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ABSTRACT

Compression of depth maps is important for “texture plus depth”
format of multiview images, which enables synthesis of novel inter-
mediate views via depth-image-based rendering (DIBR) at decoder.
Previous depth map coding schemes exploit unique depth data char-
acteristics to compactly and faithfully reproduce the original signal.
In contrast, since depth map is only a means to the end of view syn-
thesis and not itself viewed, in this paper we explicitly manipulate
depth values, without causing severe synthesized view distortion, in
order to maximize representation sparsity in the transform domain
for compression gain—we call this process transform domain spar-
sification (TDS). Specifically, for each pixel in the depth map, we
first define a quadratic penalty function, with minimum at ground
truth depth value, based on synthesized view’s distortion sensitivity
to the pixel’s depth value during DIBR. We then define an objective
for a depth signal in a block as a weighted sum of: i) signal’s sparsity
in the transform domain, and ii) per-pixel synthesized view distor-
tion penalties for the chosen signal. Given that sparsity (l0-norm) is
non-convex and difficult to optimize, we replace the l0-norm in the
objective with a computationally inexpensive weighted l2-norm; the
optimization is then an unconstrained quadratic program, solvable
via a set of linear equations. For the weighted l2-norm to promote
sparsity, we solve the optimization iteratively, where at each iter-
ation weights are readjusted to mimic sparsity-promoting lτ -norm,
0 ≤ τ ≤ 1. Using JPEG as an example transform codec, we show
that our TDS approach gained up to 1.7dB in rate-distortion perfor-
mance for the interpolated view over compression of unaltered depth
maps.

Index Terms— Depth-image-based rendering, transform cod-
ing, sparse representation

1. INTRODUCTION

Continuing cost reduction of consumer-level cameras means images
and videos previously taken by one camera from a single viewpoint
can now be captured economically by an array of cameras to record
multiple viewpoints. If, in addition to captured texture maps (RGB
images), depth maps (per-pixel physical distances between camera
and locations of the scene’s objects in 3D space) are also available1,
then novel intermediate views can also be synthesized via depth-
image-based-rendering (DIBR) techniques such as 3D warping [1],
using neighboring texture and depth maps as anchors. Having both
captured and seemingly unlimited intermediate views available at the
client can translate to richer visual experiences such as free view-
point TV [2], where the client can interactively select any desired
viewpoint of the scene of interest for observation. However, encod-
ing and transmitting texture and depth maps of a large number of

1Depth maps can be estimated from texture maps, or captured explicitly
using time-of-flight cameras.

captured views—a format called texture-plus-depth [3]—can incur
a high transmission cost. One practical necessity for texture-plus-
depth format then, is efficient encoding of depth maps.

Recent efforts to encode depth maps [4] exploit depth signal’s
unique characteristics, such as smooth surfaces and sharp edges, for
efficient compression. However, the goal in these approaches is to
reconstruct a signal ŝ as close as possible to the original s for a given
coding rate. In contrast, given that a depth map is a means to syn-
thesize intermediate views and not itself observed, we remark that
one can explicitly manipulate depth values without directly causing
signal degradation as observed by users, as long as the manipula-
tion does not lead to severe synthesized view distortions. In fact, it
has been shown [5] that in low texture regions of a scene, errors in
depth have limited effect on the synthesized views. In this paper, we
propose to exploit this degree of freedom to manipulate depth values
(to some controlled extent) to maximize representation sparsity in
transform domain for compression gain, a process we call transform
domain sparsification (TDS).

An orthogonal transform coder maps a signal s ∈ RN to a set of
N pre-defined basis functions φi’s spanning the same signal space
RN of dimension N . In other words, a given signal s in RN can
be written as a linear sum of those basis functions using coefficients
αi’s:

s =
N
X

i=1

αiφi (1)

Only non-zero quantized transform coefficients α̂i’s are encoded and
transmitted to the receiver for reconstruction of approximate signal
ŝ. αi’s are obtained using a complementary set of basis functions
φ̄i’s; i.e., αi = 〈s, φ̄i〉, where 〈x,y〉 denotes a well defined inner
product between two signals x and y in Hilbert space RN .

Compression efficiency of transform coding depends to a large
extent on the representation sparsity of signal s in the transform do-
main; i.e., the number of zero quantized coefficients α̂i’s. Much ef-
fort in transform coding is spent on finding basis functions φi’s that
maximize representation sparsity for a class of signals. In the case
of depth map encoding, we solve the complementary problem: given
a set of orthogonal basis functions φi’s, we “sparsify” the signal s
in transform domain, optimally trading off its representation sparsity
and its adverse effect on synthesized view distortion via DIBR.

In particular, we perform sparsification of depth map as follows.
For each depth pixel in a code block, we first define a quadratic
penalty function, where larger deviation from its nadir (ground truth
depth value) leads to a larger penalty. Synthesized view’s distortion
sensitivity to the pixel’s depth value determines the sharpness of the
constructed parabola. We then define an objective for a depth signal
in a code block as a weighted sum of: i) signal’s sparsity in the trans-
form domain, and ii) per-pixel synthesized view distortion penalties
for chosen signal. Given that sparsity (l0-norm) is non-convex and
difficult to optimize, we replace the l0-norm in the objective with
a computationally inexpensive weighted l2-norm; the optimization
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is then an unconstrained quadratic program, solvable via a set of
linear equations. For the weighted l2-norm to promote sparsity, we
solve the optimization iteratively, where at each iteration weights are
readjusted to mimic sparsity-promoting lτ -norm, 0 ≤ τ ≤ 1. Us-
ing JPEG as an example transform codec, we show that our TDS
approach gained up to 1.7dB in rate-distortion performance for the
interpolated view over compression of unaltered depth maps.

The outline of the paper is as follows. We first overview related
work in Section 2 and discuss how we define penalty functions per
depth pixel in Section 3. We discuss our chosen objective and for-
mulate our optimization in Section 4. We then present our sparsity-
promoting iterative quadratic algorithm in Section 5. Results and
conclusion are presented in Section 6 and 7, respectively.

2. RELATED WORK

Compression for depth maps has previously been investigated [4],
but the goal there was to reconstruct the original signal (depth map)
faithfully, while in this paper we explicitly manipulate the signal
(without causing severe synthesized view distortion) for compres-
sion gain. A similar recent work is [5], where the authors analyzed
how compression error in depth values can lead to distortion in syn-
thesized views, and proposed a new metric for mode selection in
H.264 encoding of depth maps. We differ in that we explicitly spar-
sify the depth signal in transform domain for coding gain.

[6] also presented a signal manipulation problem, where given
the constraint that code blocks must fall within their assigned quan-
tization bins of the compressed image, high frequency components
across block boundaries are eliminated via projection on convex sets
(POCS). [7] discussed near-lossless image compression, where any
given pixel value can have an error of no more than ±v during com-
pression. More recently, [8] proposed to trade off signal quality with
l1-norm of the transform coefficients for coding gain in a lapped
biorthogonal transform setting. Our work differs from these previ-
ous work in two respects: i) we define one penalty function per depth
pixel to reflect the unique sensitivity of synthesized view distortion
to the pixel value; and ii) we use iterative weighted l2-norm mini-
mization to promote sparsity in the transform domain, which can be
efficiently solved compared to l1-norm minimization.

In our earlier work [9], we have studied the depth map sparsifi-
cation problem, where don’t care regions (DCR) were first defined
per-pixel restricting the search space of depth signals, then weighted
l1-norm was minimized iteratively to find a sparse representation in
the transform domain. The problem setting in [9] is a restricted one,
however, where a single disparity map at the middle viewpoint loca-
tion of the desired synthesized view is encoded. [9] further assumes
ground truth texture map at the same middle viewpoint is available to
construct DCR. In this paper, we consider the more realistic scenario
where left and right depth maps need to be encoded for view synthe-
sis at any location in between. Further, only left and right texture
maps at those same anchor locations are available to construct our
per-pixel penalty functions. Finally, we propose iterative quadratic
programs to find sparse solutions, which is far more computationally
efficient than iterative weighted l1-norm minimization in [9].

3. DEFINING PENALTY FUNCTIONS

A pixel Il(m,n) in the left texture map can be mapped to a shifted
pixel Ir(m,n − Dl(m, n) ∗ γ) in the right texture map, where
Dl(m, n) is the disparity value in the left depth map correspond-
ing to left texture pixel Il(m, n), and γ is the camera-shift scaling
factor for this camera setup. To derive synthesized view’s distor-
tion sensitivity to left depth pixel Dl(m,n), we define error func-
tion El(k; m, n) given depth error e: it is the difference in texture
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Fig. 1. Error and quadratic penalty functions constructed for one
pixel in right view (view 6), and curvature of penalty functions for
entire right view in Teddy.

pixel values between left pixel Il(m, n), and incorrectly mapped
right pixel Ir(m, n− (Dl(m, n) + e) ∗ γ) due to error e. We write:

El(e; m,n) = |Il(m, n) − Ir (m,n − (Dl(m, n) + e) ∗ γ) | (2)

Error function Er(e;m, n) for the right depth map can be de-
rived similarly. As an example, the blue curve in Fig. 1(a) is the
resulting Er(e; m, n) for the right view (view 6) of multiview se-
quence Teddy [10]. One can see that, in general, as the depth value
deviates from the ground truth disparity value Dr(m, n) (red circle),
the error increases.

For mathematical convenience ( so that the to-be-discussed opti-
mization can be formulated as an unconstrained quadratic program),
we fit a per-pixel quadratic penalty function gi(si) to the error func-
tion and use gi(si) instead:

gi(si) = (1/2)ais2
i + bisi + ci (3)

where si is the disparity value corresponding to pixel location i, and
ai, bi and ci are the quadratic function parameters. The procedure
we use to fit gi(si) to the error function is as follows. Given thresh-
old ρ, we first seek the nearest disparity Dl(m, n) − e value below
ground truth Dl(m, n) that results in error El(−e;m, n) exceeding
ρ + El(0; m, n). Using only two data points at Dl(m, n) − e and
Dl(m, n), and assuming gi(si) has minimum at ground truth depth
value Dl(m, n), we can construct one quadratic function. Similar
procedure is applied to construct another penalty function using two
data points at Dl(m, n)+e and Dl(m, n) instead. The sharper of the
two constructed functions (larger a) is the chosen penalty function
for this pixel.

Continuing with our earlier example, we see in Fig. 1(a) that two
quadratic functions (in dashed lines) with minimum at ground truth
depth value are constructed. The narrower of the two is chosen as
the penalty function. In Fig. 1(b), the per-pixel curvature (parame-
ter a) of the penalty functions of the right depth depth of Teddy is
shown. We can clearly see that larger curvatures (larger penalties)
occur at object boundaries, agreeing with our intuition that a synthe-
sized view is more sensitive to depth pixels at object boundaries.

4. PROBLEM FORMULATION

Given the defined per-pixel penalty functions, we now formulate our
depth signal sparsification problem TDS—trading off representation
sparsity in the transform domain with synthesized view distortion—
as iterative unconstrained quadratic programs.

4.1. Defining Objective Function
Let s be a depth signal in the pixel domain, where si is the depth
value of the i-th pixel. Let Φ be a chosen orthogonal transform.
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Hence α = Φs is the transform coefficient vector. Since only non-
zero quantized transform coefficients are coded, in general the fewer
the number of non-zero entries in α, the better the compression per-
formance. The number of non-zero entries in α is equivalent to the
l0-norm ‖α‖l0 of α:

‖α‖l0 = |{i|αi > 0}| (4)

Using the per-pixel penalty functions gi(si)’s we defined (in the
pixel domain) in the previous section, we can now write our objective
function for TDS as a sum of l0-norm and weighted penalties of
coefficient vector α (in the transform domain):

min
α

‖α‖l0 + λ
X

i

gi(φ−1
i α) (5)

where φ−1
i is the i-th row of the inverse transform Φ−1, and λ is a

weight parameter to control the relative importance of representation
sparsity and synthesized view distortion of the sought solution.

(5) is an unconstrained optimization problem where the opti-
mization variables are transform coefficients αi’s. Because of the
combinatorial nature of l0-norm ‖α‖l0 in (5), finding the optimal
solution to (5) is non-convex and NP-hard in general. We hence next
propose alternative functional to serve as surrogate to the original
objective (5) that can be more efficiently solved.

4.2. Weighted l2-norm Surrogate

Instead of minimizing l0-norm ‖α‖l0 directly, numerous previous
approaches seek the minimum l1-norm solution instead [11]. More
generally, the weighted lp-norm ‖α‖lp(w) of coefficient vector α
with weight vector w is defined as:

‖α‖lp(w) =

 

X

i

wi|αi|p
!1/p

0 < p < ∞ (6)

It was observed empirically that in many practical settings, the
l1-norm promotes sparsity, and that under a restricted condition on
α [12], the minimum l1-norm solution is also the minimum l0-norm
solution. l1-norm minimization can be formulated as a linear pro-
gram (LP) and solved via standard LP techniques.

Though LP is solvable in polynomial time, it remains computa-
tionally expensive. [12] and others have showed that2 if a l1-norm
minimizing α∗ has no vanishing component (i.e., no α∗

i = 0) and
each weight wi of the weighted l2-norm is assigned 1/|α∗

i |, then
minimum weighted l2-norm solution αw coincides with the mini-
mum l1-norm solution α∗. It seems possible then, that if weights
wi’s can be appropriately selected a priori, then one can replace the
conventional l1-norm with a computationally inexpensive weighted
l2-norm and still promotes sparsity.

More specifically, replacing l0-norm ‖α‖l0 in (5) with the
weighted l2-norm ‖α‖l2(w) of coefficient vector α, we have a new
functional to serve as surrogate for the original TDS objective:

min
α

X

i

wiα2
i + λ

X

i

gi(φ−1
i α) (7)

which can be solved very efficiently by rewriting it in the form of an
unconstrained quadratic program:

min
α

(1/2)αT Pα + qT α + r (8)

where the constants P, q and r are:

2[12] also showed convergence of weighted l2-norm to l1-norm when
there are vanishing components for their iterative algorithm.

1. Initialize weights wi = 1/(|αt
i | + ε)2, where αt

i is the i-th
transform coefficient of the ground truth depth signal st.

2. Find optimal αo to (7) for weighted l2-norm minimization
with penalties by solving (10).

3. Set each weight wi to (|αo
i |2 + ε2)−

2−τ
2 if |αo

i
Qi

| ≥ 0.5, and

ε
4−2τ

2 otherwise.

4. Repeat Step 2 to 3 until convergence in quantized coefficients
α̂o

i ’s.

Fig. 2. Iterative algorithm to solve weighted l2-norm minimization
with penalty functions gi(si)’s.
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The optimal solution αo to (8) can be easily found by solving
the following set of linear equations [13]:

Pαo = −q (10)

One important question remains: how to define appropriate
weights wi’s for weighted l2-norm in (7) to promote sparsity? We
discuss this issue next.

5. ITERATIVE QUADRATIC PROGRAMS

To find appropriate weights wi’s for (7) to promote sparsity, we de-
sign an algorithm, inspired by the iterative re-weighted least squares
(IRLS) work in [12], where (7) is solved iteratively, each time with
weights wi’s readjusted. The idea of IRLS is that in an iterative al-
gorithm, one can assume previous iteration’s solution αo serves as
a good estimate to optimal solution α∗. Hence, one can define the
i-th component weight wi as 1/|αo

i |, so that the iteratively weighted
l2-norm can mimic the sparsity promoting l1-norm. Similarly then,
when solving (7) in an iteration in our algorithm, we also readjust
weights wi’s using previous solution αo. Fig. 2 shows how we adopt
IRLS for our optimization in (7).

A few details in Fig. 2 deserve further explanation. First, be-
cause assigning wi = 1/|αo

i | assumes solution αo to (7) is already
reasonably close to optimal α∗, we need to provide a good initial
guess to initialize wi’s. In our optimization, we simply use transform
coefficients αt

i’s of ground truth depth signal st as initial guess.
Second, if αo

i is close to zero, 1/αo
i approaches infinity. To

avoid numerical stability problems, a parameter ε > 0 is added when
assigning weight wi in Step 3, as done also in [11] and [12]. Exper-
iments show that results are not sensitive to the value of ε.

Third, because only quantized coefficients α̂i = round(αi/Qi)
are encoded, where Qi is the quantization parameter for coefficient
αi, a coefficient αo

i with value |αo/Qi| < 0.5 will not be coded and
should not be counted. We hence set αo

i to zero when updating wi

so that the contribution of this component wiα2
i is close to zero.

Finally, if we set τ in the exponent of Step 3 to 1, then each
weight wi approaches 1/|αo

i | and the iterative re-weighting mimics
l1-norm. More generally, τ can be set in Step 3 to value 0 < τ ≤ 1,
however, to mimic lτ -norm instead. As shown in [12], the advantage
of using τ < 1 is that the local convergence rate can be superlinear,
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Fig. 3. PSNR Comparison between sparsified representations and
original depth maps for Teddy and Dolls.

speeding up the iterative algorithm. The disadvantage is that it may
converge to a wrong local minimum if initial guess is too far from
optimal solution. Because we do have a good initial guess αt avail-
able, we can afford smaller τ for faster convergence with small risk
of wrong convergence. In the experiments, we will test different
values of τ .

6. EXPERIMENTATION
6.1. Experimental Setup

To test the Rate-distortion (RD) performance of our TDS approach,
we used an implementation of JPEG [14], cjpeg version 8a, for
image compression of left and right depth maps in multiview image
sequences Teddy and Dolls [10]. In brief, cjpeg performs 2D
Discrete Cosine Transform (DCT) on non-overlapping 8 × 8 pixel
blocks, and quantizes the resulting DCT coefficients according to
a quality setting. Lower quality maps to coarser quantization of
DCT coefficients.

For a given quality setting, we fed the corresponding quanti-
zation matrix Q into our iterative quadratic minimization algorithm,
together with defined per-pixel penalty functions and weight param-
eter λ. The sparsified representations for left and right depth maps
are compressed using cjpeg at this quality setting, and uncom-
pressed back to pixel domain for view synthesis of the middle image
between left and right views. View synthesis is performed using
a simple in-house implementation of 3D warping [1] to copy and
blend corresponding left and right pixels to the synthesized view.
Holes are filled using nearest horizontal synthesized pixels. quality
setting from 50 to 90 and weight parameter λ ranging from 0.01 to
0.1 were used in our experiment. Sparsified representations were
compared against unaltered left and right ground truth depth maps
compressed using cjpeg at the same quality settings.

6.2. Experimental Results

First, we tried running our algorithm for different τ ’s so that the
weighted l2-norm in our iterative quadratic algorithm mimics spar-
sity promoting lτ -norm. We found that changing τ made no no-
ticeable difference in the converged solutions. Because there is a
convergence speedup when τ is set small, we used τ = 0 for the rest
of the experiments.

In Fig. 3(a) we see the RD performance for Teddy—quality
of middle synthesized view in Peak Signal-to-noise Ratio (PSNR)
versus size of the left compressed depth map—using our sparsified
representations for different weight λ and ground truth depth maps.
We see that there is an optimum λ that induces the right tradeoff
between representation sparsity in the transform domain and syn-
thesized view distortion, so that the RD performance is maximized.
We found this to be λ = 0.05 experimentally. In particular, our

sparse representations offered up to 1.7dB gain over ground truth
depth maps.

Fig. 3(b) show the same performance comparison for Dolls.
Sparsified representations outperformed compression of unaltered
ground truth depth map by up to 1.5dB in this case.

7. CONCLUSION

Efficient depth map coding is important in texture-plus-depth for-
mat for depth-image-based rendering (DIBR) at the decoder. In this
paper, we sparsify representation of the depth signal in the trans-
form domain (for coding gain) while inducing minimal synthesized
view distortion. We first define our objective function of a depth
signal as a sum of l0-norm and weighted per-pixel penalty func-
tions. We then replace l0-norm with a weighted l2-norm, so that
the optimization can be solved efficiently. The optimization is then
solved iteratively, and weights are adjusted in each iteration so that
the weighted l2-norm mimic a sparsity promoting lτ -norm. Results
show that our sparsified representations outperformed compression
of unaltered depth maps by up to 1.7dB in synthesized view PSNR.
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