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ABSTRACT
In a free-viewpoint video conferencing system, the viewer can
choose any desired viewpoint of the 3D scene for observation. Ren-
dering of images for arbitrarily chosen viewpoint can be achieved
through depth-image-based rendering (DIBR), which typically em-
ploys “texture-plus-depth” video format for 3D data exchange.
Robust and timely transmission of multiple texture and depth maps
over bandwidth-constrained and loss-prone networks is a challeng-
ing problem. In this paper, we optimize transmission of multiview
video in texture-plus-depth format over a lossy channel forfree
viewpoint synthesis at decoder. In particular, we construct a re-
cursive model to estimate the distortion in synthesized view due to
errors in both texture and depth maps, and formulate a rate-distortion
optimization problem to select reference pictures for macroblock en-
coding in H.264 in a computation-efficient way, in order to provide
unequal protection to different macroblocks. Results showthat the
proposed scheme can outperform random insertion of intra refresh
blocks by up to0.73 dB at 5% loss.

Index Terms— Depth-image-based rendering, video streaming

1. INTRODUCTION

Depth-image-based rendering (DIBR) is an image synthesis tech-
nique that enables rendering of an image from an arbitrarilychosen
virtual viewpoint in a multiview video system. It requires the per-
pixel distances between the closely spaced cameras and locations of
the captured objects (depth maps), in addition to RGB images(tex-
ture maps) and camera calibration parameters. Depth maps can be
obtained by estimation algorithms like stereo-matching, or sensors
like time-of-flight cameras. DIBR can be used in several scenarios.
In some advanced 3D video systems, only texture and depth maps
of a single view are transmitted, and the additional neighboring view
required for stereo vision is rendered [1]. DIBR can also be used to
implementfree-viewpoint television, in which a viewer can choose
any desired view for personalized video playback [2].

In an interactive multiview video conferencing system, free
viewpoint is desirable and can improve human’s visual perception
of depth in the 3D scene throughmotion parallax. Most previous
works focus on the compression performance of multiview video in
“texture-plus-depth” format [3]. Some recent works focus specifi-
cally on depth maps compression [4, 5]. For example, [4] showed
that during depth map encoding, H.264/AVC coding modes can be
selected based on individual macroblock’s (MB) impact on syn-
thesized view distortion. In contrast, in this work we focuson the
problem of reliable and timely transmission of “texture-plus-depth”
format of multiview video over bandwidth-constrained and loss-
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prone networks, which is challenging for conferencing applications
with stringent video playback deadlines.

Error-resilient streaming of video (texture) has been widely
studied, and different techniques have been proposed including
encoding, transport, as well as post-processing error concealment
methods [6]. In this paper, we utilize reference picture selection
(RPS) in H.264 to provide unequal protection to different MBs in
texture and depth videos. The main goal is to minimize the expected
synthesized view distortion due to packet losses during transmission.
RPS is done at the MB level since not all MBs are equally important
during view synthesis. In particular, we first construct a recursive
distortion model to capture the effects of MB losses in texture and
depth maps on synthesized view distortion. Then, we formulate
a rate-distortion optimization problem, where MBs in texture and
depth maps can select different coding modes and reference pictures,
inducing different tradeoffs between rate and synthesizeddistortion.
We propose a Lagrangian-based algorithm to solve the MB RPS
problem in a computation-efficient manner, which is suitable for
our intended real-time video conferencing application. Experimen-
tal results show that our proposed scheme can outperform random
insertion of intra refresh blocks by up to0.73dB at 5% loss.

2. RELATED WORK

Using the flexibility of RPS in H.264 to control error propagation in
motion compensated frames have been studied for single-view video
at the frame level [7]. In contrast, we optimize RPS at the MB level
according to the importance of each MB in texture and depth maps,
in order to minimize the expected synthesized view distortion.

There are well-known recursive distortion models in the liter-
ature. In [8], anrecursive optimal per-pixel estimate(ROPE) is
proposed to estimate per-pixel distortion by calculating the first and
second order moments of its decoded value. A frame-level distor-
tion model for multiview video transmission is proposed in [9]. Our
work is inspired by [9], but extends the estimation from per-frame to
per-block to support selective use of reference pictures. Compared
to [8], our work supports loss in both texture and depth, and avoids
the unnecessary computation in deriving per-pixel distortion when
decisions are made at block level.

In [10], a similar scheme to minimize expected synthesized view
distortion based on selection of reference frame at the block level
was proposed for depth maps only. In this work, we first extendthe
idea in [10] to encoding of both textureand depth maps, where the
relative importance of texture and depth MBs must be determined.
Second, we expand the coding modes available to each MB to in-
clude intra block coding. Third, we derive an objective function and
corresponding optimization algorithm for encoding of bothtexture
and depth maps that nonetheless remains computationally efficient.



3. PROBLEM FORMULATION

For both texture and depth map, we intelligently select a predictor
MB for motion compensation (MC) for each MB in a current frame
at timet. Our goal is to minimize the expected distortion of an in-
termediate view at instantt, synthesized via DIBR using texture and
depth maps of two adjacent coded views at decoder, and subject to
a transmission rate constraint. We first discuss how synthesized dis-
tortion in an interpolated view is affected by reconstruction errors in
anchor texture and depth maps. We then present the mathematical
formulation of the optimization.

3.1. Overview of Distortion in DIBR
Signal distortion at a synthesized viewpoint can arise fromtwo
causes: i)textural error representing copying of erroneous texture
pixels in the anchor texture map of an adjacent captured view, and
ii) disparity error caused by error in the anchor depth map of an
adjacent captured view, leading to geometric error of the captured
scene, and subsequent pixel copy to the wrong spatial location in
the synthesized image. We examine how these two kinds of errors
contribute to the synthesized distortion more closely next.

A pixel (i, j) in texture mapXt at a captured viewpoint will map
to a pixel in synthesized imageSt shifted horizontally by disparity
Yt(i, j) ∗ η:

St(i, j − Yt(i, j) ∗ η) = Xt(i, j) (1)

whereη is the shift parameter that depends on the particular camera
setup, and the location of the intermediate viewpoint between the
two captured views. Hence, if texture valueXt(i, j) is incorrectly
reconstructed at decoder by an amounte, then reconstructed pixel
St(i, j − Yt(i, j) ∗ η) also inherits1 distortione.

On the other hand, if depth valueYt(i, j) is incorrectly recon-
structed byǫ, then the wrong geometric information will lead to syn-
thesis of a wrong pixel(i, j− (Yt(i, j)+ ǫ)∗η) in interpolated view
St. Assuming the texture in synthesized viewSt is similar to the
texture mapXt, then the disparity errorǫ will lead to synthesized
distortionXt(i, j) −Xt(i, j + ǫ ∗ η). For example, ifXt(i, j) is a
texture pixel inside a relatively smooth spatial region, then disparity
errorǫ will lead to little (if any) synthesized distortion. IfXt(i, j) is
a texture pixel close to an object boundary, however, then disparity
error ǫ may lead to copying of texture pixel from foreground ob-
ject to background (or vice versa), resulting in large distortion. We
can thus make two observations regarding disparity errorǫ: i) unlike
textural error, the resulting distortion in synthesized view St is not
linear toǫ, and ii) resulting synthesized distortion inSt depends on
textural patterns in local neighborhood aroundXt(i, j).

3.2. A Recursive Error Model
We now derive the expected textural errore in differentially coded
texture maps due to channel losses. (Derivation for expected dispar-
ity error ǫ in differentially coded depth maps is the same and thus
omitted.) Letet,i(τt,i, vt,i) be the error of MBi of frameXt, given
it is motion-compensated using a block identified by motion vector
(MV) vt,i inside frameXτt,i , τt,i ≤ t. If MB i is coded as an intra
block, thenτt,i = t andvt,i = 0. Let p be the probability that MBi
of Xt is correctlyreceived. We can now writeet,i(τt,i, vt,i) in terms
of e+t,i(τt,i, vt,i) ande−t,i, the error of MBi of Xt if coded MB i is
correctly received and lost, respectively:

et,i(τt,i, vt,i) = p e
+
t,i(τt,i, vt,i) + (1− p) e−t,i (2)

1If pixel blending is used during DIBR where one pixel from each cap-
tured view is mixed for each synthesized pixel inSt, then distortion in syn-
thesized pixel is linear toe.

If MB i of Xt is correctly received, then the corresponding error
e+t,i(τt,i, vt,i) depends first on whether MBi is coded as intra or
inter block, and if it is the latter, on the quality of the reference block
b identified by MVvt,i in frameXτt,i . In general, reference block
b can be interpolated using several neighboring MBsk ∈ vt,i at
integer pixel coordinates, due to sub-pixel accuracy in H.264’s MC.
We can hence writee+t,i(τt,i, vt,i) as a weighted sum of errors of
these MBs if MBi is an inter block:

e+t,i(τt,i, vt,i) =

{

0 if τt,i = t
γ
∑

k∈vt,i
αk eτt,i,k(ττt,i ,k, vτt,i,k) o.w.

(3)
whereαk ’s are the weights for the summation, andγ < 1 is the
attenuation factor that reflects the dissipating effect of error in an
earlier frame over a sequence of motion-compensated frames.

If MB i of Xt is lost, then we assume a simple block copy pro-
cedure is used for loss concealment, where MBi of previous frame
Xt−1 is used in its place. In this case, the errore−t,i will be the previ-
ous MB’s erroret−1,i(τt−1,i, vt−1,i) plusblock difference between
MB i of frameXt−1 and MBi of frameXt, δt−1,i:

e
−
t,i = et−l,i(τt−1,i, vt−1,i) + δt−1,i (4)

The recursive definitions above compute channel-induced errors
given inter-frame dependencies established during MC of previous
frames. To provide a base case for the recursion, we assume there
exists either an intra block or anacknowledged MB(ACKed MB) in
every dependency chain, one where the receiver has indicated it has
been decoded without error, so that its channel-induced error is0.

3.3. Optimization Formulation
Having derived expected textural erroret,i and disparity errorǫt,i
in differentially coded texture and depth mapsXt andYt, we per-
form optimization by minimizing synthesized distortion subject to a
transmission rate constraint, as follows. Textural erroret,i, as dis-
cussed in Section 3.1, contributes directly to the synthesized distor-
tion. For disparity errorǫt,i, we first determine the curvatureat,i

of a quadratic penalty functiongt,i() [5] that models the local syn-
thesized view distortion sensitivity to disparity value for MB (t, i).
The resulting synthesized distortion due to disparity error is then the
quadratic functiongt,i(ǫt,i) evaluated with argumentǫt,i. For ex-
ample, if MB (t, i) is inside a flat spatial region with little texture,
thengt,i() is very flat with small resulting distortion, for reasonably
small disparity errorǫt,i. In summary, our objective function is the
following:

min
{τt,i,vt,i,ρt,i,ut,i}

∑

i

et,i(τt,i, vt,i) + gt,i (ǫt,i(ρt,i, ut,i)) (5)

where the penalty functiongt,i() is:

gt,i(ǫt,i(ρt,i, ut,i)) =
1

2
at,i [ǫt,i(ρt,i, ut,i)]

2 (6)

Note that (5) is an approximation of the actual synthesized dis-
tortion at intermediate viewSt, since in general, textural erroret,i
and disparity errorǫt,i affect synthesized distortion in a compli-
cated, non-linear way, especially when bothet,i andǫt,i are large.
Nonetheless, (5) is a good approximation when only one of thetwo
errors is non-zero, and it leads to a simple optimization procedure as
discussed in Section 4.

The optimization is subject to the rate constraintRt at instantt:
∑

i

rt,i(τt,i, vt,i) + ζt,i(ρt,i, ut,i) ≤ Rt (7)



wherert,i andζt,i are the resulting bit overhead required to code
texture and depth MB(t, i), given selection of reference frame / MV
pair,(τt,i, vt,i) and(ρt,i, ut,i), respectively.

4. ALGORITHM

Instead of solving the constrained optimization problem (5) and
(7), we can solve the corresponding Lagrangian problem instead for
given multiplierλ > 0:

min
{τt,i,vt,i,ρt,i,ut,i}

∑
i
et,i(τt,i, vt,i) + gt,i (ǫt,i(ρt,i, ut,i)) +

+λ
∑

i
rt,i(τt,i, vt,i) + ζt,i(ρt,i, ut,i) (8)

To solve (8) optimally, it is clear that we can separately optimize
each texture or depth MB(t, i), each containing its corresponding
textural or disparity error and rate term:

min
τt,i,vt,i

et,i(τt,i, vt,i) + λ rt,i(τt,i, vt,i) ∀i (9)

min
ρt,i,ut,i

gt,i (ǫt,i(ρt,i, ut,i)) + λ ζt,i(ρt,i, ut,i) ∀i (10)

(9) and (10) are minimized by searching through all feasible
MVs in all valid reference frames. This can be done efficiently, for
example, in a parallel implementation.

5. EXPERIMENTATION

We compared our methods outlined in Sections 3-4 to a method
using insertion of random intra-coded blocks for resilience. Both
schemes exploit feedback to allow an encoder to avoid using as pre-
diction reference earlier frames that are known to be loss-impaired.
We call our scheme“Modified H.264”, and the other scheme“Con-
ventional H.264+ Feedback and Intra Refresh”. The introduced
intra-coded blocks are constrained to prohibit intra-prediction us-
ing inter-coded blocks to enhance error resilience. Currently, our
schemes are implemented only forP16 × 16 mode in H.264/AVC
JM reference software v18.0 [11]. Therefore, the only modesavail-
able in all simulations areP16× 16 or Intra blocks. More extensive
comparison using larger number of available modes is a subject of
future study. The number of Intra Refresh blocks (for“Conventional
H.264+ Feedback and Intra Refresh”) inserted is varied to match
the bit-rate in both schemes.

Each depth map frame is divided into three packets, while each
texture frame is divided into twelve packets due to higher associ-
ated bit rates. Simulations include losses of2%, 3% and5% of the
packets for both texture and depth maps. In order to provide mean-
ingful comparisons, the same packets are lost in all schemes. Both
depth maps and texture are encoded using64 pixel search window,
CABAC entropy encoder andIPPP... encoding mode. When a
MB is lost during transmission, the co-located block from the pre-
vious frame is used in its place. For view interpolation we used the
MPEG View Synthesis Reference Software (VSRS v3.5) [12]. The
simulation is for round-trip-delay of4 frames or133 ms.

The results are shown in Fig 1. We also included the error-free
results for reference. For “Kendo” sequence [13] view1 was syn-
thesized from views0 and2, and for “Champagne” sequence [13]
view 40 was synthesized from views39 and41. The original views
were used as ground truth for PSNR calculations. The total bit-rate
for each curve (for both textures and depth maps) are indicated in
the caption. Due to the use of feedback, we see that both schemes
are generally able to recover from losses within one round-trip time.
Nevertheless, we see that our optimized scheme can better withstand
the transient effect of packet losses by providing strongerprotec-
tion to more important regions, especially when loss rates are higher.

Specifically, for Kendo at 5% loss, we see that our scheme provides
over 1 dB of PSNR improvement in 4 out of the 7 episodes of loss
followed by recovery. Corresponding number for Champagne is 4
out of 10 episodes. The average PSNR improvements for Kendo are
0.204 dB, 0.722 dB and0.734 dB for 2%, 3% and5% losses, re-
spectively. Similarly, the PSNR improvement for Champagneat2%,
3% and5% losses are0.161 dB, 0.214 dB and0.355 dB, respec-
tively. The results are generated for only a portion of the sequences
with interesting motion, since losses in static frames can be readily
concealed.

Detail crops are shown in Fig.2 and Fig. 3. The errors around
the swordsman of the right in Fig. 2-(a) and the errors in the arm in
Fig. 3-(a) attest to the effectiveness of our scheme.

6. CONCLUSION

In this paper, we have presented a recursive distortion model to
estimate the effects of packet losses on view interpolationusing
“texture-plus-depth” video in DIBR. We extended earlier model that
consider losses in depth map only to cover both depth and texture
maps, and developed an algorithm for the solution. Our experiments
using H.264/AVC, though without support of block partitions and
sub-partitions, show a significant improvement in PSNR and sub-
jective quality compare to random insertion of intra blockswith a
feedback channel available.
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Fig. 1. PSNR vs Frame plots for Kendo at1024× 768 pixels (top row) and Champagne at1280× 960 (bottom row). The bitrates for Kendo
are6.6 Mbps forConventional H.264, and9.0 Mbps for both“Conventional H.264+ Feedback and Intra Refresh”andModified H.264. For
Champagne, the bitrates are5.0 Mbps and8.0 Mbps, respectively.

(a)

(b)

Fig. 2. Cropped frame of Kendo with5% packet losses for (a)“Con-
ventional H.264+ Feedback and Intra Refresh”, and (b)Modified
H.264.

(a)

(b)

Fig. 3. Cropped frame of Champagne with5% packet losses for,
(a) “Conventional H.264+ Feedback and Intra Refresh”, and (b)
Modified H.264.


