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ABSTRACT

“Texture-plus-depth” has become a popular coding format for mul-
tiview image compression, where a decoder can synthesize images
at intermediate viewpoints using encoded texture and depth maps
of closest captured view locations via depth-image-based rendering
(DIBR). As in other resource-constrained scenarios, limited avail-
able bits must be optimally distributed among captured texture and
depth maps to minimize the expected signal distortion at the decoder.
A specific challenge of multiview image compression for DIBR is
that the encoder must allocate bits without the knowledge of how
many and which specific virtual views will be synthesized at the
decoder for viewing. In this paper, we derive a cubic synthesized
view distortion model to describe the visual quality of an interpo-
lated view as a function of the view’s location. Given the model, one
can easily find the virtual view location between two coded views
where the maximum synthesized distortion occurs. Using a multi-
view image codec based on shape-adaptive wavelet transform, we
show how optimal bit allocation can be performed to minimize the
maximum view synthesis distortion at any intermediate viewpoint.
Our experimental results show that the optimal bit allocation can
outperform a common uniform bit allocation scheme by up to 1.0dB
in coding efficiency performance, while simultaneously being com-
petitive to a state-of-the-art H.264 codec.

Index Terms— multiview imaging, depth-image-based render-
ing, bit allocation, distortion modeling

1. INTRODUCTION

With the advent of sophisticated camera systems and the growing
consumer demand for a more immersive visual experience, multi-
view imaging has become a popular paradigm, where a scene of
interest is captured simultaneously by multiple cameras physically
located in proximity. If the closely spaced cameras are capable of
capturing both texture (typically RGB components) and depth im-
ages (per-pixel distance between physical objects being captured and
capturing camera)1, then texture and depth maps can be compressed
together into one format, commonly called texture-plus-depth rep-
resentation [1]. This enables a decoder to interpolate an image at
an intermediate viewpoint using texture and depth images of the
two closest captured view locations via depth-image-based render-
ing (DIBR) [2]. The ability to generate images at any desired view-
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1Depth values can be either captured directly using time-of-flight cameras
or estimated using depth estimation algorithms.

point in a defined continuum, called free viewpoint [3], offers the
user a new level of visual immersion compared to traditional single-
camera / single-view imaging systems.

As in other resource-constrained scenarios, available coding bits
out of a bit budget must be optimally distributed among captured
texture and depth images in order to minimize the expected signal
distortion of one or more constructed view(s) at the decoder. What
is particularly challenging for multiview image compression with
DIBR, however, is that the encoder must allocate bits in the absence
of the knowledge of how many and which specific virtual views will
be synthesized at the decoder for viewing. While [4] showed exper-
imentally that the synthesized view distortion as a function of the
view location obeys a convex shape, no bit allocation strategy has
been formally devised for texture-plus-depth representation in a rig-
orous way.

In this paper, we derive a cubic synthesized view distortion
model that mathematically describes the visual quality of an inter-
polated view as a function of the view’s location. Given the model,
one can easily find the view location between two captured coded
views where the maximum synthesized distortion occurs. Using a
state-of-the-art multiview image codec based on the shape-adaptive
wavelet transform (SA-WT) [5], we show how optimal bit allocation
can be performed to minimize the maximum synthesized distortion
at any intermediate viewpoint in a computationally efficient man-
ner. For the case when there are only two captured viewpoints, we
show experimentally that the optimal bit allocation can outperform a
commonly deployed uniform bit allocation scheme by up to a 1.0dB
in visual quality measured in Peak Signal-to-Noise Ratio (PSNR).
At the same time, our compression framework demonstrates coding
performance competitive to that of a conventional H.264 coder.

The outline of the rest of the paper is as follows. First, we pro-
vide a system level description of our coding framework in Section 2.
Then, we present the proposed distortion model and the related prob-
lem formulation in Sections 3 and 4, respectively. Next, we exam-
ine the performance of our framework via simulation experiments in
Section 5. Finally, concluding remarks are provided in Section 6.

2. SYSTEM DESCRIPTION

Here, we first review the design of the shape-adaptive wavelet trans-
form, as adopted from [5], and motivate its application to multiview
image coding. Then, we describe the virtual view rendering process
and analyze its intrinsic properties. Finally, we show how by using
these properties we can model the distortion of synthesized images
at arbitrary view locations.
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2.1. Shape-Adaptive Wavelet Transform

The SA-WT was originally proposed in [6] to efficiently deal with
irregular shapes of objects in images. Wavelet filtering is adapted
to object boundaries so that the pixels convolved with the wavelet
filters and located in the outer region (out of the object boundaries)
are filled with values related to the pixels from the inner region, so
that a symmetric boundary extension is applied [6]. That is, the filled
pixel values are symmetric with respect to the object boundary. As a
result, the high-pass wavelet coefficients produced by filtering across
the discontinuities along these boundaries have reduced magnitudes,
which, in turn, leads to a lower distortion of the decoded image, for
the same bit rate. However, this improvement of the rate-distortion
(RD) performance is counter-acted by an additional bit rate spent for
the edge map coding needed for the decoder to apply the identical
inverse SA-WT. Thus, bits must be allocated between edge maps
and wavelet coefficients, so that the RD performance of the SA-WT
image coding is optimized.

To apply previous SA-WT concepts designed for single-view
images to multiview image coding, we use a modified version of
the SA-WT proposed in [5], where the shape boundaries used for
the adaptation of the wavelet filtering do not necessarily have to be
closed contours. In addition, we exploit the correlation between edge
locations in texture and depth images, for the same viewpoint, in or-
der to efficiently encode them, as explained next.

2.2. Multiview Image Coder

The input to our multiview image coder is a set of N texture and
depth images, {t0, t1, . . . , tN−1} and {d0, d1, . . . , dN−1} (hence
2N images in total), captured at known camera viewpoints denoted
as V = {0, 1, . . . , N−1}. The camera viewpoints can in general be
located anywhere in the 3D coordinates, but, for simplicity we only
consider the case of a baseline equidistant camera setup.

For coding, either the left-most or the right-most camera view-
point is chosen as the first encoded viewpoint, denoted as 0. In
particular, given allocated target bit rates Rt0 and Rd0 , the corre-
sponding texture and depth images, t0 and d0, are encoded using the
SA-WT followed by an application of the Set Partitioning in Hierar-
chical Trees (SPIHT) coder [7] to the resulting wavelet coefficients.
The associated edge maps for the SA-WT are losslessly encoded us-
ing the traditional Freeman method [8] at bit rates Rc,t0 and Rc,d0 ,
as shown in Fig. 1.

In order to enable scaling of the influence of the edge maps on
the RD performance, we introduce parameters 0 ≤ Ct0 , Cd0 < 1
that determine the portion of pixel coordinates in t0 and d0 selected
as edge locations, respectively. In particular, the edge map associ-
ated with the depth image d0 is generated such that only the Cd0

portion of pixel coordinates comprising the largest magnitudes of
the first-order difference of d0 computed across the horizontal and
vertical directions is retained, as the most prominent edge locations.
Then, recalling the fact that edges in the depth image commonly
coincide with the edges in the texture image captured at the same
viewpoint [5],2 the edge map for t0 comprises the edge map gen-
erated for d0 and the additional Ct0 portion of the remaining pixel
coordinates featuring the largest magnitudes of the first-order differ-
ence in t0. An example of selected edge maps for t0 and d0 is shown
in the top two images in Fig. 2.

2Notice that this is not a bidirectional relation in general because texture
images are usually more complex than depth images and have a richer edge
structure.
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Fig. 1. Schematic illustration of the coder.
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Fig. 2. Edge maps for depth and texture images at viewpoints 0
(top) and i > 0 (bottom) for the Middlebury data set Bowling2.
The blue color shows the edge locations associated with disparity
compensation discontinuities. The red color shows the most promi-
nent edge locations in depth images used also as edge locations in
texture images. The green color shows the edge locations selected
as most prominent in texture images. This example is obtained for
Cd0 = 0.26%, Ct0 = 0.30%, Cdi = 0.52% and Cti = 0.30%,
whereas the resulting bit rates are Rc,d0 = 0.0093, Rc,t0 = 0.0036,
Rc,di = 0.0021 and Rc,ti = 0.0026 bpp.

The parameters Rt0 , Rd0 , Ct0 , and Cd0 are used as an input to
the coder and they are optimized for the best RD coding performance
(to be explained in Section 4). The bit streams of lengths Rt0 , Rd0 ,
Rc,t0 , and Rc,d0 are generated by the SPIHT and Freeman coders
as the output. Note that only the additional Ct0 edge locations have
to be encoded in the case of the edge map associated with t0. That
is because the edge locations in t0 that coincide with the edge map
associated with d0 have been already encoded and, therefore, will be
available at the decoder for reconstructing the edge map associated
with t0.

The texture and depth images at the other camera viewpoints,
i = 1, 2, . . . , N − 1, are differentially encoded such that the SA-
WT and the SPIHT coders are applied to the respective differences
between the captured images and their predictions obtained by dis-
parity compensation (denoted as DC blocks in Fig. 1) using the quan-
tized images at the previous viewpoint i − 1. Similar to the case of
view 0, the allocated target bit rates Rti and Rdi are taken as input



parameters to the coding procedure. In addition, the corresponding
edge maps for each ti and di are computed similarly to those for t0
and d0 using the parameters Cti and Cdi .

However, unlike the intra-coded t0 and d0, the images obtained
as differences between the actual viewpoint i images and their dis-
parity compensated versions often have a large-step discontinuity
between the compensated and non-compensated regions (which we
call here disparity compensation discontinuities), either around oc-
cluded areas or along the image borders. The disparity compensation
discontinuities coincide in the texture and depth images at the same
viewpoint and their locations are known to the decoder from the ge-
ometry of the camera locations and the previously encoded views,
without additional encoding. Thus, the edge map for di consists of
the disparity compensation discontinuities and the Cdi portion of the
remaining most prominent edge locations in di. Similarly, the edge
map for ti comprises the entire edge map for di and the additional
Cti portion of the remaining most prominent edge locations in ti.
Note that only the added edge locations corresponding to Cdi pixels
from di and to Cti pixels from ti have to be encoded by the Freeman
coder, while the other locations are already known to the decoder, as
explained above. An example of the edge map for ti and di is illus-
trated in the bottom two images in Fig. 2.

2.3. Virtual View Rendering

In a common virtual view rendering setup, by knowing the extrinsic
camera parameters and the captured view locations, a virtual inter-
mediate view can be synthesized by a back projection of the two
nearest captured reference views to the 3D scene coordinates, fol-
lowed by a projection to the virtual view camera location [4]. Ad-
ditionally, in DIBR, each captured texture image is associated with
a per-pixel depth image, which is used to determine the distance
(depth) between the camera and the scene’s 3D surface. To prevent
overwriting the foreground with background information in the pro-
jection, a depth buffer is maintained when reconstructing a virtual
view. Then, given the two pixel projections from the two respec-
tive reference views, we select for the corresponding pixel reference
in the virtual view the projection that is closer to the virtual cam-
era location, as measured from the 3D scene coordinates. In other
words, this is the projection that exhibits a smaller depth value for
its associated pixel location in the respective reference view.

We denote the two reference viewpoint locations as l and r, re-
ferring to left and right references, and the virtual viewpoint location
as x. Due to a typically high correlation between captured neighbor-
ing views when the camera spacings are small, the projections tx,Pl

and tx,Pr at the same virtual view location x obtained from the two
reference texture images tl and tr overlap at most of the pixels, i.e.,

tx,Pl(i) = tx,Pr (i) (1)

at such pixel coordinates i. For overlaying these two projections
into one, a view-dependent texture blending technique is used, so
that each pixel at coordinate i that is available from both projections
is computed as a weighted linear sum tx(i) = (1 − x)tx,Pl(i) +
xtx,Pr (i). Here, 0 ≤ x ≤ 1 is proportional to the distance between
the virtual view location x and the left reference view location l.

For the pixels that do not have available both projection versions
due to occlusion or because their coordinates lie out of the reference
image borders, the resulting pixel value is either equal to the single
available projection or to zero, in the case where no projection is
available. The zeros in the virtual view are filled-in during a post-
processing step of in-painting or interpolation.

Note that other more complex blending techniques are also pos-
sible (e.g. [9] or [4] with coordinate rotation). However, we use
the described technique because of simplicity and smoothness of the
associated virtual view distortion with respect to x.

For simplicity and without loss of generality, we assume that
both captured and virtual camera viewpoints are located on a base-
line, reducing the camera coordinates to a 1D index. Then, the vir-
tual viewpoint location x is constrained to lie on a line between the
left and right reference views. We assume the notation where x = 0
coincides with the left reference and x = 1 with the right reference
view. Note that the assumed dimensionality reduction also leads to
a simpler view projection using only a 1D disparity compensation
warping operator instead of a complex 3D coordinate projection.

Let i denote a pixel coordinate at the virtual viewpoint location
x. Furthermore, denote as jl(x, i) the pixel coordinate in the refer-
ence tl that is warped to the coordinate i in the projected image tx,Pl ,
i.e., if there is no occlusion, tx,Pl(i) = tl(jl(x, i)). Similarly, de-
note as jr(x, i) the pixel coordinate in the reference tr that is warped
to the same coordinate i in the projection tx,Pr or, in mathematical
terms, tx,Pr (i) = tr(jr(x, i)). Notice that if the two reference tex-
ture images are perfectly matched so that the pixel intensities at the
same warped coordinate i are equal and if those pixels are not oc-
cluded, then (1) holds and, thus,

tl(jl(x, i)) = tr(jr(x, i)). (2)

In the case when DIBR is used in disparity compensation, the
warped coordinate i along the camera baseline is obtained by a linear
shift of the original coordinate jl(x, i) (or jr(x, i)) scaled by the
distance x (or 1−x) between the virtual and reference view locations
and by the depth value at the original coordinate, i.e.,

i = jl(x, i)− x · dl(jl(x, i)) (3)
i = jr(x, i) + (1− x) · dr(jr(x, i)), (4)

where dl and dr are the depth images captured at the left and right
reference views.

Using the proposed camera location constraint and the assumed
notation, we can rewrite the blending operator for rendering the tex-
ture images associated with virtual views as

tx(i) =


(1− x)tl(jl) + xtr(jr), tl(jl), tr(jr) avlb.

tl(jl), tr(jr) unavlb.
tr(jr), tl(jl) unavlb.

0, tl(jl), tr(jr) unavlb.

,

(5)
where the arguments (x, i) in jl(x, i) and jr(x, i) are dropped for
simplicity.

3. MODELING

3.1. Rate-distortion model for a-Lipschitz smooth images
Following the analysis of Mallat [10], the RD relation for a general
a-Lipschitz smooth image compressed by an adaptive wavelet trans-
form can be represented as

D(R) = c(σ2)R−a. (6)

Furthermore, we assume that the scaling c(σ2) is linearly dependent
on the variance σ2 of the high-pass wavelet coefficients, so that the
relation in (6) is simplified to D = cσ2R−a. Fig. 3 shows a compar-
ison of modeled and measured RD behavior for two data sets, where
the parameters a and c are estimated using a linear least-square esti-
mator.
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Fig. 3. Modeled and measured RD behavior for the Middlebury data
sets Bowling2 (left) and Rocks2 (right). The estimated parame-
ters are a = 0.89, c = 3.18 · 10−2 and σ2 = 93.29 for Bowling2
and a = 0.79, c = 5.67 · 10−2 and σ2 = 175.4 for Rocks2.
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Fig. 4. Proportion of occluded pixels for virtual viewpoint location
in between two reference views for Bowling2 (left) and Rocks2
(right). The estimated parameter α = 0.1739 for Bowling2 and
α = 0.1345 for Rocks2.

In addition, we assume that the SA-WT affects only the variance
σ2, but not the smoothness degree a and the scaling constant c. Al-
though this assumption is only an approximation, it matches well the
RD behaviors observed in practice, as verified in our experiments.

3.2. Cubic model for virtual view distortion
To estimate the virtual view distortion in the case when the reference
texture and depth images are quantized, we first analyze the portion
of the pixels generated in each of the four cases of the blending oper-
ator in (5), at virtual view location x. Supported by experiments, we
assume that: (a) each portion of occluded pixels in the projections
tx,Pl and tx,Pr grows linearly with respect to the distance between
the reference and virtual view; and (b) no pixel for x in between the
left and right references is occluded in both projections tx,Pl and
tx,Pr . Note that the actual pixel portions depend on the complexity
of the 3D scene. Nonetheless, the above assumptions are realistic in
practical implementations that feature small camera spacings along
the baseline, as supported by the example shown in Fig. 4.

Denote by α the growth rate of the portion of occluded pixels
in the projection with respect to the distance between the reference
and virtual view. Then, the portion of pixels that are occluded in
tx,Pl (that is, the pixels unavailable in the projection from the left
reference, i.e., the third line in (5)) is equal to α · x. Similarly, the
portion of pixels occluded in tx,Pr (the second line in (5)) is given
by α · (1− x). From the assumption (b) above, the portion of pixels
that correspond to the fourth line of (5) is equal to zero and, thus,
the portion of pixels available from both projections tx,Pl and tx,Pr

remains constant across x and is equal to (1− α). Fig. 4 illustrates
these portion values for two data sets Bowling2 (left) and Rocks2
(right) from the Middlebury database [11].

Let us further assume that the covariance of the texture image
pixels can be modeled as E{t(i) · t(i + k)} = s2t · ρ|k| [12, 13],
where s2t =E{t(i)2} and 0 ≤ ρ ≤ 1 is the covariance of the texture
image pixels for a unit shift k = 1. In addition, since ρ is very close

to 1, the covariance can be efficiently linearized by the expression
s2t (1− (1− ρ) · |k|).

We denote the quantized versions of the reference texture and
depth images as t̂l, t̂r , d̂l, and d̂r , respectively, with the associated
distortions Dtl =E{(tl − t̂l)

2] and Dtr , Ddl , and Ddr defined sim-
ilarly. Using (5) and the estimated portions of pixels, the view tx
rendered at viewpoint x, using the quantized reference images as
anchor, contains the following pixels

t̂x(i) =


(1− x)t̂l(ĵl) + xt̂r(ĵr), at (1− α) # of pxls

t̂l(ĵl), at α(1− x) # of pxls
t̂r(ĵr), at αx # of pxls

,

(7)
where similarly to (5), the arguments (x, i) in the quantized indices
ĵl(x, i) and ĵr(x, i) are dropped. Thus, the distortion of the rendered
view is expressed as

Ds(x) = E{(tx(i)− t̂x(i))
2} =

(α(1− x) + (1− α)(1− x)2)El+

(αx+ (1− α)x2)Er + 2(1− α)x(1− x)Elr, (8)

where

El = E{(tl(jl)− t̂l(ĵl))
2}, (9)

Er = E{(tr(jr)− t̂r(ĵr))
2}, (10)

Elr = E{(tl(jl)− t̂l(ĵl)) · (tr(jr)− t̂r(ĵr))}. (11)

To compute (9), denote the quantization error of tl as ϵtl(i) =

tl(i)−t̂l(i), where ϵtl(i) is zero-mean, with variance E{ϵ2tl} = Dtl ,
and independent of the quantized values in t̂l. Thus,

El = E
{(

tl(jl)− tl(ĵl) + ϵtl(ĵl)
)2

}
.

Approximating E{tl(jl)2} = E{tl(ĵl)2] = s2t and E{ϵtl(ĵl) ·
[tl(jl)− tl(ĵl)]} = 0, we obtain that El = Dtl +2s2t (1−ρ)E{|jl−
ĵl|}. Since from (3) it follows that |jl − ĵl| = x|dl − d̂l|, we can
write El = Dtl + 2s2t (1 − ρ)xE{|dl − d̂l|}. Furthermore, since
from Jensen’s inequality it holds E{|dl − d̂l|} ≤ D

1/2
dl

, we can ap-

proximate El ≈ Dtl + 2s2t (1 − ρ)xD
1/2
dl

. Similarly, for (10), we

have Er ≈ Dtr + 2s2t (1− ρ)(1− x)D
1/2
dr

.
For (11), by assuming independent zero-mean quantization er-

rors ϵtl(i) and ϵtr (i), we obtain Elr =E{(tl(jl)−tl(ĵl)) ·(tr(jr)−
tr(ĵr))}. Recalling from (2) that tl(jl) = tr(jr), the four terms in
Elr are obtained as follows:

E{tl(jl)tr(jr)} = s2t ,

E{tl(jl)tr(ĵr)} ≈ s2t

(
1− (1− ρ)(1− x)D

1/2
dr

)
,

E{tl(ĵl)tr(jr)} ≈ s2t

(
1− (1− ρ)xD

1/2
dl

)
,

E{tl(ĵl)tr(ĵr)} ≈ s2t

(
1− (1− ρ)(xD

1/2
dl

+ (1− x)D
1/2
dr

)
)
.

In sum, these terms are canceled out and hence Elr ≈ 0.
Finally, by substituting El, Er and Elr in (8), Ds(x) can be ap-

proximated as a cubic polynomial with respect to x. Fig. 5 shows
two examples of a sampled virtual view distortion and the corre-
sponding cubic model obtained for quantized data sets Bowling2
(left) and Rocks2 (right). We can observe a close match between
the model and the actual sampled values.
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Fig. 5. Two examples of sampled virtual view distortion and
estimated cubic model using a linear least-square estimator for
Bowling2 (left) and Rocks2 (right).

4. PROBLEM FORMULATION
4.1. Model Parameter Sampling
The model parameters required to optimize RD performance are
classified in 3 groups: image coding RD modeling, edge map in-
fluence, and cubic modeling for virtual view distortion.

1. RD model for images. The two parameters c and a from (6)
are estimated using a linear least-square estimator applied to each
texture and depth image, separately. Following the statistical analy-
sis recommendation from [14] that the number of samples should be
at least a multiple of the number of parameters, we sample the RD
values at 4 operating points, such that the range of sampled distortion
values lies in the interval [σ2/4, 1.5σ2]. The estimated parameters
are denoted as cti , cdi , ati , and adi , for i = 0, . . . , N − 1.

2. Edge maps for SA-WT. The SA-WT is applied to each tex-
ture and depth image, ti and di, for different values of Cdi and Cti

ranging from 0 to 1% of the total number of pixels. For each case,
the energy of the high-pass wavelet coefficients is measured and de-
noted as σ2

ti and σ2
di

, respectively. At the same time, the result-
ing edge maps are losslessly encoded using the Freeman method.
In particular, as explained previously, each depth image edge map
is differentially constructed with respect to the boundaries between
the occluded and disclosed regions. In addition, the texture image
edge maps are differentially constructed with respect to their coun-
terparts for the corresponding depth images, as explained in Section
2.2. The obtained edge map bit rates are denoted as Rc,ti and Rc,di .
Note that the complexity of the SA-WT and the Freeman method is
significantly lower than that of the entire coder and, thus, despite a
possibly large number of samples that need to be acquired, the sam-
pling does not exhibit a significant computational cost. Furthermore,
when the camera spacings are small, the edge structure in the differ-
entially encoded di and ti, for i ≥ 1, is significantly simpler than
that in d0 and t0. Therefore, the number of acquired samples for
i ≥ 1 can be smaller than that for i = 0, which in turn allows for an
additional reduction of the computational cost of sampling.

3. Cubic model for virtual view distortion. Since the parameters
α and s2t used in the modeling of the synthesized view distortion
can be measured precisely from the original data at very low com-
putational cost, we only estimate the covariance parameter ρ. Recall
from the modeling in Section 3.2 that ρ influences Ds(x) only by
scaling the depth image distortions Ddl and Ddr , but it is invariant
to Dtl and Dtr . Thus, to estimate ρ, we use a linear least-square es-
timator where the synthesis distortion is sampled using the original
(uncompressed) texture images (i.e., Dtl , Dtr = 0) and compressed
depth images such that σ2

d/4 ≤ Ddl , Ddr ≤ σ2
d/2. Following [14]

and allowing for a more robust estimation, we compute at least 4
samples of Ds.

4.2. Encoding Rate and Virtual View Distortion
The total encoding bit rate is equal to the sum of all bit rates allocated
to the images ti and di, for i = 0, . . . , N − 1, and the bit rates spent
for the edge map coding. That is,

Rtot(R) =

N−1∑
i=0

[Rti +Rdi +Rc,ti +Rc,di ] , (12)

where R = {Rti , Rdi , Rc,ti , Rc,di}.
The virtual view distortion Ds(x), for 0 ≤ x ≤ N − 1, is

modeled as a piecewise cubic polynomial using (8) such that the
nearest left and right captured views indexed by integers i and i+1,
respectively, are chosen as references and the corresponding cubic
polynomial on the ith segment i ≤ x ≤ i+1 is given by D

(i)
s (x) =

mi,3(x− i)3 +mi,2(x− i)2 +mi,1(x− i) +mi,0. From Section
3.2, the cubic parameters mi,j , j = 0, 1, 2, 3, are estimated as

mi,3 =2s2t (1− ρ)(1− α)(D
1/2
di

−D
1/2
di+1

),

mi,2 =(1− α)(Dti +Dti+1)−

2s2t (1− ρ)((2− α)D
1/2
di

− (1− 2α)D
1/2
di+1

),

mi,1 =αDti+1 − (2− α)Dti + 2s2t (1− ρ)(D
1/2
di

+ αD
1/2
di+1

),

mi,0 =Dti .

4.3. Rate-Distortion Optimization
The goal of the optimization is to find the optimal bit allocation for
R = {Rti , Rdi , Rc,ti , Rc,di}, such that the resulting maximum of
the distortion Ds(x), 0 ≤ x ≤ N − 1, is minimized given that
the total bit rate Rtot from (12) does not exceed a bit rate constraint
Rmax. We formalize this goal as

R∗ = argmin
R

{
max

0≤x≤N−1
Ds(x)

}
, s.t. Rtot(R) ≤ Rmax. (13)

To solve this min-max problem, we first compute the inner max-
imization in (13) by computing the maximum of each cubic poly-
nomial D(i)

s (x) for i ≤ x ≤ i + 1. In particular, we find the
roots x◦

i , if any, of the first derivative D
′(i)
s (x), such that the sec-

ond derivative D
′′(i)
s (x◦

i ) < 0. Since D
(i)
s (x) is cubic, there can be

at most one such x◦
i . The maximum of each D

(i)
s (x) is then equal to

D
(i)
s,max = max{D(i)

s (i), D
(i)
s (x◦

i ), D
(i)
s (i+1)}, if i < x◦

i < i+1,
or to D

(i)
s,max = max{D(i)

s (i), D
(i)
s (i+ 1)} otherwise. Finally, the

maximum of the virtual view distortion Ds,max is obtained as the
maximum of all D(i)

s,max, i = 0, . . . , N − 1.
Having Ds,max, we convert the optimization problem in (13)

into its Lagrangian unconstrained version, for a given Lagrange mul-
tiplier λ > 0, as follows

R◦ = argmin
R

Ds,max + λRtot. (14)

It can be shown that the solution R◦ is equal to the solution R∗

of (13) for Rmax = Rtot(R = R◦). Notice that the search in
(14) is mixed discrete-continuous because the bit rates Rti and Rdi

are modeled in the continuous domain, whereas Rc,ti and Rc,di are
sampled at discrete points. Thus, we separate this search into a two-
step problem, such that for each sampled Rc,ti and Rc,di , the op-
timal rates Rti and Rdi are found by numerical minimization us-
ing the Matlab function fmincon with imposed nonnegative con-
straints. Then, the final solution R◦ is found by an exhaustive search
over the set of sampled Rc,ti and Rc,di .
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Fig. 6. RD performance of the optimal rate allocation compres-
sion algorithm compared to the performance of a simple uniform
allocation and H.264. The results are obtained for two data sets:
Bowling2 and Rocks2. The optimal allocation compression al-
ways outperforms the compression with the simple allocation and
has a better RD performance than H.264 at mid- and high-range
rates. However, at lower rates, the sophisticated motion compen-
sation tools in H.264 have a key influence on the RD performance
and thus lead to a better quality for the virtual views.

5. RESULTS

For experimentation, we encode texture and depth images of two
Middlebury [11] data sets, Bowling2 and Rocks2, using the SA-
WT followed by SPIHT, as explained in Section 2. The data sets
contain 7 texture and 2 depth images with resolution 1110 × 1330
pixels for Bowling2 and 1110×1276 pixels for Rocks2 captured
at equidistant viewpoint locations with a baseline camera setup. The
two viewpoints with available depth images are chosen as references,
whereas the other texture images are used for verification of the vir-
tual view quality.

The images are encoded at different bit rates determined by
the optimal bit allocation algorithm. Then, the actual virtual view
distortion is measured at the available intermediate points (i.e., the
captured views without depth images) in between the two reference
views and the maximal value is considered as an upper bound. No-
tice that this is only an approximation of the theoretical distortion
upper bound; due to unavailability of images captured at arbitrary
viewpoint locations, we use this approach as an alternative for the
performance evaluation.

The resulting compression performance is compared to those of
two other methods. In the first method, the images are encoded using
the same compression method, but with a simple rate allocation such
that an equal bit rate is allocated to each texture image and a half of
that rate to each depth image. In the second method, the H.264/AVC
[15] is applied across the images so that the temporal dimension is
replaced with the view dimension. In both cases, the upper bound
on the virtual view distortion is computed in the same way as for the
optimal rate allocation. The related RD performances are shown in
Fig. 6.

It can be seen that the optimal allocation algorithm always out-
performs the uniform allocation, as expected, because of the applied
optimization. Furthermore, the optimal algorithm performs better
than the H.264 coder at mid-rates. However, at lower rates, the so-
phisticatedly designed motion compensation tools in H.264 have a
key influence on the RD performance and, thus, result in a better
quality of the virtual views. Since the goal of the present paper is
to examine the use of our novel virtual view distortion model within
a rather simple compression framework, we leave further improve-
ments of the coder components of our system as future work.

6. CONCLUSION

We have derived a cubic distortion model for virtual view synthesis
via depth-image-based rendering in multi-view imaging. The model
accurately characterizes the signal distortion of a synthetic view,
as a function of its location between the two reference views. We
employ our model to optimize the bit allocation between captured
depth and texture images in a multi-view imaging system, such that
the maximum reconstructed distortion of a synthetic view is mini-
mized for the given bit budget. We observed in our experiments that
the proposed compression framework outperforms, with a significant
gain, a heuristic rate allocation that uniformly distributes the avail-
able bit budget across all captured views. Encouraging performance
advances are also observed over the-state-of-the-art H.264 codec for
medium and high encoding rates. We believe that further gains can
be achieved if the other components of our compression framework
are also optimized.
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