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ABSTRACT

With the advent of eye gaze tracking technology, eye gaze is increas-
ingly being used as a media interaction trigger in a variety of appli-
cations, such as eye typing, video content customization, and net-
work video streaming based on region-of-interest (ROI). The reac-
tion time of a gaze-based networked system, however, is in practice
lower-bounded by the round trip time (RTT) of today’s networks,
which can be large. To improve the efficacy of gaze-based net-
worked systems, in the paper we propose a Hidden Markov Model
(HMM)-based gaze prediction strategy to predict future gaze loca-
tions to lower end-to-end reaction delay. We first design an HMM
with three states corresponding to human’s three major types of in-
trinsic eye movements. HMM parameters are obtained offline on a
per-video basis during training phase. During testing phase, a win-
dow of noisy gaze observations are collected in real-time asinput to
a forward algorithm, which computes the most likely HMM state.
Given the deduced HMM state, linear prediction is used to predict
gaze location RTT seconds into the future.

We demonstrate the applicability of our gaze prediction strategy
by focusing on ROI-based bit allocation for network video stream-
ing. To reduce transmission rate of a video stream without degrading
viewer’s perceived visual quality, we allocate more bits toencode the
viewer’s current spatial ROI, while devoting fewer bits in other spa-
tial regions. The challenge lies in overcoming the delay between
the time a viewer’s ROI is detected by gaze tracking, to the time the
effected video is encoded, delivered and displayed at the viewer’s
terminal. To this end, we use our proposed gaze-prediction strategy
to predict future eye gaze locations, so that optimized bit allocation
can be performed for future frames. Our experiments show that bit
rate can be reduced by21% without noticeable visual quality degra-
dation when end-to-end network delay is as high as200ms.

Index Terms— Eye-gaze prediction, network streaming

1. INTRODUCTION

Eye gaze tracking—the inference of a viewer’s point of visual focus
based on camera-captured images of the eyes—has been intensively
studied by the computer vision community in the last decade [1], to
the level of maturity that it is now a commercially availabletechnol-
ogy [2]. To unlock the potential of this new tool, many applications
now employ eye gaze as a trigger for media interaction. One ex-
ample is eye typing, where the gaze location on a monitor triggers
typing of English alphabets for the physically disabled. Another ex-
ample is video customization, where the video content is adaptively
composed (e.g., ad insertion) according to gaze location.

For networked media systems, the gaze data are collected at a
client and sent to a server to effect changes in media content. The re-
action time of the gazed-based trigger is lower-bounded by the round
trip time (RTT) of the transmission networks. For today’s Internet,

RTT can reach 200ms, which significantly exceeds the60ms toler-
ance threshold [3] for lag between a change in viewer’s visual focus
and the corresponding content update ingaze-contingent displays
(GCD) [4]. Predictive strategies are hence necessary for effective
application of eye-gaze in a networked environment.

In this paper, we propose a novel gaze prediction strategy toes-
timate future gaze locations to lower end-to-end reaction delay in
gaze-based networked media systems. We first design a Hidden
Markov Model (HMM) with three latent states that correspondto
human’s three major types of intrinsic eye movements:fixation, pur-
suit and saccade[5]. HMM parameters are obtained offline on a
per-video basis using data collected during training phase. During
testing phase, a window of noisy gaze observations are collected in
real-time for a forward algorithm (FA) to compute the most likely
current latent state. Given the deduced HMM state, linear prediction
is performed to predict gaze location RTT seconds into the future to
reactively effect media content adaptation at server.

We demonstrate the applicability of our gaze prediction strategy
through a network video streaming application that performs bit allo-
cation based on Region-Of-Interest (ROI). In face of limited network
transmission bandwidth, the conventional end-to-end streaming ap-
proach is to throttle sending rate, so that limited network bandwidth
can be properly shared among competing users. Reduction of send-
ing rate, however, causes a proportional degradation in video quality
due to signal quantization, often resulting in unacceptable visual ex-
perience.

One can address this bandwidth-constrained problem by exploit-
ing unique characteristics of the human perceptual system [6, 4, 3].
In particular, it has been shown [6, 7] that viewer’s abilityto perceive
details away from the current focused ROI decreases drastically as
the spatial distance from ROI increases. Thus, a smart bit allocation
scheme [8, 9] can allocate more bits to ROI to minimize quantiza-
tion noise and fewer bits elsewhere, so that theperceivedquality of
the video remains the same while encoded bit-rate can be decreased.
The key challenge, however, is to overcome the unavoidable delay
from the time a ROI is estimated, to the time the corresponding ef-
fected change in video bit allocation is executed, transmitted and ren-
dered on the viewer’s terminal. To overcome RTT delay, we useour
proposed gaze-prediction strategy to predict future gaze locations,
so that optimal bit allocation can be performed for future frames.
Our experiments, using our developed real-time video coding and
streaming system integrated with a web camera and a softwaregaze
tracker [10], show that using our gaze-prediction strategy, transmis-
sion rate can be reduced by up to21% without loss of perceived
video quality for RTT as high as200ms.

The outline of the paper is as follows. We first discuss related
work in Section 2. We then discuss our proposed HMM for eye-gaze
data in Section 3. For a given estimated HMM state, we discusshow
linear prediction is used to predict future gaze location RTT sec-
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onds into the future in Section 4. Having obtained a gaze prediction,
the corresponding bit allocation scheme is discussed in Section 5.
Experimentation and conclusions are discussed in Section 6and 7,
respectively.

2. RELATED WORK

Optimized bit allocation schemes for video with given ROI have
been studied recently [8, 9]. The hard problem remainshowROI can
be accurately estimated in the first place. In one approach, the ROI
is determineda priori based onsaliency maps[11] obtained solely
based on content analysis, typically using low-level videofeatures
such as spatial contrasts in luminance, temporal changes inmotion,
appearances of machine-recognized human faces, etc. It hasbeen
shown [12, 13], however, that prior knowledge and context play
important roles in affecting viewer’s attention, and modeling these
information when calculating saliency maps is a daunting task. In
contrast, while we use video content to train HMM parametersdur-
ing training phase, in operational phase we determine ROI based on
real-time eye gaze tracking. The key challenge, which is thefocus
of this paper, is to reduce the effect of time lag due to server-client
RTT delay in a networked video streaming setting.

Eye gaze prediction based on real-time collected gaze data has
been recently studied in the literature [14]. In [14] a detailed motion
model is presented to predict eye movements based on the mechan-
ics of the human eye using a large number of parameters. Our gaze-
prediction strategy differs from [14] in two major respects. First, we
approach the gaze prediction problem from a statistical learning per-
spective, where our three-state HMM is simple and maps intuitively
to human’s three intrinsic types of eye movements, leading to low
cost of implementation. Second, unlike [14] which predictsgaze
movements in a content-independent manner, the few HMM param-
eters in our model are trained on a per-video basis, leading to more
content-specific customization for better prediction performance.

3. HIDDEN MARKOV MODEL FOR GAZE-TRACKING
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Fig. 1. Proposed hidden Markov model for eye gaze during video
observation. Circles denote latent states ofF (fixation),P (pursuit)
andS (saccade). Boxes denote observations.

In this section, we discuss how we model eye gaze of a video
viewer using ahidden Markov model(HMM) [15]. An HMM mod-
els transitions of sequential stateXn’s, n ∈ Z+, in discrete time,
whereXn is the state variableat timen. EachXn can take on
one of three possiblelatent states1. StateF (fixation) models the
case when eye gaze is fixated at a stationary object. StateP (pur-
suit) models the case where gaze follows motion of a moving object.
StateS (saccade) models the rapid transition from one fixation point
to another. As discussed in [5], these are the three major types of eye
movements for the human eye.

1Since states{F,P,S} cannot be observed directly, they are commonly
calledlatent statesin the literature.

An HMM is Markovian in that the determination of state vari-
ableXn+1 at timen + 1 depends solely on the value ofXn of
previous timen. In particular, givenXn = i, the probability of
Xn+1 = j is represented bystate transition probabilityαi,j of
switching from statei to j. The model is hidden since the state
variablesXn’s are not directly observable; only observations2 Yn’s
are observed, where eachYn is generated by a random process de-
pendent on current latent stateXn = i. The most likely value of
state variableXn given observationsY1, . . . , Yn can be calculated
using the known Forward Algorithm (FA) [15] (to be discussed). In
our gaze tracking scenario, that means determining the mostlikely
eye movement type of a viewer among{F,P,S} given captured eye
gaze data. We describe the three random processes, corresponding
to latent states,F, P andS, that generate observations next.

3.1. Fixation: observing a stationary object

Fig. 2. Eye gaze data on frame 220 of MPEG test sequencekids.
Eye gaze data is marked by a white5× 5 square.

For the simplest of three latent states,F (fixation), we model the
random process that emits observationsYn’s as follows. Given client
resides in stateXn+1 = F at timen + 1, emitted observationYn+1

is the sum of previous observationYn plus a random variableWF :

Yn+1 = Yn +WF (1)

whereWF is a zero-mean Gaussian random variable with vari-
anceσ2

F . We denote the probability density function ofWF by
fσ2

F
(w). The probability of observingYn+1 given current state is

F is P (Yn+1|Yn, Xn+1 = F) = fσ2

F
(Yn+1 − Yn).

Noise modeling is important even for the fixation state, since in-
stability of human vision and inaccuracy of eye tracking algorithms
mean non-negligible noise is present in the eye gaze data. Asan ex-
ample, see Fig. 2 where a viewer is looking at the red ball, butthe
gaze tracker returns a gaze data point slightly away from theball.

3.2. Pursuit: following a moving object

i

j

Fn n+1F

Fig. 3. Calculation of forward motion vector candidates in next
frameFn+1 given eye gaze dataYn at location(i, j) in frameFn.

2For simplicity, we model observations ofx- andy-components of gaze
locations separately. We discuss here observations for onecomponent only.



If the value of state variableXn+1 is P (pursuit) at timen +
1, we model the emitted observationYn+1 as the sum of previous
observationYn plus apixel velocity vectorvn plus random noise
WP :

Yn+1 = Yn + vn +WP (2)

wherevn is the velocity vectorof the viewed pixel (the fixation
point of the viewer) from frameFn of time n to frameFn+1 of
time n + 1, andWP is another zero-mean Gaussian random vari-
able with its own unique varianceσ2

P . If the fixation point of the
viewer in frameFn is know precisely,vn can be estimated eas-
ily: first identify the macroblock that contains the viewed pixel at
time n, then find the best matched macroblock in frameFn+1 in
pixel values and calculate the corresponding motion vector. The
probability of observingYn+1 given current state isP is hence
P (Yn+1|Yn, Xn+1 = P) = fσ2

P
(Yn+1 − Yn − vn).

The difficulty here is that the true gaze point in frameFn is not
known precisely due to noise in observation. That means thatif a
viewer is actually following a moving object but gaze point is not
on the object due to noise (as shown in Fig. 2), then the calculated
motion vector will be erroneous.

To circumvent this problem, we perform multi-block search as
shown in Fig. 3. For given observed gaze locationYn, we first
identify aneighborhoodof macroblocks aroundYn. For each mac-
roblock in the neighborhood, we search for a best matched block in
the next frameFn+1 and calculate the corresponding motion vector
vn. Among all the calculated vectorsvn’s, we identify the one that
gives the largest conditional probability for stateP:

P (Yn+1|Yn, Xn+1 = P) = max
vn∈Vn

fσ2

P
(Yn+1 − Yn − vn) (3)

whereVn is the set of calculated motion vectors.
Lastly, we see that (2) for stateP and (1) for stateF differ only

by velocity vectorvn. In fact, if a viewer is following a very slow
moving object, thenvn ≈ 0 and we cannot distinguish between the
two latent states. To disambiguate latent statesP andF, we com-
pare the discovered velocity vectorvn in (3) to a thresholdτP . If
|vn| < τP , we conclude that latent stateP is not possible forXn,
and the computed probability for stateP, P (Xn = P), (using FA to
be discussed in Section 3.4), is added to the probability forstateF,
P (Xn = F).

3.3. Saccade: switching fixation points
If the viewer is in stateXn+1 = S (saccade) at timen+1, the gaze of
the viewer is switching from one fixation point to another. The tran-
sition process usually lasts a short duration (20 to 200ms),and the
movement is fast [5]—saccade is said to be the fastest movement by
the human body [16]. Fortunately, according to Listing’s Law [16],
movement of the eye during one saccade is restricted to rotation on
a single axis; i.e., gaze moves in a single direction during saccade.
Thus, if we are able to establish agaze vectorgn−k:n during saccade
using previous observationsYn’s, then new observationYn+1 is pre-
vious observationYn plusgn−k:n plus a noise termWS,k. However,
if the gaze vector during saccade cannot be established—gaze vector
can only be estimated two samplesafter saccade has started—then
gaze location can move in any direction at the start of saccade. We
hence model the movement simply as a zero-mean Gaussian variable
G with a fairly large varianceσ2

G.
Mathematically, we write observationYn+1 given viewer resides

in stateXn+1 = S as follows:

Yn+1 =

{

Yn +G if Xn 6= S

Yn + gn−k:n +WS,k o.w.
(4)

wheregn−k:n is the mean eye gaze vector computed using most re-
centk ≥ 1 observationsYn−k+1, . . . , Yn of stateS plus one pre-
ceeding observationYn−k of stateF or P. WS,k is a zero-mean
Gaussian variable, whose varianceσ2

S,k depends on the number of
observations,k + 1, used to computegn−k:n. The idea is to cap-
ture the notion that the more previous observationsYn’s we use to
estimate gaze vectorgn−k:n, the smaller the corresponding variance
σ2
S,k of Gaussian noiseWS,k should be.gn−k:n can be computed

using samples(n − k, Yn−k), . . . , (n, Yn) via linear regression (to
be discussed in Section 4 in the context of linear prediction).

We can now write the probabilityP (Yn+1|Yn, Xn+1 = S) of
observingYn+1 givenYn and stateXn+1 is S as follows:

=

{

fσ2

G
(Yn+1 − Yn) if Xn 6= S

fσ2

S,k
(Yn+1 − Yn − gn−k:n) o.w. (5)

As done previously, to disambiguate stateS from F andP when
Xn = S, we do the following: if|gn−k:n| < τP , thenP (Xn = S)
is added toP (Xn = F). If |gn−k:n| > τP but |gn−k:n − vn| < τS ,
thenP (Xn = S) is added toP (Xn = P).

3.4. Finding most likely latent states
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Fig. 4. Trellis corresponding to a 3-state HMM. A Forward
Algorithm can find the most likely stateXn given observations
Y1, . . . , Yn’s.

To find latent state probabilityP (Xn = j) given a window of
observationsY1, . . . , Yn, we use the well-knownforward algorithm
(FA) [15]. We first assume the initial probabilityπi of each state
X0 = i is known. We can then compute probabilityP (Xn = j)
recursively as follows:

P (Xn = j) =
∑

i

P (Xn−1 = i) αi,j P (Yn|Yn−1,Xn = j)

P (X0 = i) = πi (6)

The most likely latent state for state variableXn is the one with the
largest of three computed probabilitiesP (Xn = j)’s.

One interpretation of (6) is that we are building the state prob-
abilitiesP (Xn = j)’s from n = 0 forward in a trellis, as shown
in Fig. 4. As such, the computation can also be computed iter-
atively; i.e., the previously computed probabilitiesP (Xn = j)’s
used to determine the most likely stateXn can be used to compute
P (Xn+1 = j)’s when new observationYn+1 becomes available.
The is particularly useful when the number of observationsYn’s be-
comes large and recursive definition(6) becomes computationally
expensive.

4. LINEAR PREDICTION

We have just discussed how we find the most likely latent stateXn

in HMM given observationsY1, . . . , Yn. In this section, we discuss



how we predict a future gaze location̄Yn+RTT . Smart bit allocation
can then be performed to assign finer QP for ROI centered on pre-
dicted locationȲn+RTT , and coarser QP for other spatial regions in
a coded frame (to be discussed in Section 5).

Note, however, that we perform prediction only if the most likely
state isF or P. Because the duration in which a viewer stays in sac-
cade stateS is typically very short [16] and will soon stop at an
unpredictable fixation point, we take the conservative approach and
perform no prediction in stateS. Further, even if the most likely state
is F or P, we perform prediction only if the most likely state has
probabilityP (Xn = j) exceeding a thresholdτC . In other words,
we will predict gaze location only if we are confident enough in our
state estimation.

n

Y

RTT

prediction valuemodel
error

linear predictor

observations

sample window

Fig. 5. Linear prediction using a window ofω observations. Circles
denote observation point, square denotes predicted value.

To estimateYn+RTT , we use a window ofω observations
Yn−ω+1, . . . , Yn for linear regression[15]. In other words, using
sample points(n− ω + 1, Yn−ω+1), . . . , (n, Yn), we seek a linear
functionY (t) = φ̂ + m̂t, so that the sum of errors (Euclidean dis-
tance) between sample points and the linear function is minimized.
Fig. 5 shows an example where a best-fit linear function is con-
structed using five sample points. Statistically optimalm̂ andφ̂ can
be derived easily given samples(x, y)’s:

m̂ =
xy − x̄ȳ

x2 − x̄2

φ̂ = ȳ − m̂x̄ (7)

wherex̄ means the average of sample datax’s.
Having computed linear regression parameters,m̂ andφ̂, predic-

tion Ȳn+RTT is simplyφ̂+m̂(n+RTT ). Using this prediction, for
stateP, it means we assume the motion in the window ofω sample
points remains constant. For stateF, given the observed object is sta-
tionary, we forcem̂ to be zero; in other words, we simply compute
the average of all sample pointsYn’s as our estimate.

5. ROI BIT ALLOCATION FOR VIDEO ENCODING

In this section, we discuss a bit-rate allocation strategy as an applica-
tion of our proposed HMM based eye-gaze prediction method. Con-
ceptually, human ability to appreciate pixel fidelity decreases con-
tinuously away from the center of focus. It is therefore wasteful to
encode visual information away from focus with high fidelity. In the
previous sections, we already described how to predict the location
of future eye gazēYn+RTT . One approach to exploit this knowledge
of user’s visual focus is to continuously adapt each macroblock’s
quantization parameter (QP) according to a visual model [9]. Nev-
ertheless, in this paper, we adopt a simpler approach in which a rect-
angular ROI is determined, and one QP is assigned to the ROI, while
a coarser (higher) QP is assigned to spatial regions outsidethe ROI.

This is due to its lower complexity, and the lower sensitivity to er-
rors in focus determination. Furthermore, regions far awayfrom
focus will be not aggressively quantized, which results in little ad-
ditional rate reduction, but displeasing quality during saccade when
the viewer can suddenly change his focus.

5.1. Bit Allocation of ROI

As discussed in [7], the fall-off in human ability to appreciate pixel
fidelity can be approximately modeled by the contrast sensitivity
(CS) of humans, which is the reciprocal of the contrast threshold
(CT) given by:

CT (f, e) = CT0 exp
(

αf
e+ e2
e2

)

CS(f, e) = 1/CT (f, e)

wheref is spatial frequency,e is the retinal eccentricity or the an-
gle relative to the point of focus, andCT0, e2 andα are constants
empirically determined to be 1/64, 2.3, and 0.106, respectively.

As done in [9], we determine the cutoff frequency,fc, by setting
CT to one:

fc =
e2 log

1

CT0

α(emax + e2)
(8)

whereemax is the maximum eccentricity in the video frame, which
is the largest angle the screen portends relative to the focus point.
The average contrast threshold evaluated at spatial frequency fc in-
side and outside an ROI are then computed, and the corresponding
QP are chosen so that:

QPROI

QPROI

=
CTROI

CTROI

(9)

5.2. Determining ROI for StateF

Given a video frame with widthw and heighth, we choose a ROI of
sizew/2× h/2 centered at the estimated gaze location. This allows
at least 75% of the frame to be coded at a lower QP, while allowing
a substantial region near the focus point to be at high quality. For
experiments in Section 6 with a field of view of 80 degrees, this
corresponds to a ROI with field of view of 45 degrees, which is large
enough to comfortably capture regions of high visual sensitivity.

5.3. Determining ROI for StateP

Due to the higher uncertainty in gaze position in StateP compared
to StateF, a larger ROI should be employed. Letσ be the mean
absolute difference between the linear predictor andω observations
Yn−ω+1, . . . , Yn in the sample window. We can define adilation
factorρw = 1+(2σ)/w for the horizontal axis, so that the width of
the ROI is rescaled toρw ∗ w/2. The idea is to increase the size of
ROI when the linear predictor is a poor fit to theω data points. We
can define a similar dilation factorρh to rescale the height of ROI to
ρh ∗ h/2.

6. EXPERIMENTATION

To demonstrate the merit of our proposed HMM-based gaze pre-
diction strategy, we conducted extensive experiments. We first de-
scribe the setup of our experiments and parameters selectedfor our
model in Section 6.1. In part one of the experiment, described in
Section 6.2, we examine the accuracy of our HMM state estimation,
and the tradeoff between false positive (predicting HMM state to be
F or P when ground truth isS) and false negative (predicting HMM
state to beS when ground truth isF or P). In part two of the ex-
periment, described in Section 6.3, we examine the accuracyof our



Table 1. State transition and steady state probabilities forkids
F P S π

F 0.965 0.019 0.016 0.494
P 0.017 0.965 0.017 0.365
S 0.015 0.029 0.956 0.141

Table 2. State transition and steady state probabilities fortable
F P S π

F 0.949 0.012 0.039 0.422
P 0.046 0.927 0.027 0.292
S 0.028 0.056 0.916 0.286

HMM-based linear prediction. In part three of the experiment, de-
scribed in Section 6.4, we examine the achievable bitrate saving for
our proposed bit allocation scheme. We also show that our bital-
location scheme suffers no loss in perceived visual quality, through
subjective user tests on our in-house developed real-time system.

6.1. Experimental Setup and HMM Training

Our gaze-based networked streaming system employs the freely
available real-time gaze-tracking softwareopengazer [10], which
is calibrated for sampling gaze location at 30 samples per sec-
ond using an off-the-shelf web camera. The monitor used for
gaze tracking and video experiments measured 22 inches diagonally
(473.7mm × 296.1mm). The distance between a user’s head and
the center of monitor screen is about280mm, resulting in a viewing
angle of about40 degrees to the edge of the screen.

We used two300-frame standard MPEG video test sequences,
kids and table, at CIF resolution (354 × 288) for our exper-
iments. For video compression, we use a fast implementationof
H.263 [17] for real-time encoding. Each video was displayedin full-
screen mode at 30 fps, the same sampling rate ofopengazer for
one-to-one correspondence between gaze samples and video frames.

To obtain ground truth gaze data to train our proposed HMM
model, a trained user performed multiple viewings of a test se-
quence, each time continuously record his intention of fixation, pur-
suit or saccade by pressing keys on a keyboard. Using this “ground
truth” data, we calculated the state transition probabilities αi,j ’s
from statei to j in the HMM and the steady state probabilitiesπi’s.
State transition and steady state probabilities forkids andtable
are shown in Table 1 and 2, respectively.

We see that for both sequences, the probabilitiesαi,i’s of return-
ing to the same statesi’s are very high. We see also from the steady
state probabilitiesπi’s that the likelihood of being stateF is much
higher than the other two latent states. In contrast, the probability of
being in stateS is only0.14 to 0.28. This is reasonable; in a typical
video, a viewer tends to spend the majority of her time looking at
objects of interest rather than switching fixation points.

6.2. Results for HMM State Estimation

We now evaluate the accuracy of HMM state estimation using for-
ward algorithm (FA), as discussed in Section 3.4. We denote an oc-
currence asfalse positivewhen FA estimates HMM state to beF orP
but the ground truth state isS. In other words, false positive is when
we wrongly deduced an opportunity to save coding bits by assigning
coarser quantization parameter outside ROI, but the algorithm calls
for high quality encoding for entire frame. In contrast, we denote an
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Fig. 7. Prediction Error in Euclidean distance as function of RTT for
different prediction schemes, forkids andtable, respectively.

occurrence asfalse negativewhen FA estimates HMM state to beS
but ground truth state is eitherF orP. This is the case where we miss
a bit-saving opportunity.

As discussed in Section 4, a thresholdτC can be adjusted ac-
cording to our confidence in the estimatedF or P state, resulting
in a tradeoff between false positive and false negative probabili-
ties. In Fig. 6, we see the said tradeoff in the two probabilities in
our HMM state estimation for sequenceskids andtable, respec-
tively. We see that though in general it is difficult to achieve very
small false positive and false negative probabilities at the same time,
it is possible to have reasonably small (≤ 0.15) values for both.
This shows that FA can provide reasonable state estimates for our
proposed HMM. To be shown later, this level of estimation accuracy
is sufficient for our intended networked streaming application.

6.3. Results for HMM-based Linear Prediction

Given estimated HMM states, we next examine the accuracy of our
proposed HMM-based linear prediction (HMM), as discussed in Sec-
tion 4. We compare our prediction scheme to a naı̈ve linear predic-
tion scheme (nlp), where the last two gaze data points are used to
construct a straight line, extrapolation of which to RTT seconds later
yields a gaze location estimate. In Fig. 7, we see the performance of
both schemes, in terms of Euclidean distance between the estimated
gaze locations and true gaze locations, as function of RTT for both
sequenceskids andtable. We see that as RTT increased, the
estimation error increased for bothHMM andnlp. However,HMM
achieved much smaller errors thannlp. This is due to two reasons.
First, to contain errors,HMM construct a linear prediction only when
it is sufficiently confident it is in stateF or P, while nlp makes an
estimate for all data points.

Second,HMM uses different methods for prediction depending
on the estimated state (F or P) using a window of data points. This
is evident in Fig. 8, where prediction error was plotted against frame
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Fig. 8. Prediction Error in Euclidean distance as function of frame
number for different prediction schemes, forkids andtable, re-
spectively, when RTT=200ms.
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Fig. 9. Frame size as function of frame number for different
bit allocation schemes, forkids andtable, respectively, when
RTT=200ms.

number forRTT = 200ms. At frame numbers whereHMM made
prediction, the magnitude of resulting error was in generalsmaller
thannlp.

6.4. Results for HMM-based Bit Allocation

We next show the achievable bit saving for our gazed-based bit allo-
cation for networked video streaming. We useQP = 10 for a de-
sired reference quality. For our gaze-based scheme (hmm) described
in Section 5, the average QP outside the ROI is 15, as given by (9).
For simplicity, we use dilation factorsρw = ρh = 1 for ROI con-
struction for stateP. An original scheme (orig) assignsQP = 10
for all blocks in a frame. The compressed frame size for the two
schemes are given in Fig. 9 for both test sequences. We see that in
frames where the estimated state wasF or P, fewer bits were allo-
cated to non-ROI regions, resulting in bitrate saving. In particular,
we found thathmm achieved21% and17% bit saving compared to
orig for sequencekids andtable, respectively.

Of course, the bit saving must be achieved without the loss of
perceptual quality. To verify this, we developed a real-time video
coding / streaming system, with artificial delay inserted between en-
coder and decoder to emulate RTT=200ms. We performed user sub-
jective test as follows. For each viewer, three runs of the same video
were presented. One run was full quality video encoded at QP=10
for all blocks (orig). One run was our proposed HMM-based bit
allocation (hmm). One run was bit allocation based on naı̈ve linear
prediction (nlp) based on the last two gaze data points. The order of
the three runs was randomized for each viewer. A simple question
was asked after viewing if one or more of the video suffered poor
quality. Of the three viewers, two viewers reported no difference,
while one identifiednlp as having slightly worse quality. Though
simple, this evaluation provided evidence thathmm was able to save
bits without suffering perceived visual quality.

7. CONCLUSION
To improve the efficacy of gaze-based networked systems, in this
paper, we proposed a hidden Markov model (HMM)-based gaze
prediction strategy to predict future gaze locations round-trip-time
(RTT) seconds into the future. The three HMM states correspond
to human’s three major types of intrinsic eye movements. Themost
likely HMM state is estimated via the forward algorithm (FA)using a
window of observed gaze data. Given an estimated state, linear pre-
diction is used to predict future gaze location. To validateour gaze
prediction strategy, we apply our model to the bit allocation prob-
lem for network video streaming based on region of interest (ROI).
Experiments show that bit rate can be reduced by21% without no-
ticeable visual quality degradation for RTT as high as200ms.

8. REFERENCES

[1] Y. Sugano, Y. Matsushita, Y. Sato, and H. Koike, “An incremental
learning method for unconstrained gaze estimation,” inEuropean Con-
ference on Computer Vision (ECCV2008), October 2008, pp. 656–667.

[2] LC Technologies, Inc., “Eyegaze Systems,” http://www.eyegaze.com.

[3] L. Loschky and G. Wolverton, “How late can you update gaze-
contingent multiresolution displays without detection?,” in ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMCCAP), December 2007, vol. 3, no.7.

[4] A. Duchowski and A. Coltekin, “Foveated gaze-contingent displays for
peripheral LOD management, 3D visualization, and stereo imaging,” in
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMCCAP), December 2007, vol. 3, no.4.

[5] A. Duchowski, Eye Tracking Methodology: Theory and Practice,
Springer, 2007.

[6] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based
on models of human perception,” inProceedings of the IEEE, October
1993, vol. 81, no.10, pp. 1385–1422.

[7] W. Geisler and J. Perry, “A real-time foveated multiresolution system
for low-bandwidth video communication,” inSPIE Proceedings, vol
3299, July 1998.

[8] Y. Liu, Z. G. Li, and Y. C. Soh, “Region-of-interest basedresource
allocation for conversational video communication of H.264/AVC,” in
IEEE Transactions on Circuits and Systems for Video Technology, Jan-
uary 2008, vol. 18, no.1, pp. 134–139.

[9] Z. Chen and C. Guillemot, “Perceptually-friendly H.264/AVC video
coding,” in IEEE International Conference on Image Processing,
Cairo, Egypt, November 2009.

[10] “Opengazer: open-source gaze tracker for ordinary webcams,”
http://www.inference.phy.cam.ac.uk/opengazer/.

[11] O. Le Meur and P. Le Callet, “What we see is most likely to be what
matters: Visual attention and applications,” inIEEE International Con-
ference on Image Processing, Cairo, Egypt, November 2009.

[12] N. Bruce and P. Kornprobst, “On the role of context in probabilistic
models of visual saliency,” inIEEE International Conference on Image
Processing, Cairo, Egypt, November 2009.

[13] S. Davies, D. Agrafiotis, C. Canagarajah, and D. Bull, “Agaze predic-
tion technique for open signed video content using a track before detect
algorithm,” in IEEE International Conference on Image Processing,
San Diego, CA, October 2008.

[14] O. V. Komogortsev and J. Khan, “Eye movement predictionby oculo-
motor plant Kalman filter with brainstem control,” inJournal of Control
Theory and Applications, January 2009, vol. 7, no.1.

[15] C. Bishop,Pattern Recognition and Machine Learning, Springer, 2006.

[16] “Saccade,” http://en.wikipedia.org/wiki/Saccade.

[17] ITU-T Recommendation H.263,Video Coding for Low Bitrate Com-
munication, February 1998.


