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ABSTRACT

Error concealment in packet-loss-corrupted streamingorig in-
herently an under-determined problem, as there are ingufficum-
ber of well-defined criteria to recover the missing blocksfeely.
When a Region-of-Interest (ROI) based unequal error ptiotec
(UEP) scheme is deployed during video streaming—i.e., more
sually salient regions are strongly protected—a lost bledikely to
be of low saliency in the original frame. In this paper, wegmse to
add a low-saliency prior to the error concealment problera segy-
ularization term. It serves two purposes. First, in ROldsh8 EP
video streaming, low-saliency prior provides the rightesidforma-
tion for the client to identify the correct replacement e éor con-
cealment. Second, in the event that a perfectly matched bkmnot
be unambiguously identified, the low-saliency prior redudgewer’s
visual attention on the loss-stricken region, resultingigher over-
all subjective quality.

We study the effectiveness of a low-saliency prior in the-con
text of a previously proposed RECAP [1] error concealmestesy.
RECAP transmits a low-resolution (LR) version of an imagmgt
side the original high-resolution (HR) version, so thatddks in the
HR version are lost, the correctly-received LR version camesas a
template for matching of suitable replacement blocks fropnewi-
ously correctly-decoded HR frame. We add a low-saliencygrpn
the block identification process, so that only replacemantitiate
blocks with good match and low saliency can be selected.hEyrt
we design and apply four saliency reduction operatorstitelg in
a loop, in order to reduce the saliency of candidate blockgeE
imental results show that: i) PSNR of the error-concealadhés
can be increased dramatically (up 3®dB over the original RE-
CAP), showing the effectiveness of a low-saliency priohia tinder-
determined error concealment problem; and ii) subjectiadity of
the repaired video using our proposal, as confirmed by amsixte
user study, is better than the original RECAP.

Index Terms— Video streaming, error concealment, visual
saliency

1. INTRODUCTION

Despite ongoing efforts to further advance communicagwhmnolo-
gies, high quality real-time video streaming over bestigffpacket-
switched networks remains challenging for a number of nesso
First, consumer demand for interactive streaming videg.,(eon-
ference video such as Skype, Google Talk, etc.) continuestfmace
the rate of increase in network bandwidth [2], resultingangestion
and packet queue overflows in packet-switched networksorgec
when packet losses do occur, persistent server-cliefngtrission
is not practical due to the timing constraint of streamirdgwi (i.e.,
a video packet arriving at decoder past its playback deadinise-
less). Third, new media types such as ultra-high-resaiutideo
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and multiple-view video [3] that promise enhancement ofwitig
experience are also further straining resource-limitatvorks due
to their large sizes. Under these practical constrainis viery diffi-
cult to guarantee error-free delivery of the entire videmfrsender
to receiver in a timely manner.

Many previous works [4, 5, 6] employed the pro-active method
ology of unequal error protection (UEP) of video data, whergor-
tant packets are protected more heavily (e.g., using strdfgrward
Error Correction (FEC) codes). Typically, more importaatkets
contain viewer’s probable Regions-of-Interest (ROI) [T]a video
frame, or regions with highevisual saliency{8]—where viewers
most likely will focus their visual attention. In such a sofes when
a packet is lost, the affected region is very likely to be of ha-
sual saliency. In this paper, we study the complementarpleno
of error concealmentgiven the occasional unavoidable packet loss
during network transmission, causing the loss of a group a¢-m
roblocks (MB) in a video frame, how to best conceal the eftgct
data loss at the decoder to minimize visual distortion.

Error concealment is typically an under-determined pnoble
there are insufficient number of well-defined criteria (esgnooth-
ness conditions for boundary pixels adjacent to correetteived
neighboring blocks [9]) to recover all missing MBs perfgctThis
makes choosing the appropriate set of pixels to replace tbging
blocks a technically challenging problem. In this paper, pve-
pose to add dow-saliency priorto the error concealment problem
as a regularization term. It serves two purposes. FirstOhlpased
UEP video streaming, low-saliency prior is likely the catrside
information for the lost block and helps the client identifye cor-
rect replacement block for concealment. Second, in thetetiaha
perfectly matched block cannot be identified, the low-salyeprior
reduces viewer’s visual attention on the loss-strickeniabaegion,
resulting in higher overall subjective quality.

We study the effectiveness of a low-saliency prior in the-con
text of a previously proposed RECAP error concealment syfi¢
RECAP transmits a low-resolution (LR) version of a videonima
alongside the original high-resolution (HR) version, sattlfiblocks
in the HR version are lost, the correctly-received LR varserves
as a template for matching of suitable replacement blocks & pre-
viously correctly-decoded HR frame. We add a low-saliermayro
the block identification process, so that only replacemantitiate
blocks with good matcland low saliency can be selected. Further,
we design and apply four saliency reduction operatorstitelgt in
a loop, leveraging on previous work on saliency maniputetioch
as [10], so that the saliency of candidate blocks is reduEegber-
imental results show that: i) PSNR of the error-concealetchés
can be increased dramatically (up 3®dB over the original RE-
CAP), showing the effectiveness of a low-saliency prioh@tnder-
determined error concealment problem; and ii) subjectuadity of
the repaired video using our proposal, as confirmed by amsixte
user study, is better than the original RECAP.
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Fig. 1. Overview of RECAP packet loss recovery system.

The outline of the paper is as follows. We first discuss rellate
work in Section 2. We then present an overview of the RECABwid
transmission system and our chosen visual saliency modaém
tions 3 and 4, respectively. We discuss our proposed errarezd-
ment strategy with low-saliency prior in Section 5. Finakyxper-
imental results and conclusions are presented in Secti@ml67,
respectively.

2. RELATED WORK

In the face of challenging network conditions during reale
video streaming, UEP strategies [4, 5, 6] protect visualipartant
(salient) regions more heavily. An often overlooked questn these
works is how to conceal missing blocks in the less importagians
when packet losses do occur? If concealment is donesaliency-
myopicway, so that the resulting salient features draw attention t
the (likely) imperfectly recovered blocks, it will advelgaffect the
subjective visual quality. This is one of the main reasong wa ap-
ply the low-saliency prior to the error concealment prohlemthat
concealment can be done irsaliency-cognizaninanner, resulting
in recovered blocks that do not draw unnecessary attention.

We note that though we apply our low-saliency prior to the RE-.

CAP video transmission system [1] (where LR thumbnails ames-
mitted from server to client to facilitate loss recovery)iis paper
for concreteness, we believe low-saliency prior itself image gen-
eral applicability to other ROI-based UEP video streamiygtems
that may employ other error concealment tools. For exaniple,
[9] where smoothness condition for boundary pixels is usedree
condition for recovery, low saliency can be an additionajuiee-
ment to further facilitate correct block recovery. Notetthaour
proposed method, we address packet losses in low-saligratials

regions because that is thgpical case. Packet losses in more heav-

ily protected high-saliency spatial regions, while poksils arare
case, and hence will not affect much the average performafrtte
system as long as some default concealment scheme is pediorm

layer is more heavily protected using stronger FEC than ¢imeROI
layer. Typically, ROl layer contains more visually saliebjects and
accounts fo25% or less of the total spatial area of each frame (to
be discussed in more details in Section 6). Given the relgtsmall
size of the ROI layer, we will assume itis protected well egiothat
unrecoverable packet losses, as observed by the cliest,plake
only in the non-ROI layer.

Along with the encoded HR video, the server also low-pass fil-
ters and down-samples HR frames into LR thumbnails andriiéiss
them with heavy protection. In practice, the size of a thuaibis
1/16 (down-sampled byt in both dimensions) of the size of the
HR image, and hence it does not incur much redundant tragsmis
overhead. While data-agnostic FEC suffers from the wedivkm
“cliff” effect, thumbnail-based scheme enables a more gfidae-
covery, where lost HR video blocks can be partially recosteria
block search in previous correctly received HR referenamé, us-
ing a LR thumbnail as template. Experimental results in fijveed
that by transmitting thumbnails, RECAP outperformed FEGro
schemes. Our goal in this paper is to improve thumbnail-dhaser
concealment using a low-saliency prior. First, we dischssvisual
saliency model we selected.

4. OVERVIEW OF THE VISUAL SALIENCY MODEL

Among the existing bottom-up computational models of Visata
tention, the Itti-Koch-Niebur (IKN) model [8] is one of theast
well-known and widely-used. In this biologically-plautmodel,
the visual saliency of different regions is predicted bylgriag the
input image through a number of pre-attentive independestiufe
channels, each locally sensitive to a specific low-levalaiattribute
such as local opponent-color contrast, intensity contaast orienta-
tion contrast. More specifically, nine spatial scales aeated using
dyadic Gaussian pyramids, which progressively low-passr fénd
subsample the input image, yielding an image-size-reodtctor
ranging from 1:1 (scale zero) to 1:256 (scale eight) in edgitaves
[8].
The contrast in each feature channel is then computed using a
“center-surround” mechanism, which is implemented in tladet
as the difference between fine and coarse scales: the ceatpidel
at scalec € {2, 3,4}, and the surround is the corresponding pixel
at scales = ¢+ d, with d € {3,4}. The across-scale difference
between two levels of the pyramid is obtained by interpotatio
the finer scale and point-by-point subtraction. The obthrmntrast
(feature) maps are then combined across scales throughlimean
normalization operator to create a “conspicuity map” fochefea-

Visual saliency—a measure of propensity for drawing visualyre channel. The conspicuity maps are then resized to devaid

attention—has been a subject of intense study in the paatidd8,
11, 12]. While it is debatable which proposed method congptiie
most accurate saliency maps at reasonable complexity, ivetse
[8], [13] for our ground truth saliency calculation due te\ide ac-
ceptability and potential parallelism in implementation éur video
streaming scenario. Note that the focus of our paper is notean
computational models of saliency, but on the applicatiosatiency
analysis to error concealment. While earlier works havdiegpwi-

sual saliency principles for video compression [13], to Ilest of
our knowledge, we are the first to apply saliency analysiefoor
concealment of streaming video.

3. RECAP VIDEO TRANSMISSION SYSTEM

We first present an overview of the RECAP video transmissysn s
tem [1], shown in Fig. 1, upon which we build our error concesht
strategy with low-saliency prior at the decoder. Server passes
HR video intoROI layerandnon-ROI layer Using UEP, the ROI

combined together via the same normalization operatorriergeée a
“master saliency map” whose pixel values predict salieAcyextra
motion and flicker channel can also be added to the IKN model in
order to make it more suitable for video [13].

Note that the dyadic Gaussian pyramid employed in the IKN
model approximately halves the normalized frequency specbf
the input image at each level due to the successive low-pasaf)
of the image. This yields the normalized frequency specifithe
image at level 8 to be in rangé — 7/256]. Also, since the con-
spicuity maps are resized to level 4 before combinatiors, ibsults
in using the frequency content of the original image in theges
[w/256 — 7 /16] by the IKN model [12]. We will use this fact in one
part of our proposed method.

5. LOW-SALIENCY PRIOR IN ERROR CONCEALMENT

Having reviewed the RECAP video transmission system and our
chosen saliency model in Sections 3 and 4 respectively, wedie



cuss how we incorporate a low-saliency prior into the RECABre
concealment scheme in mathematical details.

Lety be the thumbnail of a lost slicg i.e., the low-pass-filtered
and down-sampled version of Thumbnaily is subsequently com-
pressed t@ before transmissiory is hence related to as follows:

@)

whereL is a low-pass filter to avoid aliasing before down-sampling,
D is the down-sample operator, ants quantization noise ifj due

to lossy compression. We assurés correctly decoded, and the
goal is to use low-pass informationgrto recover the lost slice. In
general, this is an under-determined system of equatiomnistheere
are many candidatess that yield smallz-norm ||j — DLz||z.

To resolve this ambiguity, we introduce an additional low-
saliency regularization term\S(z£) to the l>-norm as objective,
whereS(%) is the the visual saliency of reconstructed slici the
video frame:

@

and ) is a non-negative weight parameter that trades off theivelat
importance of thé>-norm and visual saliency. In the remainder of
this section, we discuss how (2) can be solved efficiently.

4y = DLz + ¢,

min ||§ — DL&||2 + AS(2),

5.1. Algorithm Overview

We first present our strategy to find a good replacement gling?2)
for aloss-corrupted frame. We divide the missing sfidgeto smaller
16 x 16 MBs &;'s, such that J, #; = &. For each MBz;, the best\/

candidate blocks!™ (1 < m < M) from a HR correctly-received
reference frame that have the smalleshorm error with respect to
the corresponding thumbnail block of the current MB (i), are
first identified. We also include the 4 adjacent spatial negh in
the causal neighborhood of the current MB in the search peof
finding the best\/ candidate blocks. The causal neighbors may b
previously concealed. The search procedure used heresanieas
the search procedure used in the original RECAP algorithpras
posed in [1]. All the chose/ candidate blocks are then examined
based on the objective function (2) to select oRly< M of them as
the final candidate blocks. Note that examining the objedtinc-
tion (2) on all possible candidate blocks in a search regimide
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Fig. 2. The block-diagram of the proposed system. S1 shows the
proposed system for projecting an input saliency-redueedlidate
block to the thumbnail block. S2 is one of the four proposéigisey
reduction operators, which is the notch filter in this figure.

6. Setj < j+1. If j < 4, fetch the original candidate MBE.'”
again, and go to step 3. Otherwise, go to step 7.

7. Setk + k+ 1. If k < K, go to step 2, otherwise to step 8.

8. Replacet; with the best%i.k) whose objective function value
is the smallest.

The above procedure is applied on all the lost MBs (&:gs) in
a raster-scan order. Each time the visual salienc@;%? needs to
be calculated, we construct an adaptive window around theru
MB whose top-left corner is set to the top-left corner of thdeo
frame, and its bottom-right corner is set to the bottomirighrner
of the current MB. The saliency dﬁ“) is then computed just within
this adaptive window. Note that the adaptive window covdls a
correctly-decoded (or previously-concealed) Mgas the current
MB. A block-diagram of the proposed method is depicted in Big
The operation of each part of the proposed system is desganioe.

5.2. Projection onto the Thumbnail

In order to project a saliency-reduced candidate blﬁ’Léf“() to the

the HR reference frame might be very time consuming due to théhumbnail blocky; as described in the algorithm in Section 5.1, we

saliency computation step. However, the above approacheclce
the computational complexity significantly.

After finding the best candidate blocks af;, for each candi-
date blocki:ﬁ’“) (0 < k < K), we separately apply each of the four
saliency reduction operatorg;(.) (1 < j < 4) as described in Sec-
tion 5.3, in an attempt to lower the saliency value of the tdate
blockwithoutincreasing itd>-norm error with respect to the thumb-
nail block ;. More specifically, we use the following procedure for
each lost MBz;:

1. Setk « 1.

2. Setj « 1.

3. Perform thej-th operatorg;(.) on thek-th candidate block:
" gy ("),

4. Given the saliency-reduced*’, project /*) onto the
thumbnaily; using the method described in Section 5.2.

5. Ifthe objective value (2) of the neﬁé(k) obtained after step 4

is smaller than the smallest already-known objective fionct
value, replace:!") with &/*) and go to step 3. Otherwise, go

to step 6.

first down-sample%;(k) by the same down-sampling factor used to
generate the original thumbnail, by using a 4-tap conjugateclet
filter bank [14], shown as subsystem S1 in Fig. 2. In this figure
Go(z) (low-pass) and71(z) (high-pass) are the 4-tap analysis fil-
ters, andFo (=) and F (z) are their corresponding conjugate synthe-
sis filters [14]. After that, we compute the DCT coefficienfste
coarsest low-frequency band. The projection to the thurhbfack

is then accomplished by moving thé x 16 DCT coefficients of the
coarsest band that are outside the designated quantitatiar the
thumbnail block to the closest boundary of their respeatuanti-
zation bins. The conjugate wavelet filter bank allows us tmver

the exacti,'*) when the low-frequency content 6f*) is already
in good match with thumbnaif; due to its perfect reconstruction
property. This operation is preformed on both the luma amdrolh
channels separately. This ensures that the low-frequestigist of
the new candidate block in all the channels remains in goadhma

(in thel» norm sense) with the correctly-received thumbnail block.
5.3. Saliency-Reduction Operators

We next describe our proposed candidate opergtdrs, 1 < j < 4,
for reducing the saliency of a candidate Mﬁﬁ’“). These operators



H,(2): 28-tap and H,(2) : 26-tap FIR lowpass filters

uumpfer' = maX('“fr(:fr”v |u£7€l{;t|7 |u:7i:(r]zht|7 |ugr)7(i'fzt0m|)7 (3)
U™ = min(|ueh |, [uh! |, [umd™ ], [umen ™)), (4)

] whereu!o? yleft 4 r19mt andubotte™ denote the DCT coefficients
il at frequency banémn, n), 0 < m,n < 15, of the top, left, right, and

bottom neighbors, respectively. Each DCT coefficient ofdheent

MB is then clipped based on the computed upper and lower sund

as follows

Magnitude (dB)
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Fig. 3. The frequency response of the proposed notch filter. [tmnl, ¢

whereu,,, is the original DCT coefficient offk) andu.,,, is the

. L i ©) :
are as follows: g1 (.): notch filter, go(.): frequency outlier filter, ~NeW DCT coefficient of; ™" at frequency bangim, n). In our exper
gs(.): intensity and color contrast reduction operator, and): de- iments, we applied this operator separately on the lumimahannel
blocking filter. (Y) as well as the two chroma channels (Cb and Cm}ﬁ@f.

5.3.1. Notch Filter 5.3.3. Intensity and Color Contrast Reduction
Two of the important low-level features competing for visatien-

As mentioned in Section 4, the IKN model uses the frequenay €0 g, i the IKN model are intensity and color contrast [8]. [10],

tent of the input image in the r_anq;ﬁ/256 N 7?/151- Th_erefore, ON€ it was observed that if intensity and/or color contrast obtipular
simple way to reduce the saliency of a specific region (€.gare  gpatia| region is enhanced, then the visual saliency as oty
didate MBii’Ek)) is to reduce the Strength of the Signal in the afore'the IKN model can be increased. For this purpose’ [10] pmw

mentioned normalized frequency range. To achieve this,geal  change the RGB components of each pixel within the desirgidme
propose to use a simple FIR notch filter [14] depicted as sstem s follows:

S2 in Fig. 2. This filter is composed of two low-pass filters wéo
transfer functions in the-domain are denoted b/, (z) and Hz(z) Qpg = Qpg + Wpg Vg, (6)
in Fig. 2, respectively.H:(z) is a lowpass FIR filter with 28 taps
for the luminance channel and 14 taps for the chrominancengia ~ Wherea,,, denotes an RGB component & (R, G, B)) of the pixel
Similarly, H»(z) is a lowpass FIR filter with 26 taps for the lumi- atlocation(p, g), o, denotes the updates,q, wy, is a normalized
nance channel and 12 taps for the chrominance channel. The ndositive weight factor, which is proportional to the satigrof the
malized cut-off frequency of the filters was setrtd30 (the center ~ pixelatlocation(p, g), Va,, is a point variation factor, which reflects
of the mentioned frequency range)_ These filters were ded|@|y how much a feature influences the saliency of the piXE' attioca
a standard window-based filter design method (Hamming rdtho (»; ¢), and is computed by backtracking the saliency computation
[14] to achieve a normalized gain ef6 dB at the cut-off frequency, ~Procedure in the IKN model. More details about this methatloa
and a stop-band attenuation of ab6idB. The frequency response found in [10].
of the obtained notch filter for the luminance channel is ciepi in Here, we would like to perform the opposite: reduce the in-
Fig. 3. As seen from this figure, the proposed notch filter heerya ~ tensity and/or color contrast of the candidate MS) so that its
mild attenuation of about 1.2 dB at frequencies arowi80, which  saliency value is decreased. For this purpose, we just eebat
allows the system to reduce saliency slowly in each itenatiothe  value ofw,q in (6), and apply (6) to all pixels within the candidate
proposed method. Note that any other filter design methodilsan  MB iteratively until its saliency cannot be decreased amgno
be used here to obtain an appropriate notch filter, possilttyanly . .
one single FIR filter. 5.3.4. Deblocking Filter

S Another candidate operator for reducing saliency of a aatdi
5.3.2. Frequency Outlier Filter block is the H.264/AVC deblocking filter proposed in [15]. was

. . L shown in [15] that this simple deblocking filter can efficignte-
The second saliency-reduction operator we design igrégiency duce the s[tre]ngth of bIockirFl)g artifacts V\Q/]hich are usuaﬂ;gmjon

outlier filter. In [11], it was observed that since spatial frequencies in rabbing especially at low bit rates. In our experiments fownd
natural images follow an exponential decay in the powertspet a fqhat thisgfilteF; can );educe salienc ) £ th P led Mé "
frequency component that does not follow the natural deafiyoer S ¢y of ne concealed VIbS 85 we
visually salient. Hence, we propose this simple filter as a candidate saliestycr

In our implementation, to lower the visual saliency of a dand tion operator. .

(k) o ] o Note that the strength of the H.264/AVC deblocking filter can
date MB#;™, we try to eliminate any potential frequency outlier in |, adjusted adaptively based on the quantization paramiéach
the candidate MB by comparing the frequency content of time ca \ig as well as its coding mode [15]. Moreover, a separate bagnd
didate MB with the frequency content of its neighboring MBg. strength value (between 0 and 4) can be assigned to everybegge
order to achieve this goal, we first compute the DCT coeffisien tyeen twod x 4 sub-blocks within a MB so as to be able to control
of the adjacent MBs in the 4-connected neighborhood aragfd  the strength of the filter with a finer resolution. In H.264@\these
After that, we compute an upper and lower bound for each DGT costrength values are computed based on the coding mode oftch
efficient of:&z(.k) as follows: In our proposed method, however, we set all of the aforeroeeat



boundary strength values to a small value (2 in our experisheand
we apply the deblocking filter several times on the canditéiek
until its saliency cannot be decreased anymore.

6. EXPERIMENTS
6.1. Experimental Setup

In our experiments, we used eight standard 30 frames pendeco
(fps) sequencedBus(CIF), Crew(CIF & VGA), Football (SIF), Ste-
fan (SIF),Soccer(VGA), Race HorsegVGA), andKeiba(VGA) to
test our proposed methoBus Crew (VGA), Soccer Race Horses
andKeibawere 150 frames longd;ootball was 215 frames, and the
other two sequences were each 300 frames long. CIF/SIFseegie
were encoded at 700 kbps, while VGA sequences were encoded
1400 kbps using the H.264/AVC JM 18.0 reference softwaré, [16
with the GOP structure IPPP. The thumbnail videos were edeat
by downsampling their corresponding HR videos by a factat of
each dimension, and were encoded at 10% of the bitrate oftifei
version, using the same encoder structure as their HR versie@
setM to 10, K to 5, while the value of\ was experimentally set to
22. The IKN model with an extra motion and flicker channel [13]
was utilized for the saliency computation, and the salievadyes
were between zero and one.

In order to find the most salient regions or ROIs, we first com-
puted the saliency map of each video frame of each sequemee. T
saliency map of each frame was then binarized based on the 7
percentile of the saliency map of that frame. MBs with salien
above the 75-percentile threshold were considered as ROIs.

To simulate a real video streaming scenario with RECAP as it
error control mechanism, a video frame was selected rangamdl
its MBs in non-ROI parts were dropped randomly based on a two
state Gilbert model [17] at four different average losss&&86, 5%,
10%, 20%, and 30%) with an average burst loss lengt8. oThe
corrupted frame was then concealed using both the origiB&lAP
algorithm and our proposed method based on a correctlyvezte
reference frame, which was assumed to be either 10 frames
away. In practice, the distance between the concealed fam@mnee

values. This scheme was performed on about 30% of the tatakfs
(randomly chosen) to get a loss-corrupted video out of eabov
sequence.

Fig. 4 shows an illustration of the visual quality of our pospd
method compared to the original RECAP methodGoew. One can
easily see that our method is able to improve the visual tyuafithe
concealed frames compared to the original RECAP method.

6.2. PSNR Comparison

To show objective quality improvement of our scheme oveoifig-
inal RECAP (thus showing that low-saliency prior does pievior-
rect side information to resolve the ambiguity in the reptaent
block search problem (2)), we constructed Table 1, showiegt/-

Table 1. Average PSNR (dB) and saliency reduction amount
achieved by the proposed method over RECA®at10 andd = 5.
PSNR (RECAP : Proposed)

CIF & SIF Sequences Bus Crew Football Stefan
d=10 28.8:30.026.6:29.8 24.1:25.9(26.3:27.2
d=5 29.4:30.327.2:30.0 24.8:26.3(27.1:27.7

Average Saliency Reductipn 10% 19% 12% 9%
VGA Sequences Soccer Crew [Race Horsep Keiba
d=10 28.6:29.927.9:30.1 245:25.3(27.3:27.8
d=5 29.2:29.928.5:30.3 25.1:25.5(27.9:28.1
Average Saliency Reductipn 7% 13% 6% 4%

sgliency reduction amount of about 9%. The PSNR gains agerar
at larger values of.

6.3. Subjective Testing

Since our proposed method aims at reducing the saliencyref co
cealed regions, we performed a subjective test on CIF and&IF
guences to verify the improvement in subjective qualityolm ex-
periment, a Two Alternative Forced Choice (2AFC) method {#8s
used to compare subjective video quality. In 2AFC, the pidint is
asked to make a choice between two alternatives, in our basgig-
inal RECAP method and our proposed method. This way of com-
paring image quality is less susceptible to measuremestertban
g_uality ratings based on scale, such as Mean Opinion ScoBSiM
and Double Stimulus Continuous Quality Scale (DSCQS) [19].

In each trial, participants were looking at two side-byesid
videos (in the same vertical position, and separated by 1 atia h

sZOntaIIy) on a mid-gray background. Each video pair was shimw

10 seconds as recommended by ITU-R BT.500 [19]. After thés pr
sentation, a mid-gray blank screen was shown for 5 seconatsndd

this period, participants were asked to indicate on an anshest,
which of the two videos looks better (Left or Right). They wer
asked to answer either Left or Right for each video pair, néigas

of how certain they were of their response. Participantsidicknow
which video was obtained by our method and which one was ob-
tained by the RECAP method. Randomly chosen half of thestrial

€8ad the video produced by our method on the left side of theescr

and the other half on the right side, in order to counteraiz bias
in the responses. This gave a totallok 5 x 2 = 40 trials.

The experiment was run in a quiet room with 17 participarits (a
male except one, and of age between 18 and 30). All partitsead
normal or corrected to normal vision. A 24-inch Dell monitaith
brightness 30@d/m? and resolution 1926 1080 pixels was used
in our experiments. The brightness and contrast of the roowiere
set to 75%. The actual height of the displayed videos on treesc
was 87 millimeters. The illumination in the room was in thega
280-300 Lux. The distance between the monitor and the sishjexs
fixed at 70 cm. Each participant was familiarized with thé taefore
the start of the experiment via a short printed instructioees. The
total length of the experiment for each participant was axipnately

erage PSNR (luma) improvement of our proposed method oeer th10 minutes.

original RECAP algorithm at two reference frame distandes 5

The results are shown in Table 2, where we indicate the number

andd = 10. The average amount of saliency reduction (computedf responses that showed preference for the original RECéthad

by the IKN model with an extra motion and flicker channel ovér a
lost MBs, and averaged over bath= 5 andd = 10) brought by
our proposed method is also mentioned in this table. Thesedr
level PSNR values have been computed at the aforementimeed a
age loss rates, and only corrupted frames were consideredio-
puting the average PSNR values. As seen from this table,rthe p
posed method is able to improve the PSNR of the concealecfram
compared to the RECAP method by up3@dB, with an average

and the proposed method at all of the tested average loss &k
used the two-sided chi-squaxé test [20] to examine the statistical
significance of the results. The null hypothesis is thatdtisrno
preference for either the RECAP method or the proposed rdetho
Under this hypothesis, the expected number of votes is 1@&oh
method. Thep-value [20] is also indicated in the table. In experi-
mental sciences, as a rule of thumb, the null hypothesigestezl
whenp < 0.05. When this happens in Table 2, it means that the



Table 2. Comparing the proposed method with the RECAP methodg

based on the subjective results at 5 different average éss.r

Loss Ratf  Method Bus | Crew [Football Stefan
RECAP 7 4 9 10
2% |Proposed Methqd 27 30 25 24
p-value 0.00060.0001 0.0061|0.0164
RECAP 4 3 7 9
5% |Proposed Methdd 30 31 27 25
p-value 0.00010.0001 0.0006|0.0061
RECAP 7 3 10 8
10% |Proposed Methqd 27 31 24 26
p-value 0.00040.0001 0.0164|0.0020
RECAP 8 8 11 7
20% |Proposed Methdd 26 26 23 27
p-value 0.002(0.0020 0.0396|0.0006
RECAP 8 10 11 10
30% |Proposed Methdd 26 24 23 24
p-value 0.002(0.0164 0.0396|0.0164

(@) (b)
Fig. 4. Comparing the visual quality of the original RECAP method

(left) with the proposed method (right) @rew.

two methods cannot be considered to have the same subjgutile
ity, since one of them has obtained a statistically signifiigehigher
number of votes, and therefore seems to have better quality.
As seen in Table 2, in all of the 40 trials thevalue is smaller
than 0.05, which indicates that subjects showed a statilstisignif-
icant preference for our proposed method. Looking acrdgsiak
(i.e., summing up all the votes for the two options), the ltssshow
that participants have preferred our method more than thé A®E
method (526 vs. 154 votes) with overall= 0.0001, which is a
very statistically significant result, because the oddg o€curring

ion in ROI-based UEP video streaming systems for cliendémiify
orrect replacement blocks for concealment, and seconelitces
viewer’s visual attention on the loss-stricken spatiaiorg. Incor-
porated into a previously proposed RECAP error concealseop,
our experimental results show that our method can clearbyrane
the visual quality of the loss-corrupted frames both ofyjebt (up
to 3.2dB in PSNR) and subjectively.
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