a series of edges in the 3D trellis. For given J s,
every possible set of coded views with texture maps encoded
only, with texture map quantization levels q’s, for remaining
views V \J s, are represented by a path through a series of 2D
trellises corresponding to 3D edges connecting J s. Since the
shortest path in the 3D trellis considers all possible selections
of J s and then all possible selections of J \J s, the optimal
solution will be optimal to (6) as well.

Nevertheless, the number of states and edges in the 3D
trellis is large: O(|Q||P|V ) and O(|Q|2|P|2V 2), respectively.
Hence the crux to reduce complexity is to find the shortest
path by visiting only a small subset of states and edges. We
first discuss the monotonicity property, using which a fast
algorithm can be designed to simplify the shortest path search.

B. Monotonicity

Previous work [8] has shown that using monotonicity
property of dependent quantizers, efficient algorithms and
heuristics can be constructed for optimal or near-optimal bit

allocation. Our work can be viewed as a generalization of
[8] to include synthesized views. We first discuss the useful
monotonicity property along different dimensions. We then
derive lemmas based on monotonicity and construct a fast
optimization algorithm using the lemmas in the next section.

1) Monotonicity in Predictor’s Quantization Level: Moti-
vated by a similar empirical observation in [8], we assume
here also the monotonicity in predictor’s quantization level
for Lagrangian φji,ji−1 of coded view ji and synthesized
distortion ds

j′,l,r of synthesized view j′; i.e., for any λ ≥ 0:

φji,ji−1 (qji
, qji−1 ) ≤ φji,ji−1 (qji

, q+
ji−1

) (8)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′,l,r(q+
l , pl, qr, pr) (9)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′,l,r(ql, p
+
l , qr, pr)

where q+
n (or p+

n ) implies a larger (coarser) quantization level
than qn (or pn). In words, (8) states that if predictor view ji−1

uses a coarser quantization level in texture map, it will lead
to a worse prediction for view ji, resulting in larger distortion
and/or coding rate, and hence a larger Lagrangian cost φji,ji−1

for all values of λ ≥ 0.
(9) makes a similar statement for monotonicity of the

synthesized view distortion ds
j′
i,l,r

with respect to the texture
and depth map quantization levels ql and pl of the closest left
coded view l. We assume also monotonicity in the texture and
depth quantization levels qr and pr of the closest right coded
view r as well.

2) Monotonicity in Predictor’s Distance: We can also ex-
press monotonicity with respect to the predictor’s distance
for a coded view performing differential coding, or for an
uncoded view performing view synthesis. Assuming further-
away predictor view k− for coded view j, k− < k, has
the same quantization level qk as view k, and further-away
predictor views l− and r+ have the same levels for synthesized
view j′ as respective levels of views l and r, we can write:

φj,k(qj , qk) ≤ φj,k− (qj , qk) (10)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′,l,r+ (ql, pl, qr, pr) (11)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′,l−,r(ql, pl, qr, pr)

Here, r+ > r or l− < l implies a further-right coded
view r+ or further-left coded view l− is used to synthesize
view j′. In words, (10) and (11) say that using a further-
away predictor to differentially encode or synthesize a view,
given the quantization levels of texture and depth maps of
the further-away predictor are the same, results in no smaller
Lagrangian cost or synthesized distortion. These inequalities
hold true assuming Lambertian scenes.

V. BIT ALLOCATION OPTIMIZATION

A. Reducing Complexity in 2D Trellis

We first derive two lemmas based on the monotonicity
property discussed earlier. Using the derived lemmas, we
construct a computation-efficient algorithm to search for the
shortest path in a 2D trellis corresponding to a 3D edge cost.

Suppose we are given a 2D trellis with start state (qj , pj)j

of view j and end state (qk, pk)k of view k, j < k. Let Φi(qi)
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1) Compute edge cost (qj , pj)j → (qi)i for all states (qi)i’s and store
as Φi(qi). Compute edge cost (qj , pj)j → (qk, pk)k and store as
Φk(qk). Initialize i = j + 1.

2) Find q∗i s.t. Φi(q+
i ) > Φi(q∗i ), ∀q+

i > q∗i . Eliminate states (q+
i )i’s

from consideration.
3) For each survived state (qi)i of view i, evaluate forward sub-paths to

states (qi+1)i+1’s of neighboring view i + 1.
4) For each survived state (qi)i of view i, if φi+1,i(qi, qi) >

di+1,j,k(qj , pj , qk, pk), then evaluate forward edges (qi)i → (qi′ )i′

to states (qi′ )i′ ’s, i′ > i + 1.
5) If i < k − 1, increment i by 1 and repeat step 2 to 4.

Fig. 4. Efficient Shortest Path Search for 2D Trellis corresponding to 3D
Edge (qj , pj)j → (qk, pk)k , j < k, in 3D Trellis.

be the cost of the shortest sub-path from start state (qj , pj)j of
view j to state (qi)i of view i in the 2D trellis, j < i < k. The
first lemma eliminates sub-optimal states from consideration
in the search for shortest path in the 2D trellis.

Lemma 1: Given view i, if Φi(q+) > Φi(q∗),∀q+ > q∗,
then states (q+)i’s, ∀q+ > q∗, cannot belong to shortest path.

Proof of Lemma 1: We prove by contradiction. Suppose shortest
path include state (q+)i, q+ > q∗. We now reroute path via state
(q∗)i instead of (q+)i for view i. First, cost of sub-path to state (q∗)i

is smaller than sub-path to (q+)i by assumption. Further, Lagrangian
cost of a coded view i′ that used view i with level q+ as predictor
will be no worse using level q∗ < q+ instead by monotonicity
in predictor’s quantization level (8). Synthesized views (if any) use
texture and depth maps of view j and k and hence are not affected
by the reroute. Hence rerouting shortest path via state (q∗)i instead
of (q+)i yields strictly smaller cost. A contradiction. 2

The second lemma eliminates sub-optimal edges from con-
sideration in the search for shortest path in the 2D trellis.

Lemma 2: If Lagrangian cost of coding view i + 1,
φi+1,i(qi, qi), at same quantization level as view i and using
view i as predictor, is smaller than distortion of synthesizing
view i + 1, di+1,j,k(qj , pj , qk, pk), then edge from state (q)i

to any state in view i′ > i + 1 is sub-optimal.
Proof of Lemma 2: We prove by contradiction. Suppose a shortest

path include an edge (qi)i → (qi′)i′ . i′ > i + 1. We now replace it
with two edges (qi)i → (qi)i+1 → (qi′)i′ . First, the Lagrangian cost
of encoded view i+1 at quantization level qi is smaller than distortion
of synthesizing view i + 1 by assumption. Further, Lagrangian cost
of coded view i′ that used view i with level qi as predictor will be no
larger using a closer view i+1 with the same level by monotonicity
in predictor’s distance (10). Synthesized views (if any) between view
i+1 and i′ use texture and depth maps of view j and k and hence are
not affected by the edge replacement. Hence replacing edge (qi)i →
(qi′)i′ with two edges (qi)i → (qi)i+1 → (qi′)i′ yields a strictly
smaller cost. A contradiction. 2

1) Efficient Algorithm for 2D Trellis: Using the two derived
lemmas 1 and 2, we design a computation-efficient shortest
path search algorithm, showed in Fig. 4, for a 2D trellis. It
works as follows. First, we initialize cost of each shortest
sub-path Φi(qi) from start state (qj , pj)j to a state (qi)i of
view i as edge cost (qj , pj)j → (qi)i. Then, for each view
i, we eliminate states (q+

i )i’s, where Φi(q+
i ) > Φi(q∗i ) and

q+
i > q∗i , due to Lemma 1. We next “evaluate” edges

(qi)i → (qi+1)i+1 to neighboring view i + 1 for survived
states (qi)i’s. By evaluate, we mean comparing the cost of
Φi(qi) plus the edge cost (qi)i → (qi+1)i+1 to current cost

Φi+1(qi+1), and updating Φi+1(qi+1) to the minimum of the
two. We then evaluate edges from i to further-away views i′,
i′ > i + 1, only if φi+1,i(qi, qi) > di+1,j,k(qj , pj , qk, pk), due
to Lemma 2. The procedure repeats until end of trellis.

B. Reducing Complexity in 3D Trellis

We now derive two similar lemmas based on the mono-
tonicity property to reduce search complexity in the 3D trellis.
Let Φj(qj , pj) be the shortest sub-path from start state s to
state (qj , pj)j of view j. The first lemma eliminates sub-
optimal states (qj , pj)j’s, given computed Φj(qj , pj)’s, using
monotonicity in quantization level.

Lemma 3: If at state plane of view ji, for given pji
,

Φji
(q+

ji
, pji

) > Φji
(q∗ji

, pji
), ∀q+

ji
> q∗ji

, then sub-paths up
to states (q+

ji
, pji

)ji , ∀q+
ji

> q∗ji
, cannot belong to end-to-end

shortest path.
Proof of Lemma 3: We prove by contradiction. Suppose shortest

sub-path up to state (q+
ji

, pji)
ji , q+

ji
> q∗ji

, is part of an end-to-
end shortest path. If we replace sub-path to (q+

ji
, pji)

ji with sub-
path to (q∗ji

, pji)
ji , a synthesized view j′ to the right of ji and

coded view ji+1 that depend on view ji’s texture map will have
no larger distortion ds

j′,ji
or Lagrangian cost φji+1,ji , if q∗ji

is used
instead of q+

ji
, by monotonicity in quantization level (8) and (9).

Given Φji(q
+
ji

, pji) > Φji(q
∗
ji

, pji), we see that replacing sub-path
to (q+

ji
, pji)

ji with sub-path to (q∗ji
, pji)

ji will yield strictly lower
Lagrangian cost. A contradiction. 2

Lemma 3 also holds true for depth level pji
: given qji

,
if Φji

(qji
, p+

ji
) > Φji

(qji
, p∗ji

), ∀p+
ji

> p∗ji
, then states

(qji
, p+

ji
)ji ’s, ∀p+

ji
> p∗ji

, are sub-optimal and can be skipped.
The second lemma eliminates sub-optimal edges from state

(pj , qj)j of view j to a state in further-away coded view k
using monotonicity in predictor’s distance.

Lemma 4: Suppose the optimal sub-path from start state s
to state (qj , pj)j of view j does not use depth map of view
j for view synthesis. If edge (qj , pj)j → (qk, pk)k also does
not use depth map of view j, then edge (qj , pj)j → (qk, pk)k

cannot belong to the end-to-end shortest path.
Proof of Lemma 4: We prove by contradiction. Suppose an opti-

mal end-to-end path includes edge (qj , pj)j → (qk, pk)k. Let x be
the state in 3D trellis prior to state (qj , pj)j in the shortest sub-
path from s to state (qj , pj)j . Suppose we replace edges x →
(qj , pj)j → (qk, pk)k in shortest path with edge x → (qk, pk)k.
By assumption, depth map of view j is not used, hence there are
no uncoded (synthesized) views between node x and view j, and
between view j and k. That means coded views between x and k
can be assigned the same texture map quantization levels q’s in 2D
trellis of replacement edge x → (qk, pk)k, resulting in the same
Lagrangian cost. Moreover, by not encoding depth map of view j,
there is a non-zero cost saving for λ > 0. Hence a path using the
replacement edge instead will yield lower cost. A contradiction. 2

The corollary of Lemma 4 is that if the said condition holds,
then edges (qj , pj)j → (q+

k , p+
k )k, where q+

k and p+
k are levels

larger than or equal to qk and pk respectively, also cannot
belong to the end-to-end shortest path. The reason is that views
between j and k in edge (qj , pj)j → (qk, pk)k that do not use
depth map of view j for view synthesis will surely not use
the same depth map of view j if the texture and/or depth map
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1) Compute edge cost s → (qi, pi)i for all states (qi, pi)i and store as
Φi(qi, pi). Compute edge cost s → t and store as Φt. Initialize i = 1.

2) For each pi of view i, find q∗i s.t. Φi(q+
i , pi) > Φi(q∗i , pi), ∀q+

i >
q∗i . Eliminate states (q+

i , pi)i’s from consideration.
3) For each qi of view i, find p∗i s.t. Φi(qi, p

+
i ) > Φi(qi, p∗i ), ∀p+

i >
p∗i . Eliminate states (qi, p

+
i )i’s from consideration.

4) For each survived state (qi, pi)i of view i, evaluate forward edges to
states (qj , pj)j ’s for each view j, j > i, as follows.

a) Initialize length-Pmax vector Qlim to [Qmax, . . . , Qmax].
b) for y = 1 to Pmax,

i) for x = 1 to Qlim(y),
A) Evaluate edge (qi, pi)i → (x, y)j .
B) If neither shortest sub-path to (qi, pi)i nor edge

(qi, pi)i → (x, y)j uses depth map of view i for view
synthesis, update Qlim(y′), y ≤ y′ ≤ Qmax, to x− 1.

5) If i < V , increment i by 1 and repeat step 2 to 4.

Fig. 5. Efficient Shortest Path Search in 3D Trellis

of predictor view k is of a coarser quality, by monotonicity in
predictor’s quantization level (9).

1) Efficient Algorithm for 3D Trellis: Given the two derived
lemmas, we now describe an efficient shortest path search
algorithm for 3D trellis, shown in Fig. 5. Starting from start
state s, 3D edges to each state (qi, pi)i of view i are evaluated
and stored in Φi(qi, pi) as initial values. Then for each view
i, each state (q+

i , pi)i, where Φi(q+
i , pi) > Φi(q∗i , pi) and

q+
i > q∗i , is eliminated from shortest path consideration due to

Lemma 3. Similar step is taken to eliminate (qi, p+
i )i, where

Φi(qi, p+
i ) > Φi(qi, p∗i ) and p+

i > p∗i .
In step 4, for each survived state (qi, pi)i of view i, we

evaluate all forward sub-paths to states (qj , pj)j’s of view
j, but only if either shortest sub-path to (qi, pi)i or edge
(qi, pi)i → (qj , pj)j uses depth map of i. If not, edges
(qi, pi)i → (q+

j , p+
j )j are eliminated as well.
VI. EXPERIMENTATION

A. Experimental Setup

To test the effectiveness of our proposed optimization
scheme, we used H.264 JM16.2 video codec to encode tex-
ture and depth maps (texture and depth maps were encoded
separately), and used ViSBD 2.1 as view synthesis tool at
the receiver. For test sequences, we used two Middlebury
still image sequences [9], midd2 and bowling2, of size
1366×1110 and 1330×1110, respectively, with seven captured
views each. We assumed the available quantization levels for
both texture and depth maps were Q = P = {10, 15, . . . , 50}.
Rate controls were disabled in JM16.2, and software modifi-
cations were made so that a particular quantization level can
be specified for each individual frame.
B. Experimental Results

We compare our proposed bit allocation & view synthesis
algorithm (opt) to a heuristic scheme (heur) that selects
texture maps of all views for encoding and assigns constant
quantization levels for all encoded maps (applying straightfor-
wardly the H.264 JM16.2 video codec to the captured texture
maps). We see the performance of the two schemes in a plot
of visual quality (Peak Signal-to-Noise Ratio (PSNR)) versus
encoding rate per captured view in Fig. 6. We see that opt
performed better than heur generally for all bitrate range, and
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Fig. 6. Performance Comparison between Optimal and Heuristic View and
Quantization Level Selection Schemes

in particular, outperformed heur by up to 0.80dB and 0.83dB
for midd2 and bowling2 respectively at low bitrate.

To estimate the computation savings we achieved using our
proposed opt over a full 3D trellis search, we counted the
number of times the cost of a 3D edge need to be calculated
in the 3D trellis by opt. We found that opt saved up to 66%
in computation over the full 3D trellis search.

VII. CONCLUSIONS
In this paper, we address the problem of how to best select

texture and depth maps of captured views for encoding at
appropriate quantization levels, such that the reconstruction
fidelity of a designated set of V views at receiver is maximized
for given bitrate constraint. We show that the optimal solution
corresponds to the shortest path in a 3D trellis. We that
derive a computation-efficient search algorithm, exploiting the
monotonicity property, that finds the shortest path by visiting
only a subset of nodes and edges in the trellis. We show that
our scheme can reduce computation by up to 66% over the
full trellis search, and can achieve up to 0.83dB gain in PSNR
over a naive constant quantization scheme.
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