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ABSTRACT

With the advent of eye gaze tracking technology, eye gazeigas-
ingly being used as a media interaction trigger in a vari¢ppli-

cations, such as eye typing, video content customizatiod, ret-
work video streaming based on region-of-interest (ROI} Téac-
tion time of a gaze-based networked system, however, isactipe
lower-bounded by the round trip time (RTT) of today’s netlsr

which can be large. To improve the efficacy of gaze-based ne
worked systems, in the paper we propose a Hidden Markov Mod

(HMM)-based gaze prediction strategy to predict futureeglaza-
tions to lower end-to-end reaction delay. We first design &ivH
with three states corresponding to human’s three majorstppén-
trinsic eye movements. HMM parameters are obtained offlima o
per-video basis during training phase. During testing phaswin-
dow of noisy gaze observations are collected in real-timems to
a forward algorithm, which computes the most likely HMM stat
Given the deduced HMM state, linear prediction is used talipte
gaze location RTT seconds into the future.

We demonstrate the applicability of our gaze predictioatetyy
by focusing on ROI-based bit allocation for network vide@am-
ing. To reduce transmission rate of a video stream withogttaténg
viewer's perceived visual quality, we allocate more bitsitgode the
viewer’s current spatial ROI, while devoting fewer bits ither spa-
tial regions. The challenge lies in overcoming the delayben
the time a viewer’s ROl is detected by gaze tracking, to tme tihe
effected video is encoded, delivered and displayed at tewer's
terminal. To this end, we use our proposed gaze-predictiategy
to predict future eye gaze locations, so that optimized|kitation
can be performed for future frames. Our experiments shotiha
rate can be reduced 2} % without noticeable visual quality degra-
dation when end-to-end network delay is as higR@¥ns.

Index Terms— Eye-gaze prediction, network streaming
1. INTRODUCTION

Eye gaze tracking—the inference of a viewer’s point of visoeus
based on camera-captured images of the eyes—has beenvieltens
studied by the computer vision community in the last decadletd
the level of maturity that it is now a commercially availatéehnol-
ogy [2]. To unlock the potential of this new tool, many apptions

RTT can reach 200ms, which significantly exceedsabms toler-
ance threshold [3] for lag between a change in viewer's Vifagas
and the corresponding content updategarze-contingent displays
(GCD) [4]. Predictive strategies are hence necessary fectafe
application of eye-gaze in a networked environment.

In this paper, we propose a novel gaze prediction strategg-to

timate future gaze locations to lower end-to-end reactielaydin
aze-based networked media systems. We first design a Hidden
i/larkov Model (HMM) with three latent states that correspdad
uman’s three major types of intrinsic eye movemefixstion, pur-
suit and saccade[5]. HMM parameters are obtained offline on a
per-video basis using data collected during training ph&ring
testing phase, a window of noisy gaze observations arectetlen
real-time for a forward algorithm (FA) to compute the mogely
current latent state. Given the deduced HMM state, linezdliption
is performed to predict gaze location RTT seconds into theéuo
reactively effect media content adaptation at server.

We demonstrate the applicability of our gaze predictioatsgy
through a network video streaming application that perfobihallo-
cation based on Region-Of-Interest (ROI). In face of limibetwork
transmission bandwidth, the conventional end-to-endistiieg ap-
proach is to throttle sending rate, so that limited netwakdwidth
can be properly shared among competing users. Reducti@ndf s
ing rate, however, causes a proportional degradation Eovipliality
due to signal quantization, often resulting in unaccepgtaidual ex-
perience.

One can address this bandwidth-constrained problem bpiexpl
ing unique characteristics of the human perceptual sysée, [3].
In particular, it has been shown [6, 7] that viewer’s abitdyperceive
details away from the current focused ROI decreases dadigtars
the spatial distance from ROl increases. Thus, a smartlbitalon
scheme [8, 9] can allocate more bits to ROI to minimize quanti
tion noise and fewer bits elsewhere, so thatgheceivedquality of
the video remains the same while encoded bit-rate can bealssx.
The key challenge, however, is to overcome the unavoidaddkeyd
from the time a ROI is estimated, to the time the correspandin
fected change in video bit allocation is executed, trarteahénd ren-
dered on the viewer's terminal. To overcome RTT delay, weause
proposed gaze-prediction strategy to predict future gazations,
so that optimal bit allocation can be performed for futuranfes.

now employ eye gaze as a trigger for media interaction. Ore exOur experiments, using our developed real-time video @pdind

ample is eye typing, where the gaze location on a monitogeig
typing of English alphabets for the physically disabled ofrer ex-
ample is video customization, where the video content iptagdy
composed (e.g., ad insertion) according to gaze location.

streaming system integrated with a web camera and a softygae
tracker [10], show that using our gaze-prediction strateg@ynsmis-
sion rate can be reduced by up20% without loss of perceived
video quality for RTT as high a&0ms.

For networked media systems, the gaze data are collected at a The outline of the paper is as follows. We first discuss relate

client and sent to a server to effect changes in media contéetre-
action time of the gazed-based trigger is lower-boundedhéydund
trip time (RTT) of the transmission networks. For today'sehmet,
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work in Section 2. We then discuss our proposed HMM for eyzega
data in Section 3. For a given estimated HMM state, we discoss
linear prediction is used to predict future gaze locatioriT REc-



onds into the future in Section 4. Having obtained a gazeigtied, An HMM is Markovian in that the determination of state vari-
the corresponding bit allocation scheme is discussed itid®eb. able X,, ., at timen + 1 depends solely on the value &f, of
Experimentation and conclusions are discussed in Sectamd67,  previous timen. In particular, givenX,, = 4, the probability of
respectively. Xnt1 = J is represented bgtate transition probabilityc; ; of
switching from state to j. The model is hidden since the state
2. RELATED WORK variablesX,,’s are not directly observable; only observatidis s
Optimized bit allocation schemes for video with given ROWéia are observed, where eagh is generated by a random process de-
been studied recently [8, 9]. The hard problem remhowROI can ~ Pendent on current latent stak, = i. The most likely value of
be accurately estimated in the first place. In one approhehROl  State variableX,, given observationd, ..., Y, can be calculated
is determinech priori based orsaliency map§11] obtained solely ~ using the known Forward Algorithm (FA) [15] (to be discussdd
based on content analysis, typically using low-level vifleatures ~ OUr gaze tracking scenario, that means determining the likest
such as spatial contrasts in luminance, temporal changestion, ~ €Ye movement type of a viewer amofi§, P, S} given captured eye
appearances of machine-recognized human faces, etc. hedems 9aze data. We describe the three random processes, comlegpo
shown [12, 13], however, that prior knowledge and contestypl tO latent stated;, P andS, that generate observations next.
important roles in affecting viewer’s attention, and maaglthese
information when calculating saliency maps is a dauntirgi.tdn ~ 3.1. Fixation: observing a stationary object
contrast, while we use video content to train HMM paramedeirs
ing training phase, in operational phase we determine R€ddan Wekome {0 i \
real-time eye gaze tracking. The key challenge, which idabas ‘ ~
of this paper, is to reduce the effect of time lag due to seclient
RTT delay in a networked video streaming setting.

Eye gaze prediction based on real-time collected gaze @ata h
been recently studied in the literature [14]. In [14] a dethimotion
model is presented to predict eye movements based on theamech
ics of the human eye using a large number of parameters. @ar ga
prediction strategy differs from [14] in two major respedtgst, we
approach the gaze prediction problem from a statisticahieg per-  Fig. 2. Eye gaze data on frame 220 of MPEG test sequéncks.
spective, where our three-state HMM is simple and mapstingly Eye gaze data is marked by a whitex 5 square.
to human’s three intrinsic types of eye movements, leadinipw
cost of implementation. Second, unlike [14] which predigéze For the simplest of three latent statEgfixation), we model the
movements in a content-independent manner, the few HMMhpara random process that emits observatidh$ as follows. Given client
eters in our model are trained on a per-video basis, leadimgore  resides in staté(,, 1 = F at timen + 1, emitted observatiol;, 1
content-specific customization for better prediction perfance. is the sum of previous observatidfy plus a random variabl&/:

3. HIDDEN MARKQOV MODEL FOR GAZE-TRACKING Yit1 =Y+ Wr (1)

where Wr is a zero-mean Gaussian random variable with vari-
anceo%. We denote the probability density function @z by
fofv(w). The probability of observing’,,+1 given current state is
Fis P(Yn+1|Yn, Xn+1 = F) = fa% (Yn+1 — Yn)

Noise modeling is important even for the fixation state, siine
stability of human vision and inaccuracy of eye trackingoaitpms
mean non-negligible noise is present in the eye gaze datan &s-
ample, see Fig. 2 where a viewer is looking at the red ball thoit

Yae1=Y Yhe1=Y, e - n
Va1 = Yo W, n+l +\;/:’ n n+1 +v"v:1" kn gaze tracker returns a gaze data point slightly away fronb#tie

Fig. 1. Proposed hidden Markov model for eye gaze during vided.2. Pursuit: following a moving object
observation. Circles denote latent states dfixation), P (pursuit)
andS (saccade). Boxes denote observations. i

In this section, we discuss how we model eye gaze of a video
viewer using éhidden Markov modgHMM) [15]. An HMM mod-
els transitions of sequential stalg,’s, n € Z™*, in discrete time, i
where X, is the state variableat timen. EachX, can take on
one of three possibliatent statel StateF (fixation) models the
case when eye gaze is fixated at a stationary object. Btgtar-
suif) models the case where gaze follows motion of a moving object
StateS (saccad@ models the rapid transition from one fixation point

to another. As discussed in [5], these are the three majesmye F|g 3. Calculation of forward motion vector candidates in next
movements for the human eye. frameF’,+1 given eye gaze dafs, at location(s, j) in frameF,.

1Since stategF, P, S} cannot be observed directly, they are commonly  2For simplicity, we model observations of andy-components of gaze
calledlatent statesn the literature. locations separately. We discuss here observations focamgonent only.



If the value of state variabl&,, ;1 is P (pursuit) at timen +
1, we model the emitted observatidf,+1 as the sum of previous
observationY,, plus apixel velocity vectorw,, plus random noise
Wp:

Yn+1 =Y, +v,+Wp (2)

wherev,, is the velocity vectorof the viewed pixel (the fixation
point of the viewer) from frameF,, of time n to frame F,,; of

whereg,, .. IS the mean eye gaze vector computed using most re-
centk > 1 observation&,,_i+1, ..., Y, of stateS plusone pre-
ceeding observatiol;,_j of stateF or P. Wg  is a zero-mean
Gaussian variable, whose varianeg, depends on the number of
observationsk + 1, used to comput@,,—.,. The idea is to cap-
ture the notion that the more previous observatibphs we use to
estimate gaze vectar, ..., the smaller the corresponding variance
ag’k of Gaussian noisé&Vs ; should be.g,,_x., can be computed

timen + 1, andWp is another zero-mean Gaussian random vari-using sample$n — k,Y,,—x), ..., (n, Ys) via linear regression (to

able with its own unique variance?. If the fixation point of the
viewer in frameF;, is know precisely,v,, can be estimated eas-
ily: first identify the macroblock that contains the vieweitgh at
time n, then find the best matched macroblock in frafig;; in
pixel values and calculate the corresponding motion vecidre
probability of observingY,.+1 given current state i® is hence
P(Y,L+1|Y,L7Xn+1 = P) = fo-%‘ (Yn+1 -Y, — Un)-

The difficulty here is that the true gaze point in fraffig is not
known precisely due to noise in observation. That meansiftlzat
viewer is actually following a moving object but gaze poistriot
on the object due to noise (as shown in Fig. 2), then the ctiedl
motion vector will be erroneous.

To circumvent this problem, we perform multi-block searsh a
shown in Fig. 3. For given observed gaze locatidn we first
identify aneighborhoodof macroblocks around,,. For each mac-
roblock in the neighborhood, we search for a best matchezk o
the next frameF,, 1 and calculate the corresponding motion vector
vn. Among all the calculated vectots,’s, we identify the one that
gives the largest conditional probability for st&te
©)

P(Yni1|Yn, Xny1 =P) = max fo2 (Ynp1 — Yo —vn)

Vv €Vn
whereV, is the set of calculated motion vectors.

Lastly, we see that (2) for stakeand (1) for staté- differ only
by velocity vectorv,,. In fact, if a viewer is following a very slow
moving object, then,, ~ 0 and we cannot distinguish between the
two latent states. To disambiguate latent st&emdF, we com-
pare the discovered velocity vectoy, in (3) to a thresholdp. If
|lvn| < TP, we conclude that latent staleis not possible forX,,
and the computed probability for stée P(X,, = P), (using FA to
be discussed in Section 3.4), is added to the probabilitptmieF,
P(X, =F).

3.3. Saccade: switching fixation points

If the viewer is in stateX,, 1 = S (saccade) at time-+1, the gaze of
the viewer is switching from one fixation point to anothereThan-
sition process usually lasts a short duration (20 to 200ars), the
movement is fast [5]—saccade is said to be the fastest mavdme
the human body [16]. Fortunately, according to Listing's\.[d.6],
movement of the eye during one saccade is restricted tdaotan
a single axis; i.e., gaze moves in a single direction duraagade.
Thus, if we are able to establislyaze vectoy,, .., during saccade
using previous observationt,’s, then new observatioF,, 11 is pre-
vious observatioY, plusg,—x:.» plus a noise termis . However,
if the gaze vector during saccade cannot be establishede-wgaror
can only be estimated two samplafter saccade has started—then
gaze location can move in any direction at the start of sazcide
hence model the movement simply as a zero-mean Gaussiableari
G with a fairly large variance .

Mathematically, we write observatidr}, 1 given viewer resides
in stateX,, 11 = S as follows:

v _[YatG
ntl = Yn + gn—k:n + WS,k

if Xn #S
0.W.

4)

be discussed in Section 4 in the context of linear predigtion
We can now write the probability?(Yy+1|Yn, Xnt+1 = S) of
observingY, 1 givenY,, and stateX,,;; is S as follows:

|

As done previously, to disambiguate st8t&om F andP when
X, = 8, we do the following: if|gn—x:n| < 7p, thenP(X,, = S)
is added taP(X,, =F). If |gn—k:n| > 7P DUt |gn—k:n — Vn| < Ts,
thenP(X, = S) is added taP(X,, = P).

fo2, Vo1 = Ya) if X» #5

fo‘% k (Yn+1 =Y - g’rlszn) o.w. (5)

3.4. Finding most likely latent states

f o Y1 Y2 Y3
OFF U{F aFF
state F - *
ap
o
state P m O
(]Sv
tate S
state T fg\z O ’
n=0 so n=1 n=2 n={
Fig. 4. Trellis corresponding to a 3-state HMM. A Forward

Algorithm can find the most likely stat&,, given observations
Yi,...,Y,'s.

To find latent state probability?(X,, = j) given a window of
observationd7, . .., Y,, we use the well-knowforward algorithm
(FA) [15]. We first assume the initial probability; of each state
Xo = 4 is known. We can then compute probabiliB(X,, = j)
recursively as follows:

P(Xn =) > P(Xn-1=1) aij P(Yn|Yn-1,Xn = j)
(3

P(Xo=1)

(6)

The most likely latent state for state variatig, is the one with the
largest of three computed probabiliti€§ X, = j)’s.

One interpretation of (6) is that we are building the statbpr
abilities P(X,, = j)'s fromn = 0 forward in a trellis, as shown
in Fig. 4. As such, the computation can also be computed iter-
atively; i.e., the previously computed probabiliti& X,, = j)'s
used to determine the most likely state, can be used to compute
P(Xn+1 = j)'s when new observatioly,, 1 becomes available.
The is particularly useful when the number of observatiBp's be-
comes large and recursive definiti¢f) becomes computationally
expensive.

Uy

4. LINEAR PREDICTION

We have just discussed how we find the most likely latent state
in HMM given observationg7, ..., Y,. In this section, we discuss



how we predict a future gaze locatidfy . 7. Smart bit allocation  This is due to its lower complexity, and the lower sensiitit er-

can then be performed to assign finer QP for ROI centered en preors in focus determination. Furthermore, regions far afvayn

dicted locationY,, rrr, and coarser QP for other spatial regions in focus will be not aggressively quantized, which resultsitikel ad-

a coded frame (to be discussed in Section 5). ditional rate reduction, but displeasing quality duringcade when
Note, however, that we perform prediction only ifthe madetly ~ the viewer can suddenly change his focus.

state isF or P. Because the duration in which a viewer stays in sac-

cade stateS is typically very short [16] and will soon stop at an 5.1. Bit Allocation of ROI

unpredictable fixation point, we take the conservative apgh and  As discussed in [7], the fall-off in human ability to appretei pixel

perform no prediction in stat®. Further, even if the most likely state  figelity can be approximately modeled by the contrast switgit

is F or P, we perform prediction only if the most likely state has (CS) of humans, which is the reciprocal of the contrast tiokzs
probability P(X,, = j) exceeding a threshole:. In other words,  (cT) given by:

we will predict gaze location only if we are confident enougloiur

. . e+e
state estimation. CT(f,e) = CTp exp (af6—2)
2
Y Cs(f7e):1/CT(f7e)
lincar predictor where f is spatial frequency is the retinal eccentricity or the an-
o ° @ gle relative to the point of focus, andTy, ez anda are constants
Qo mm’f’ predictor value empirically determined to be 1/64, 2.3, and 0.106, respelgti
e As done in [9], we determine the cutoff frequengy, by setting
observations CT tO One X
e2log &
fo=—< 20 ®
sample window RTT n Oé(emaw + 62)

whereenq. is the maximum eccentricity in the video frame, which

Fig. 5. Linear prediction using a window of observations. Circles is the largest angle the screen portends relative to thesfpoint.

denote observation point, square denotes predicted value. The average contrast threshold evaluated at spatial fnegjye in-
side and outside an ROI are then computed, and the corrasgond

To estimateY,,, rrr, We use a window ofs observations 2" &€ chosen sothat
Yo—wt1,..., Y, for linear regression15]. In other words, using QPror _ CTror
sample point§n — w + 1, Yo —wi1),- - -, (n, Ya), we seek a linear QPror  CTror
functionY (t) = ¢ + 7, so that the sum of errors (Euclidean dis-
tance) between sample points and the linear function ismigeid. ~ 5.2. Determining ROI for State F
Fig. 5 shows an example where a best-fit linear function is conGiven a video frame with widthy and height:, we choose a ROI of
structed using five sample points. Statistically optimeand¢ can  sizew/2 x h/2 centered at the estimated gaze location. This allows

9)

be derived easily given samplés, y)’s: at least 75% of the frame to be coded at a lower QP, while atigwi
L a substantial region near the focus point to be at high quakor
m o= Y-y experiments in Section 6 with a field of view of 80 degreess thi
x? — 12 corresponds to a ROI with field of view of 45 degrees, whiclaigé
b = G-—mz @) enough to comfortably capture regions of high visual sefityit
wherez means the average of sample das 5.3. Determining ROI for State P

Having computed linear regression parametérandg, predic-  Due to the higher uncertainty in gaze position in Smtmpared
tion Y4 prr iS simp|y¢3+m(n+RTT)_ Using this prediction, for  to StateF, a larger ROI should be employed. Letbe the mean
stateP, it means we assume the motion in the windowoaample  absolute difference between the linear predictor arabservations
points remains constant. For st&tegiven the observed object is sta- Yn—w+1, ..., Yn in the sample window. We can defineddation
tionary, we forcerm to be zero; in other words, we simply compute factor p,, = 1+ (20)/w for the horizontal axis, so that the width of
the average of all sample poirits’s as our estimate. the ROl is rescaled tp., * w/2. The idea is to increase the size of

ROI when the linear predictor is a poor fit to thedata points. We

5. ROIBIT ALLOCATION FOR VIDEO ENCODING can define a similar dilation facter, to rescale the height of ROI to

In this section, we discuss a bit-rate allocation strateggreapplica- P * h/2.

tion of our proposed !—!MM based eye-gaze pr.edi(.:tion methaah- C 6. EXPERIMENTATION

ceptually, human ability to appreciate pixel fidelity dexses con-

tinuously away from the center of focus. It is therefore whdtto =~ To demonstrate the merit of our proposed HMM-based gaze pre-
encode visual information away from focus with high fidelitythe  diction strategy, we conducted extensive experiments. kede-
previous sections, we already described how to predictatation  scribe the setup of our experiments and parameters selectedr
of future eye gaz#&,,, rrr. One approach to exploit this knowledge model in Section 6.1. In part one of the experiment, desdribe
of user’s visual focus is to continuously adapt each maoaks Section 6.2, we examine the accuracy of our HMM state esibmat
quantization parameter (QP) according to a visual modelf@&v-  and the tradeoff between false positive (predicting HMMesta be
ertheless, in this paper, we adopt a simpler approach innniect-  F or P when ground truth i§) and false negative (predicting HMM
angular ROl is determined, and one QP is assigned to the Rl w state to beS when ground truth i$ or P). In part two of the ex-
a coarser (higher) QP is assigned to spatial regions outsegdROIl.  periment, described in Section 6.3, we examine the accuboyr



False positive vs.

false negative

ralse positive vs.

false negative f¢

Table 1. State transition and steady state probabilitiekiods
F P S T ° 0
F | 0.965 0.019 0.019 0.494 D ghy, 0 g )
P | 0.017 0.965 0.0lj 0.365 3 “@\ 2 ‘%\
S | 0.015 0.029 0.956 0.141 g 01 < E 0 e
-,
o . \e-"'"o"-o o . . e
0 0.2 0.4 0.6 0 0.2 0.4 0.6
Table 2. State transition and steady state probabilitieg fabl e S to E/P S to F/P

(a) Err tradeoff forki ds

(b) Err tradeoff fort abl e

F P S T
F | 0949 0.012 0.039 0.422 Fig. 6. Tradeoff in false positive and false negative probakesitby
P | 0.046 0.927 0.027 0.292 adjusting thresholec, for ki ds andt abl e, respectively.
S | 0.028 0.056 0.914 0.286
Prediction err vs. RTT for kids Prediction err vs. RTT for table
100 100
E 80 X7 * E 80 . PY o _)e"x
HMM-based linear prediction. In part three of the experimeie- g 60 _X,~“’ g 60 T B
scribed in Section 6.4, we examine the achievable bitrat@gdior § e o § e o
our proposed bit allocation scheme. We also show that oualbit g 40 o9 g 40 e(,—e“o
location scheme suffers no loss in perceived visual qualitpugh s 5, e S 4 o —
subjective user tests on our in-house developed real-tysters. W o ¥ W 0= ?
o0 100 RT'?QO 300 400 o0 100 RT'?QO 300 400
. . In ms In ms
6.1. Experimental Setup and HMM Training (a) Pred. errvs. RTT foki ds  (b) Pred. errvs. RTT forabl e

Our gaze-based networked streaming system employs thly free

available real-time gaze-tracking softwaneengazer [10], which

is calibrated for sampling gaze location at 30 samples pef se

ond using an off-the-shelf web camera.
gaze tracking and video experiments measured 22 inchesrdidg

(473.7mm x 296.1mm). The distance between a user’s head an

the center of monitor screen is ab@&0mm, resulting in a viewing
angle of aboutl0 degrees to the edge of the screen.

Fig. 7. Prediction Error in Euclidean distance as function of R f

different prediction schemes, f&i ds andt abl e, respectively.

The monitor used for

ccurrence afalse negativevhen FA estimates HMM state to I&
ut ground truth state is eithEror P. This is the case where we miss

a bi

We used twa300-frame standard MPEG video test sequences,

ki ds andt abl e, at CIF resolution 54 x 288) for our exper-

H.263 [17] for real-time encoding. Each video was displaiyell-

screen mode at 30 fps, the same sampling ratepeingazer for

one-to-one correspondence between gaze samples and radesst
To obtain ground truth gaze data to train our proposed HM

model, a trained user performed multiple viewings of a test s

guence, each time continuously record his intention of ifxatpur-
suit or saccade by pressing keys on a keyboard. Using thisifigk
truth” data, we calculated the state transition probaédity; ;'s
from statei to j in the HMM and the steady state probabilitiess.
State transition and steady state probabilitieskfods andt abl e

t-saving opportunity.

As discussed in Section 4, a thresheld can be adjusted ac-
cording to our confidence in the estimatEdr P state, resulting
iments. For video compression, we use a fast implementation N @ tradeoff between false positive and false negative gt
ties. In Fig. 6, we see the said tradeoff in the two probaédiin
our HMM state estimation for sequendesds andt abl e, respec-
tively. We see that though in general it is difficult to acl@exery

vsmall false positive and false negative probabilities atsame time,

it is possible to have reasonably smatl (0.15) values for both.
This shows that FA can provide reasonable state estimatemufo
proposed HMM. To be shown later, this level of estimationuaacy
is sufficient for our intended networked streaming appiicat

6.3. Results for HMM-based Linear Prediction

are shown in Table 1 and 2, respectively. Given estimated HMM states, we next examine the accuracyiof o

We see that for both sequences, the probabilitiess of return- - proposed HMM-based linear predictiod\M), as discussed in Sec-
ing to the same state’s are very high. We see also from the steady tjon 4. We compare our prediction scheme to a naive linezdipr
state probabilitieSri’S that the likelihood of being staté is much tion scheme r(l p)’ where the last two gaze data points are used to
higher than the other two latent states. In contrast, theatiitity of  construct a straight line, extrapolation of which to RT Teds later
being in stateS is On|y014 t0 0.28. This is reasonable; ina typ|Ca.| y|e|ds agaze location estimate. In F|g 7, we see the peﬁnm of
video, a viewer tends to spend the majority of her time logkit  hoth schemes, in terms of Euclidean distance between tineagst
objects of interest rather than switching fixation points. gaze locations and true gaze locations, as function of R bdth
sequencegi ds andt abl e. We see that as RTT increased, the
estimation error increased for botiMM andnl p. However, HVM
achieved much smaller errors thahp. This is due to two reasons.
First, to contain errorddMMconstruct a linear prediction only when
it is sufficiently confident it is in staté or P, while nl p makes an
estimate for all data points.

Second,HWMuses different methods for prediction depending
on the estimated stat€ pr P) using a window of data points. This
is evident in Fig. 8, where prediction error was plotted aggirame

6.2. Results for HMM State Estimation

We now evaluate the accuracy of HMM state estimation usimng fo
ward algorithm (FA), as discussed in Section 3.4. We denoteca
currence afalse positivavhen FA estimates HMM state to ibeor P
but the ground truth state & In other words, false positive is when
we wrongly deduced an opportunity to save coding bits bygagsj
coarser quantization parameter outside ROI, but the algorcalls
for high quality encoding for entire frame. In contrast, veadte an



Prediction err vs. fr num for kids Prediction err vs. fr num for table

w
o
=}

NN
o a
S o

[N
a o
o o

Euclidean distance err
=
u
o

o

0 200 300 0
frame number frame number

(a) Pred. errvs. fr#. foki ds  (b) Pred. err vs. fr # fot abl e
Fig. 8. Prediction Error in Euclidean distance as function of feam

100 200 300

7. CONCLUSION

To improve the efficacy of gaze-based networked systemdjisn t
paper, we proposed a hidden Markov model (HMM)-based gaze
prediction strategy to predict future gaze locations retrigtime
(RTT) seconds into the future. The three HMM states cornedgpo
to human'’s three major types of intrinsic eye movements. mbst
likely HMM state is estimated via the forward algorithm (Rdging a
window of observed gaze data. Given an estimated statay Ipre-
diction is used to predict future gaze location. To validate gaze
prediction strategy, we apply our model to the bit allocatmrob-
lem for network video streaming based on region of interi@&lj.
Experiments show that bit rate can be reduce@t without no-

number for different prediction schemes, fdrds andt abl e, re-
spectively, when RTT=200ms.

fralmoe size vs. fr num for kid frame size vs. fr num for tak
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Fig. 9. Frame size as function of frame number for different
bit allocation schemes, fdti ds andt abl e, respectively, when
RTT=200ms. 5]
[6]
number forRTT = 200ms. At frame numbers whereMMmade
prediction, the magnitude of resulting error was in gensnadller
thannl p. 7]
6.4. Results for HMM-based Bit Allocation .
We next show the achievable bit saving for our gazed-bageadl i 15l
cation for networked video streaming. We @& = 10 for a de-
sired reference quality. For our gaze-based schémme)(described
in Section 5, the average QP outside the ROl is 15, as giveB)oy ( [g]

For simplicity, we use dilation factors, = p, = 1 for ROI con-
struction for statd®. An original schemedr i g) assignsQP = 10
for all blocks in a frame. The compressed frame size for the tw [10]
schemes are given in Fig. 9 for both test sequences. We seia tha
frames where the estimated state Wasr P, fewer bits were allo-
cated to non-ROI regions, resulting in bitrate saving. Irtipalar,
we found thahmmachieved21% and17% bit saving compared to
ori g for sequencdi ds andt abl e, respectively. [12]
Of course, the bit saving must be achieved without the loss of
perceptual quality. To verify this, we developed a realetimideo
coding / streaming system, with artificial delay insertetilsen en-
coder and decoder to emulate RTT=200ms. We performed ulser su
jective test as follows. For each viewer, three runs of tmeeseideo
were presented. One run was full quality video encoded atlQP=
for all blocks @ri g). One run was our proposed HMM-based bit [14]
allocation fimm). One run was bit allocation based on naive linear
prediction il p) based on the last two gaze data points. The order of
the three runs was randomized for each viewer. A simple guest [15]
was asked after viewing if one or more of the video sufferearpo [1¢]
quality. Of the three viewers, two viewers reported no défee, [17]
while one identifiechl p as having slightly worse quality. Though
simple, this evaluation provided evidence thamwas able to save
bits without suffering perceived visual quality.

(11]

(13]

ticeable visual quality degradation for RTT as higl2aéms.
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