
SALIENCY-COGNIZANT ERROR CONCEALMENT IN
LOSS-CORRUPTED STREAMING VIDEO

Hadi Hadizadeh†, Ivan V. Bajíc†, and Gene Cheung‡

†Simon Fraser University, Burnaby, BC, Canada,‡National Institute of Informatics, Tokyo, Japan

ABSTRACT

Error concealment in packet-loss-corrupted streaming video is in-
herently an under-determined problem, as there are insufficient num-
ber of well-defined criteria to recover the missing blocks perfectly.
When a Region-of-Interest (ROI) based unequal error protection
(UEP) scheme is deployed during video streaming—i.e., morevi-
sually salient regions are strongly protected—a lost blockis likely to
be of low saliency in the original frame. In this paper, we propose to
add a low-saliency prior to the error concealment problem asa reg-
ularization term. It serves two purposes. First, in ROI-based UEP
video streaming, low-saliency prior provides the right side informa-
tion for the client to identify the correct replacement blocks for con-
cealment. Second, in the event that a perfectly matched block cannot
be unambiguously identified, the low-saliency prior reduces viewer’s
visual attention on the loss-stricken region, resulting inhigher over-
all subjective quality.

We study the effectiveness of a low-saliency prior in the con-
text of a previously proposed RECAP [1] error concealment system.
RECAP transmits a low-resolution (LR) version of an image along-
side the original high-resolution (HR) version, so that if blocks in the
HR version are lost, the correctly-received LR version can serve as a
template for matching of suitable replacement blocks from aprevi-
ously correctly-decoded HR frame. We add a low-saliency prior to
the block identification process, so that only replacement candidate
blocks with good match and low saliency can be selected. Further,
we design and apply four saliency reduction operators iteratively in
a loop, in order to reduce the saliency of candidate blocks. Exper-
imental results show that: i) PSNR of the error-concealed frames
can be increased dramatically (up to3.2dB over the original RE-
CAP), showing the effectiveness of a low-saliency prior in the under-
determined error concealment problem; and ii) subjective quality of
the repaired video using our proposal, as confirmed by an extensive
user study, is better than the original RECAP.

Index Terms— Video streaming, error concealment, visual
saliency

1. INTRODUCTION

Despite ongoing efforts to further advance communication technolo-
gies, high quality real-time video streaming over best-effort, packet-
switched networks remains challenging for a number of reasons.
First, consumer demand for interactive streaming video (e.g., con-
ference video such as Skype, Google Talk, etc.) continues tooutpace
the rate of increase in network bandwidth [2], resulting in congestion
and packet queue overflows in packet-switched networks. Second,
when packet losses do occur, persistent server-client retransmission
is not practical due to the timing constraint of streaming video (i.e.,
a video packet arriving at decoder past its playback deadline is use-
less). Third, new media types such as ultra-high-resolution video
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and multiple-view video [3] that promise enhancement of viewing
experience are also further straining resource-limited networks due
to their large sizes. Under these practical constraints, itis very diffi-
cult to guarantee error-free delivery of the entire video from sender
to receiver in a timely manner.

Many previous works [4, 5, 6] employed the pro-active method-
ology of unequal error protection (UEP) of video data, whereimpor-
tant packets are protected more heavily (e.g., using stronger Forward
Error Correction (FEC) codes). Typically, more important packets
contain viewer’s probable Regions-of-Interest (ROI) [7] in a video
frame, or regions with highervisual saliency[8]—where viewers
most likely will focus their visual attention. In such a scheme, when
a packet is lost, the affected region is very likely to be of low vi-
sual saliency. In this paper, we study the complementary problem
of error concealment: given the occasional unavoidable packet loss
during network transmission, causing the loss of a group of mac-
roblocks (MB) in a video frame, how to best conceal the effectof
data loss at the decoder to minimize visual distortion.

Error concealment is typically an under-determined problem:
there are insufficient number of well-defined criteria (e.g., smooth-
ness conditions for boundary pixels adjacent to correctly-received
neighboring blocks [9]) to recover all missing MBs perfectly. This
makes choosing the appropriate set of pixels to replace the missing
blocks a technically challenging problem. In this paper, wepro-
pose to add alow-saliency priorto the error concealment problem
as a regularization term. It serves two purposes. First, in ROI-based
UEP video streaming, low-saliency prior is likely the correct side
information for the lost block and helps the client identifythe cor-
rect replacement block for concealment. Second, in the event that a
perfectly matched block cannot be identified, the low-saliency prior
reduces viewer’s visual attention on the loss-stricken spatial region,
resulting in higher overall subjective quality.

We study the effectiveness of a low-saliency prior in the con-
text of a previously proposed RECAP error concealment system [1].
RECAP transmits a low-resolution (LR) version of a video frame
alongside the original high-resolution (HR) version, so that if blocks
in the HR version are lost, the correctly-received LR version serves
as a template for matching of suitable replacement blocks from a pre-
viously correctly-decoded HR frame. We add a low-saliency prior to
the block identification process, so that only replacement candidate
blocks with good matchand low saliency can be selected. Further,
we design and apply four saliency reduction operators iteratively in
a loop, leveraging on previous work on saliency manipulation such
as [10], so that the saliency of candidate blocks is reduced.Exper-
imental results show that: i) PSNR of the error-concealed frames
can be increased dramatically (up to3.2dB over the original RE-
CAP), showing the effectiveness of a low-saliency prior in the under-
determined error concealment problem; and ii) subjective quality of
the repaired video using our proposal, as confirmed by an extensive
user study, is better than the original RECAP.
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Fig. 1. Overview of RECAP packet loss recovery system.

The outline of the paper is as follows. We first discuss related
work in Section 2. We then present an overview of the RECAP video
transmission system and our chosen visual saliency model inSec-
tions 3 and 4, respectively. We discuss our proposed error conceal-
ment strategy with low-saliency prior in Section 5. Finally, exper-
imental results and conclusions are presented in Sections 6and 7,
respectively.

2. RELATED WORK

In the face of challenging network conditions during real-time
video streaming, UEP strategies [4, 5, 6] protect visually important
(salient) regions more heavily. An often overlooked question in these
works is how to conceal missing blocks in the less important regions
when packet losses do occur? If concealment is done in asaliency-
myopicway, so that the resulting salient features draw attention to
the (likely) imperfectly recovered blocks, it will adversely affect the
subjective visual quality. This is one of the main reasons why we ap-
ply the low-saliency prior to the error concealment problem, so that
concealment can be done in asaliency-cognizantmanner, resulting
in recovered blocks that do not draw unnecessary attention.

We note that though we apply our low-saliency prior to the RE-
CAP video transmission system [1] (where LR thumbnails are trans-
mitted from server to client to facilitate loss recovery) inthis paper
for concreteness, we believe low-saliency prior itself hasmore gen-
eral applicability to other ROI-based UEP video streaming systems
that may employ other error concealment tools. For example,in
[9] where smoothness condition for boundary pixels is used as one
condition for recovery, low saliency can be an additional require-
ment to further facilitate correct block recovery. Note that in our
proposed method, we address packet losses in low-saliency spatial
regions because that is thetypical case. Packet losses in more heav-
ily protected high-saliency spatial regions, while possible, is arare
case, and hence will not affect much the average performanceof the
system as long as some default concealment scheme is performed.

Visual saliency—a measure of propensity for drawing visual
attention—has been a subject of intense study in the past decade [8,
11, 12]. While it is debatable which proposed method computes the
most accurate saliency maps at reasonable complexity, we selected
[8], [13] for our ground truth saliency calculation due to its wide ac-
ceptability and potential parallelism in implementation for our video
streaming scenario. Note that the focus of our paper is not onnew
computational models of saliency, but on the application ofsaliency
analysis to error concealment. While earlier works have applied vi-
sual saliency principles for video compression [13], to thebest of
our knowledge, we are the first to apply saliency analysis forerror
concealment of streaming video.

3. RECAP VIDEO TRANSMISSION SYSTEM

We first present an overview of the RECAP video transmission sys-
tem [1], shown in Fig. 1, upon which we build our error concealment
strategy with low-saliency prior at the decoder. Server compresses
HR video intoROI layerandnon-ROI layer. Using UEP, the ROI

layer is more heavily protected using stronger FEC than the non-ROI
layer. Typically, ROI layer contains more visually salientobjects and
accounts for25% or less of the total spatial area of each frame (to
be discussed in more details in Section 6). Given the relatively small
size of the ROI layer, we will assume it is protected well enough that
unrecoverable packet losses, as observed by the client, take place
only in the non-ROI layer.

Along with the encoded HR video, the server also low-pass fil-
ters and down-samples HR frames into LR thumbnails and transmits
them with heavy protection. In practice, the size of a thumbnail is
1/16 (down-sampled by4 in both dimensions) of the size of the
HR image, and hence it does not incur much redundant transmission
overhead. While data-agnostic FEC suffers from the well-known
“cliff” effect, thumbnail-based scheme enables a more graceful re-
covery, where lost HR video blocks can be partially recovered via
block search in previous correctly received HR reference frame, us-
ing a LR thumbnail as template. Experimental results in [1] showed
that by transmitting thumbnails, RECAP outperformed FEC-only
schemes. Our goal in this paper is to improve thumbnail-based error
concealment using a low-saliency prior. First, we discuss the visual
saliency model we selected.

4. OVERVIEW OF THE VISUAL SALIENCY MODEL

Among the existing bottom-up computational models of visual at-
tention, the Itti-Koch-Niebur (IKN) model [8] is one of the most
well-known and widely-used. In this biologically-plausible model,
the visual saliency of different regions is predicted by analyzing the
input image through a number of pre-attentive independent feature
channels, each locally sensitive to a specific low-level visual attribute
such as local opponent-color contrast, intensity contrast, and orienta-
tion contrast. More specifically, nine spatial scales are created using
dyadic Gaussian pyramids, which progressively low-pass filter and
subsample the input image, yielding an image-size-reduction factor
ranging from 1:1 (scale zero) to 1:256 (scale eight) in eightoctaves
[8].

The contrast in each feature channel is then computed using a
“center-surround” mechanism, which is implemented in the model
as the difference between fine and coarse scales: the center is a pixel
at scalec ∈ {2, 3, 4}, and the surround is the corresponding pixel
at scales = c + d, with d ∈ {3, 4}. The across-scale difference
between two levels of the pyramid is obtained by interpolation to
the finer scale and point-by-point subtraction. The obtained contrast
(feature) maps are then combined across scales through a non-linear
normalization operator to create a “conspicuity map” for each fea-
ture channel. The conspicuity maps are then resized to level4, and
combined together via the same normalization operator to generate a
“master saliency map” whose pixel values predict saliency.An extra
motion and flicker channel can also be added to the IKN model in
order to make it more suitable for video [13].

Note that the dyadic Gaussian pyramid employed in the IKN
model approximately halves the normalized frequency spectrum of
the input image at each level due to the successive low-pass filtering
of the image. This yields the normalized frequency spectrumof the
image at level 8 to be in range[0 − π/256]. Also, since the con-
spicuity maps are resized to level 4 before combination, this results
in using the frequency content of the original image in the range
[π/256−π/16] by the IKN model [12]. We will use this fact in one
part of our proposed method.

5. LOW-SALIENCY PRIOR IN ERROR CONCEALMENT

Having reviewed the RECAP video transmission system and our
chosen saliency model in Sections 3 and 4 respectively, we now dis-



cuss how we incorporate a low-saliency prior into the RECAP error
concealment scheme in mathematical details.

Let y be the thumbnail of a lost slicex, i.e., the low-pass-filtered
and down-sampled version ofx. Thumbnaily is subsequently com-
pressed tõy before transmission.̃y is hence related tox as follows:

ỹ = DLx+ ε, (1)

whereL is a low-pass filter to avoid aliasing before down-sampling,
D is the down-sample operator, andε is quantization noise iñy due
to lossy compression. We assumeỹ is correctly decoded, and the
goal is to use low-pass information iñy to recover the lost slicex. In
general, this is an under-determined system of equations, and there
are many candidateŝx’s that yield smalll2-norm‖ỹ −DLx̂‖2.

To resolve this ambiguity, we introduce an additional low-
saliency regularization termλS(x̂) to the l2-norm as objective,
whereS(x̂) is the the visual saliency of reconstructed slicex̂ in the
video frame:

min
x̂
‖ỹ −DLx̂‖2 + λS(x̂), (2)

andλ is a non-negative weight parameter that trades off the relative
importance of thel2-norm and visual saliency. In the remainder of
this section, we discuss how (2) can be solved efficiently.

5.1. Algorithm Overview

We first present our strategy to find a good replacement slicex̂ in (2)
for a loss-corrupted frame. We divide the missing slicex̂ into smaller
16×16 MBs x̂i’s, such that

⋃

i
x̂i = x̂. For each MB̂xi, the bestM

candidate blockŝx(m)
i (1 ≤ m ≤M ) from a HR correctly-received

reference frame that have the smallestl2-norm error with respect to
the corresponding thumbnail block of the current MB (i.e.,ỹi) are
first identified. We also include the 4 adjacent spatial neighbors in
the causal neighborhood of the current MB in the search process for
finding the bestM candidate blocks. The causal neighbors may be
previously concealed. The search procedure used here is thesame as
the search procedure used in the original RECAP algorithm aspro-
posed in [1]. All the chosenM candidate blocks are then examined
based on the objective function (2) to select onlyK < M of them as
the final candidate blocks. Note that examining the objective func-
tion (2) on all possible candidate blocks in a search region inside
the HR reference frame might be very time consuming due to the
saliency computation step. However, the above approach canreduce
the computational complexity significantly.

After finding the bestK candidate blocks of̂xi, for each candi-
date blockx̂(k)

i (0 ≤ k ≤ K), we separately apply each of the four
saliency reduction operatorsgj(.) (1 ≤ j ≤ 4) as described in Sec-
tion 5.3, in an attempt to lower the saliency value of the candidate
blockwithout increasing itsl2-norm error with respect to the thumb-
nail block ỹi. More specifically, we use the following procedure for
each lost MBx̂i:

1. Setk ← 1.

2. Setj ← 1.

3. Perform thej-th operatorgj(.) on thek-th candidate block:
x̂
′(k)
i ← gj(x̂

(k)
i ).

4. Given the saliency-reduced̂x′(k)
i , project x̂′(k)

i onto the
thumbnailỹi using the method described in Section 5.2.

5. If the objective value (2) of the neŵx′(k)
i obtained after step 4

is smaller than the smallest already-known objective function
value, replacêx(k)

i with x̂
′(k)
i and go to step 3. Otherwise, go

to step 6.

Fig. 2. The block-diagram of the proposed system. S1 shows the
proposed system for projecting an input saliency-reduced candidate
block to the thumbnail block. S2 is one of the four proposed saliency
reduction operators, which is the notch filter in this figure.

6. Setj ← j+1. If j ≤ 4, fetch the original candidate MB̂x(k)
i

again, and go to step 3. Otherwise, go to step 7.

7. Setk ← k + 1. If k ≤ K, go to step 2, otherwise to step 8.

8. Replacêxi with the best̂x(k)
i whose objective function value

is the smallest.

The above procedure is applied on all the lost MBs (i.e.,x̂i’s) in
a raster-scan order. Each time the visual saliency ofx̂

′(k)
i needs to

be calculated, we construct an adaptive window around the current
MB whose top-left corner is set to the top-left corner of the video
frame, and its bottom-right corner is set to the bottom-right corner
of the current MB. The saliency of̂x′(k)

i is then computed just within
this adaptive window. Note that the adaptive window covers all
correctly-decoded (or previously-concealed) MBsplus the current
MB. A block-diagram of the proposed method is depicted in Fig. 2.
The operation of each part of the proposed system is described next.

5.2. Projection onto the Thumbnail

In order to project a saliency-reduced candidate blockx̂
′(k)
i to the

thumbnail blockỹi as described in the algorithm in Section 5.1, we
first down-samplêx′(k)

i by the same down-sampling factor used to
generate the original thumbnail, by using a 4-tap conjugatewavelet
filter bank [14], shown as subsystem S1 in Fig. 2. In this figure,
G0(z) (low-pass) andG1(z) (high-pass) are the 4-tap analysis fil-
ters, andF0(z) andF1(z) are their corresponding conjugate synthe-
sis filters [14]. After that, we compute the DCT coefficients of the
coarsest low-frequency band. The projection to the thumbnail block
is then accomplished by moving the16×16 DCT coefficients of the
coarsest band that are outside the designated quantizationbin of the
thumbnail block to the closest boundary of their respectivequanti-
zation bins. The conjugate wavelet filter bank allows us to recover
the exact̂x′(k)

i when the low-frequency content of̂x′(k)
i is already

in good match with thumbnail̃yi due to its perfect reconstruction
property. This operation is preformed on both the luma and chroma
channels separately. This ensures that the low-frequency content of
the new candidate block in all the channels remains in good match
(in thel2 norm sense) with the correctly-received thumbnail block.

5.3. Saliency-Reduction Operators

We next describe our proposed candidate operatorsgj(.), 1 ≤ j ≤ 4,
for reducing the saliency of a candidate MB̂x′(k)

i . These operators



Fig. 3. The frequency response of the proposed notch filter.

are as follows:g1(.): notch filter, g2(.): frequency outlier filter,
g3(.): intensity and color contrast reduction operator, andg4(.): de-
blocking filter.

5.3.1. Notch Filter

As mentioned in Section 4, the IKN model uses the frequency con-
tent of the input image in the range[π/256− π/16]. Therefore, one
simple way to reduce the saliency of a specific region (e.g., acan-
didate MBx̂

(k)
i ) is to reduce the strength of the signal in the afore-

mentioned normalized frequency range. To achieve this goal, we
propose to use a simple FIR notch filter [14] depicted as sub-system
S2 in Fig. 2. This filter is composed of two low-pass filters whose
transfer functions in thez-domain are denoted byH1(z) andH2(z)
in Fig. 2, respectively.H1(z) is a lowpass FIR filter with 28 taps
for the luminance channel and 14 taps for the chrominance channel.
Similarly, H2(z) is a lowpass FIR filter with 26 taps for the lumi-
nance channel and 12 taps for the chrominance channel. The nor-
malized cut-off frequency of the filters was set toπ/30 (the center
of the mentioned frequency range). These filters were designed by
a standard window-based filter design method (Hamming method)
[14] to achieve a normalized gain of−6 dB at the cut-off frequency,
and a stop-band attenuation of about50 dB. The frequency response
of the obtained notch filter for the luminance channel is depicted in
Fig. 3. As seen from this figure, the proposed notch filter has avery
mild attenuation of about 1.2 dB at frequencies aroundπ/30, which
allows the system to reduce saliency slowly in each iteration of the
proposed method. Note that any other filter design method canalso
be used here to obtain an appropriate notch filter, possibly with only
one single FIR filter.

5.3.2. Frequency Outlier Filter

The second saliency-reduction operator we design is thefrequency
outlier filter. In [11], it was observed that since spatial frequencies in
natural images follow an exponential decay in the power spectrum, a
frequency component that does not follow the natural decay will be
visually salient.

In our implementation, to lower the visual saliency of a candi-
date MBx̂

(k)
i , we try to eliminate any potential frequency outlier in

the candidate MB by comparing the frequency content of the can-
didate MB with the frequency content of its neighboring MBs.In
order to achieve this goal, we first compute the DCT coefficients
of the adjacent MBs in the 4-connected neighborhood aroundx̂

(k)
i .

After that, we compute an upper and lower bound for each DCT co-
efficient ofx̂(k)

i as follows:

uupper
mn = max(|utop

mn|, |u
left
mn |, |u

right
mn |, |u

bottom
mn |), (3)

ulower
mn = min(|utop

mn|, |u
left
mn |, |u

right
mn |, |u

bottom
mn |), (4)

whereutop
mn, u

left
mn , uright

mn andubottom
mn denote the DCT coefficients

at frequency band(m,n), 0 ≤ m,n ≤ 15, of the top, left, right, and
bottom neighbors, respectively. Each DCT coefficient of thecurrent
MB is then clipped based on the computed upper and lower bounds
as follows

u∗

mn = sign(umn)×











uupper
mn if |umn| > uupper

mn ,

ulower
mn , if |umn| < ulower

mn ,

|umn|, otherwise,

(5)

whereumn is the original DCT coefficient of̂x(k)
i , andu∗

mn is the
new DCT coefficient of̂x(k)

i at frequency band(m,n). In our exper-
iments, we applied this operator separately on the luminance channel
(Y) as well as the two chroma channels (Cb and Cr) ofx̂

(k)
i .

5.3.3. Intensity and Color Contrast Reduction

Two of the important low-level features competing for visual atten-
tion in the IKN model are intensity and color contrast [8]. In[10],
it was observed that if intensity and/or color contrast of a particular
spatial region is enhanced, then the visual saliency as computed by
the IKN model can be increased. For this purpose, [10] proposed to
change the RGB components of each pixel within the desired region
as follows:

α∗

pq = αpq +wpqVαpq
, (6)

whereαpq denotes an RGB component (α = (R,G,B)) of the pixel
at location(p, q), α∗

pq denotes the updatedαpq, wpq is a normalized
positive weight factor, which is proportional to the saliency of the
pixel at location(p, q),Vαpq

is a point variation factor, which reflects
how much a feature influences the saliency of the pixel at location
(p, q), and is computed by backtracking the saliency computation
procedure in the IKN model. More details about this method can be
found in [10].

Here, we would like to perform the opposite: reduce the in-
tensity and/or color contrast of the candidate MBx̂(k)

i so that its
saliency value is decreased. For this purpose, we just negate the
value ofwpq in (6), and apply (6) to all pixels within the candidate
MB iteratively until its saliency cannot be decreased anymore.

5.3.4. Deblocking Filter

Another candidate operator for reducing saliency of a candidate
block is the H.264/AVC deblocking filter proposed in [15]. Itwas
shown in [15] that this simple deblocking filter can efficiently re-
duce the strength of blocking artifacts, which are usually attention
grabbing especially at low bit rates. In our experiments, wefound
that this filter can reduce saliency of the concealed MBs as well.
Hence, we propose this simple filter as a candidate saliency reduc-
tion operator.

Note that the strength of the H.264/AVC deblocking filter can
be adjusted adaptively based on the quantization parameterof each
MB as well as its coding mode [15]. Moreover, a separate boundary
strength value (between 0 and 4) can be assigned to every edgebe-
tween two4× 4 sub-blocks within a MB so as to be able to control
the strength of the filter with a finer resolution. In H.264/AVC, these
strength values are computed based on the coding mode of eachMB.
In our proposed method, however, we set all of the aforementioned



boundary strength values to a small value (2 in our experiments), and
we apply the deblocking filter several times on the candidateblock
until its saliency cannot be decreased anymore.

6. EXPERIMENTS

6.1. Experimental Setup

In our experiments, we used eight standard 30 frames per second
(fps) sequences:Bus(CIF),Crew(CIF & VGA), Football (SIF),Ste-
fan (SIF),Soccer(VGA), Race Horses(VGA), andKeiba(VGA) to
test our proposed method.Bus, Crew (VGA), Soccer, Race Horses,
andKeibawere 150 frames long,Football was 215 frames, and the
other two sequences were each 300 frames long. CIF/SIF sequences
were encoded at 700 kbps, while VGA sequences were encoded at
1400 kbps using the H.264/AVC JM 18.0 reference software [16],
with the GOP structure IPPP. The thumbnail videos were created
by downsampling their corresponding HR videos by a factor of4 in
each dimension, and were encoded at 10% of the bitrate of their HR
version, using the same encoder structure as their HR version. We
setM to 10, K to 5, while the value ofλ was experimentally set to
22. The IKN model with an extra motion and flicker channel [13]
was utilized for the saliency computation, and the saliencyvalues
were between zero and one.

In order to find the most salient regions or ROIs, we first com-
puted the saliency map of each video frame of each sequence. The
saliency map of each frame was then binarized based on the 75-
percentile of the saliency map of that frame. MBs with saliency
above the 75-percentile threshold were considered as ROIs.

To simulate a real video streaming scenario with RECAP as its
error control mechanism, a video frame was selected randomly, and
its MBs in non-ROI parts were dropped randomly based on a two-
state Gilbert model [17] at four different average loss rates (2%, 5%,
10%, 20%, and 30%) with an average burst loss length of8. The
corrupted frame was then concealed using both the original RECAP
algorithm and our proposed method based on a correctly-received
reference frame, which was assumed to be either5 or 10 frames
away. In practice, the distance between the concealed and reference
frame is random. We used 5 and 10 simply as representative test
values. This scheme was performed on about 30% of the total frames
(randomly chosen) to get a loss-corrupted video out of each video
sequence.

Fig. 4 shows an illustration of the visual quality of our proposed
method compared to the original RECAP method forCrew. One can
easily see that our method is able to improve the visual quality of the
concealed frames compared to the original RECAP method.

6.2. PSNR Comparison

To show objective quality improvement of our scheme over theorig-
inal RECAP (thus showing that low-saliency prior does provide cor-
rect side information to resolve the ambiguity in the replacement
block search problem (2)), we constructed Table 1, showing the av-
erage PSNR (luma) improvement of our proposed method over the
original RECAP algorithm at two reference frame distancesd = 5
andd = 10. The average amount of saliency reduction (computed
by the IKN model with an extra motion and flicker channel over all
lost MBs, and averaged over bothd = 5 andd = 10) brought by
our proposed method is also mentioned in this table. These frame-
level PSNR values have been computed at the aforementioned aver-
age loss rates, and only corrupted frames were considered for com-
puting the average PSNR values. As seen from this table, the pro-
posed method is able to improve the PSNR of the concealed frames
compared to the RECAP method by up to3.2dB, with an average

Table 1. Average PSNR (dB) and saliency reduction amount
achieved by the proposed method over RECAP atd = 10 andd = 5.

PSNR (RECAP : Proposed)

CIF & SIF Sequences Bus Crew Football Stefan
d = 10 28.8 : 30.026.6 : 29.8 24.1 : 25.9 26.3 : 27.2
d = 5 29.4 : 30.327.2 : 30.0 24.8 : 26.3 27.1 : 27.7

Average Saliency Reduction 10% 19% 12% 9%

VGA Sequences Soccer Crew Race Horses Keiba
d = 10 28.6 : 29.527.9 : 30.1 24.5 : 25.3 27.3 : 27.8
d = 5 29.2 : 29.928.5 : 30.3 25.1 : 25.5 27.9 : 28.1

Average Saliency Reduction 7% 13% 6% 4%

saliency reduction amount of about 9%. The PSNR gains are larger
at larger values ofd.

6.3. Subjective Testing

Since our proposed method aims at reducing the saliency of con-
cealed regions, we performed a subjective test on CIF and SIFse-
quences to verify the improvement in subjective quality. Inour ex-
periment, a Two Alternative Forced Choice (2AFC) method [18] was
used to compare subjective video quality. In 2AFC, the participant is
asked to make a choice between two alternatives, in our case the orig-
inal RECAP method and our proposed method. This way of com-
paring image quality is less susceptible to measurement noise than
quality ratings based on scale, such as Mean Opinion Score (MOS)
and Double Stimulus Continuous Quality Scale (DSCQS) [19].

In each trial, participants were looking at two side-by-side
videos (in the same vertical position, and separated by 1 cm hori-
zontally) on a mid-gray background. Each video pair was shown for
10 seconds as recommended by ITU-R BT.500 [19]. After this pre-
sentation, a mid-gray blank screen was shown for 5 seconds. During
this period, participants were asked to indicate on an answer sheet,
which of the two videos looks better (Left or Right). They were
asked to answer either Left or Right for each video pair, regardless
of how certain they were of their response. Participants didnot know
which video was obtained by our method and which one was ob-
tained by the RECAP method. Randomly chosen half of the trials
had the video produced by our method on the left side of the screen
and the other half on the right side, in order to counteract side bias
in the responses. This gave a total of4× 5× 2 = 40 trials.

The experiment was run in a quiet room with 17 participants (all
male except one, and of age between 18 and 30). All participants had
normal or corrected to normal vision. A 24-inch Dell monitorwith
brightness 300cd/m2 and resolution 1920× 1080 pixels was used
in our experiments. The brightness and contrast of the monitor were
set to 75%. The actual height of the displayed videos on the screen
was 87 millimeters. The illumination in the room was in the range
280-300 Lux. The distance between the monitor and the subjects was
fixed at 70 cm. Each participant was familiarized with the task before
the start of the experiment via a short printed instruction sheet. The
total length of the experiment for each participant was approximately
10 minutes.

The results are shown in Table 2, where we indicate the number
of responses that showed preference for the original RECAP method
and the proposed method at all of the tested average loss rates. We
used the two-sided chi-squareχ2 test [20] to examine the statistical
significance of the results. The null hypothesis is that there is no
preference for either the RECAP method or the proposed method.
Under this hypothesis, the expected number of votes is 17 foreach
method. Thep-value [20] is also indicated in the table. In experi-
mental sciences, as a rule of thumb, the null hypothesis is rejected
whenp < 0.05. When this happens in Table 2, it means that the



Table 2. Comparing the proposed method with the RECAP method
based on the subjective results at 5 different average loss rates.

Loss Rate Method Bus Crew Football Stefan
RECAP 7 4 9 10

2% Proposed Method 27 30 25 24
p-value 0.00060.0001 0.0061 0.0164
RECAP 4 3 7 9

5% Proposed Method 30 31 27 25
p-value 0.00010.0001 0.0006 0.0061
RECAP 7 3 10 8

10% Proposed Method 27 31 24 26
p-value 0.00060.0001 0.0164 0.0020
RECAP 8 8 11 7

20% Proposed Method 26 26 23 27
p-value 0.00200.0020 0.0396 0.0006
RECAP 8 10 11 10

30% Proposed Method 26 24 23 24
p-value 0.00200.0164 0.0396 0.0164

(a) (b)
Fig. 4. Comparing the visual quality of the original RECAP method
(left) with the proposed method (right) onCrew.

two methods cannot be considered to have the same subjectivequal-
ity, since one of them has obtained a statistically significantly higher
number of votes, and therefore seems to have better quality.

As seen in Table 2, in all of the 40 trials thep-value is smaller
than 0.05, which indicates that subjects showed a statistically signif-
icant preference for our proposed method. Looking across all trials
(i.e., summing up all the votes for the two options), the results show
that participants have preferred our method more than the RECAP
method (526 vs. 154 votes) with overallp = 0.0001, which is a
very statistically significant result, because the odds of it occurring
by chance are 1 in 10000. This confirms that the proposed method
is able to improve the perceptual quality of the concealed frames
compared to the original RECAP method.

Regarding the computational complexity, we emphasize thatthe
main goal of our paper is to investigate the potential gain ofus-
ing a low-saliency prior for error concealment in ROI-basedUEP
video streaming systems. Therefore, we did not optimize thepro-
posed method for speed, which would generally be application- and
platform-dependent in practice. We note that two of the fourpro-
posed saliency-reduction operators (i.e., the deblockingfilter and the
notch filter) have previously been implemented efficiently by others
in other contexts, and none requires exponential running time. The
other two operators can also be implemented efficiently. Further, in
practice, loss happens only occasionally, hence the computation re-
quired for our method is needed only occasionally. Finally,we found
experimentally that usually a few iterations (5-15) of the proposed
method is sufficient to acquire acceptable results.

7. CONCLUSION
Error concealment in loss-corrupted streaming video is a challeng-
ing under-determined problem. In this paper, we add a low-saliency
prior as a regularization term to the replacement block search prob-
lem. In doing so, first, low saliency provides the right side informa-

tion in ROI-based UEP video streaming systems for client to identify
correct replacement blocks for concealment, and second, itreduces
viewer’s visual attention on the loss-stricken spatial regions. Incor-
porated into a previously proposed RECAP error concealmentsetup,
our experimental results show that our method can clearly improve
the visual quality of the loss-corrupted frames both objectively (up
to 3.2dB in PSNR) and subjectively.
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