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ABSTRACT

The encoding of both texture and depth maps of a set of multi-
view images, captured by a set of spatially correlated cameras,
is important for any 3D visual communication systems based on
depth-image-based rendering (DIBR). In this paper, we address the
problem of efficient bit allocation among texture and depth maps
of multi-view images. We pose the following question: for chosen
(1) coding tool to encode texture and depth maps at the encoder and
(2) view synthesis tool to reconstruct uncoded views at the decoder,
how to best select captured views for encoding and distribute avail-
able bits among texture and depth maps of selected coded views,
such that visual distortion of a “metric” of reconstructed views is
minimized. We show that using the monotonicity assumption, sub-
optimal solutions can be efficiently pruned from the feasible space
during parameter search. Our experiments show that optimal selec-
tion of coded views and associated quantization levels for texture
and depth maps can outperform a heuristic scheme using constant
levels for all maps (commonly used in the standard implementa-
tions) by up to 2.0dB. Moreover, the complexity of our scheme can
be reduced by up to 66% over full search without loss of optimality.

Index Terms— Multiview image, bit allocation, monotonicity.

1. INTRODUCTION

In a typical multiple view imaging scenario, a multiview image se-
quence is captured by a set of spatially correlated cameras simul-
taneously. Besides texture maps, depth information of a particular
viewpoint (distance between camera and each captured pixel) can
also be estimated or captured by special hardware, so that additional
intermediate views can be synthesized using texture and depth maps
of neighboring captured images via depth-image-based rendering
(DIBR) [1]. Conveying both texture and depth maps of captured
views for a large multiview image sequence to a decoder, however,
means a large amount of data must be transmitted. Hence, compres-
sion of texture and depth maps of multiview images is important.

In response, compression strategies for texture and depth maps
of multiview images have recently been proposed for DIBR [2, 3].
What is missing, however, is a comprehensive strategy to optimize
coding parameters for DIBR in a rate-distortion (RD) sense. More
specifically, given the decoder possesses a known view synthesis
tool, how should the encoder decide the quantization levels of coded
texture and depth maps of captured views N for a pre-defined DIBR
metric? By metric, we assume here that given original captured
views N , a superset1 V = N ∪ M, containing both the captured
views N and designated intermediate views M (at least one between
two consecutive captured views), is specified to evaluate the quality
of the compressed texture and depth maps. Thus, the total distortion

1If the metric contains no intermediate views M, the encoder would not
encode any depth maps. Given depth maps provide decoder the flexibility to
synthesize any number of intermediate views, this is a desired property and
the metric should promote good quality depth maps for view synthesis.

of the encoding would be distortion of decoded views using com-
pressed texture maps of N compared to original N , and distortion
of synthesized views using compressed texture and depth maps of N
compared to original M.

Note that in general, not all captured views N need to be en-
coded for a given desired RD tradeoff. If the capturing cameras are
sufficiently close spatially and the scene sufficiently interpolatable,
then coding only a subset of captured views N (with finer quantiza-
tion levels for texture and depth maps for high quality view synthe-
sis), while relying on decoder to synthesize skipped captured views,
may offer better RD tradeoff than encoding all captured views at
coarser quantization levels. Hence finding the optimal subset of cap-
tured views N for encoding is also of critical importance.

In this paper, we propose a bit allocation algorithm that finds
the optimal subset among captured views N for encoding, and as-
signs quantization levels for texture and depth maps of the selected
coded views. We first establish that the optimal selection of coded
views and associated quantization levels is equivalent to the short-
est path in a specially constructed trellis. Given that the state space
of the trellis is nonetheless enormous, we then show that using lem-
mas derived from monotonicity property in predictor’s quantization
level and distance, sub-optimal states and edges in the trellis can be
pruned during shortest path calculation without loss of optimality.
Experimental results show that optimal selection of captured views
and associated quantization levels for texture and depth maps outper-
formed a heuristic scheme that selects all captured views for coding
and assigns a fixed constant for all maps by up to 2.0dB. Further,
our algorithm can reduce computation complexity over full trellis
calculation by up to 66% without loss of optimality.

The paper is organized as follows. After describing related work
in Section 2, we formulate our bit allocation problem in Section 3.
Then, we introduce the monotonicity property and propose an effi-
cient bit allocation algorithm in Section 4. We present our experi-
mental results in Section 5. Finally, we conclude in Section 6.

2. RELATED WORK

New compression methods of depth maps [2, 3] for DIBR have been
proposed, and formal analyses of resulting error in synthesized view
due to lossy depth-map coding [4, 5] have been reported. Our bit
allocation work is notably orthogonal to these proposals; no mat-
ter what coding methods are employed for texture and depth map
and how a compressed depth map error manifests to a synthesized
view, an optimizer must ultimately decide how to best distribute bits
among texture and depth maps of coded views in a sequence for a
desired RD tradeoff. To the best of our knowledge, our work is the
first attempt in the literature to address this question formally.

Optimal bit allocation among independent [6] and dependent [7]
quantizers in an operational sense has been studied thoroughly for
RD optimized media compression. Our work differs in that bit al-
location for both texture and depth maps are considered simultane-
ously, such that the resulting distortion of both encoded and synthe-
sized views is minimized for a desired RD tradeoff.
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3. FORMULATION

1 2 3 4 5 6 7

Fig. 1. Dependencies among Coded (Gray) and Synthesized (White)
Frames. J = {1, 5, 7}, J ′ = {3}, M = {2, 4, 6}.

The setting of our bit allocation problem is as follows. A met-
ric of views V = {1, . . . , V } in a 1D-camera-array arrangement,
containing both camera-captured views N of size N and designated
synthesized views M, is specified a priori to evaluate quality of en-
coded texture and depth maps. Captured views N are divided into
K coded views, J = {j1, . . . , jK}, and N − K uncoded views
J ′ = N \ J . The first and last view in V are captured views
and must be selected as coded views; i.e., 1, V ∈ J ⊆ N . Tex-
ture and depth maps of a coded view ji are encoded using quan-
tization level qji and pji , respectively. qji and pji take on dis-
crete values from quantization level set Q = {1, . . . , Qmax} and
P = {1, . . . , Pmax}, respectively, where we assume the convention
that a larger qji or pji implies a coarser quantization.

Uncoded views are not encoded at the encoder, but are synthe-
sized at the decoder, along with designated synthesized views M in
metric V , each using texture and depth maps of the closest left and
right coded views, denoted as l, r ∈ J for each j′ ∈ J ′.

We assume inter-view differential coding is used for coded
views as done in [8] and shown in Fig. 1. The first view is always
coded as an I-frame. Each subsequent coded view ji—frames 5 and
7 in Fig. 1—are coded as P-frame using previous coded view ji−1

as predictor for motion/disparity compensation.

3.1. Visual Distortion
Given the coded view dependencies, we can now write the distortion
Dc of the coded views as a function of the texture map quantization
levels, q = [qj1 . . . , qjK ]:

Dc(q) = dc
1(q1) +

KX
i=2

dc
ji,ji−1

(qji , qji−1) (1)

(1) states that distortion of the starting I-frame dc
1 depends only on its

own texture quantization level q1, while the distortion of a P-frame
dc

ji
depends on both its own texture quantization level qji and its

predictor ji−1’s quantization level qji−1 . A more general model [7]
is to have P-frame ji depends on its own qji and all previous quan-
tization levels q1, . . . , qji−1 . We assume here that truncating the
dependencies to qji−1 only is a good first-order approximation.

Similarly, we now write the distortion of the synthesized
views Ds (including uncoded views J ′ and designated synthe-
sized views M) as a function of q and depth quantization levels,
p = [pj1 , . . . , pjK ]:

Ds(q,p) =
X

j′∈J ′∪M

ds
j′,l,r(ql, pl, qr, pr) (2)

l = arg min
j∈J

|j′ − j| s.t. j < j′

r = arg min
j∈J

|j′ − j| s.t. j > j′

where l and r are indices of the closest coded views to the left and
right of synthesized view j′. In words, distortion of synthesized view
j′ depends on both the texture and depth map quantization levels of
the two spatially closest coded views l and r.

3.2. Encoding Rate
As done for distortion, we can write the rate of texture and depth
maps of coded views, Rc and Rs, respectively, as follows:

Rc(q) = rc
1(q1) +

KX
i=2

rc
ji,ji−1

(qji , qji−1 ) (3)

Rs(q,p)= rs
1(q1, p1) +

KX
i=2

rs
ji,ji−1

(qji , pji , qji−1 , pji−1) (4)

(3) states that the encoding rate for texture map of a coded view, rc
ji

,
depends on its texture map quantization level, qji , and its predictor’s
level, qji−1 . In contrast, (4) states that the encoding rate for depth
map, rs

ji
, depends on both the texture and depth map quantization

levels, qji and pji , and its predictor’s texture and depth map levels,
qji−1 and pji−1 . Our model hence includes the case when depth
maps are differentially coded using texture maps as predictors.

3.3. Rate-distortion Optimization
Given the above formulation, the optimization we are interested in
is to find the coded view indices J ⊆ N , and associated texture
and depth quantization vector, q and p, such that the Lagrangian
objective is minimized for given Lagrangian multiplier λ ≥ 0:

min
J ,q,p

Φλ = Dc(q) + Ds(q, p) + λ [Rc(q) + Rs(q,p)] (5)

4. BIT ALLOCATION OPTIMIZATION

Previous work [7] has shown that using monotonicity property of
dependent quantizers, efficient algorithms and heuristics can be con-
structed for optimal or near-optimal bit allocation. Our work can
be viewed as a generalization of [7] to include synthesized views.
We first discuss the useful monotonicity property along different di-
mensions. We then derive two lemmas based on monotonicity, and
construct a fast optimization algorithm using the lemmas.

4.1. Monotonicity in Predictor’s Quantization Level
Let φji,ji−1(qji , pji , qji−1 , pji−1) be the Lagrangian term for coded
view ji given quantization levels of view ji and its predictor view
ji−1, i.e., the sum of distortion dc

ji,ji−1
(qji , qji−1 ) and penalties

λrc
ji,ji−1

(qji , qji−1 ) and λrs
ji,ji−1

(qji , pji , qji−1 , pji−1) for tex-
ture and depth maps encoding. Motivated by a similar empirical
observation in [7], we assume here also the monotonicity in predic-
tor’s quantization level for both Lagrangian φji,ji−1 of coded view
ji, and distortion ds

j′,l,r of synthesized view j′; i.e., for any λ ≥ 0:

φji,ji−1 (qji
, pji

, qji−1 , pji−1 ) ≤ φji,ji−1 (qji
, pji

, q+
ji−1

, pji−1) (6)

φji,ji−1 (qji
, pji

, qji−1 , pji−1 ) ≤ φji,ji−1 (qji
, pji

, qji−1 , p+
ji−1

)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′,l,r(q+
l , pl, qr, pr) (7)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′,l,r(ql, p
+
l , qr, pr)

where q+
n (or p+

n ) implies a larger (coarser) quantization level than
qn (or pn). In words, (6) states that if predictor view ji−1 uses a
coarser quantization level in texture or depth map, it will lead to
worse prediction in view ji, resulting in larger distortion and/or cod-
ing rate, and hence a larger Lagrangian cost φji,ji−1 , λ ≥ 0.

(7) makes a similar statement for monotonicity of the synthe-
sized view distortion ds

j′
i
,l,r with respect to the texture and depth

quantization levels ql and pl of the closest left coded view l. We as-
sume also monotonicity in the texture and depth quantization levels
qr and pr of the closest right coded view r as well.
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4.2. Monotonicity in Predictor’s Distance
We can also express monotonicity of Lagrangian cost φj,k of coded
view j, or synthesized view distortion ds

j′,l,r of synthesized view
j′, with respect to the predictor’s distance to a coded view used for
differential coding or synthesis. Assuming further-away predictor
view k− for coded view j, k− < k, has the same quantization levels
as view k, and further-away predictor views l− and r+ have the same
levels for synthesized view j′ as respective levels of views l and r,
we can write:

φj,k(qj , pj , qk, pk) ≤ φj,k− (qj , pj , qk, pk) (8)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′ ,l,r+(ql, pl, qr , pr) (9)

ds
j′,l,r(ql, pl, qr, pr) ≤ ds

j′ ,l−,r(ql, pl, qr, pr).

Here, r+ > r or l− < l implies a further-right coded view r+ or
further-left coded view l− is used to synthesize view j′. In words,
(8) and (9) say that using a further-away predictor to differentially
encode or synthesize a view, given the quantization levels of texture
and depth maps of the further-away predictor are the same, results in
no smaller Lagrangian cost or synthesized distortion. These inequal-
ities hold true under an assumption of Lambertian scenes.

4.3. Full Trellis & Viterbi Algorithm

q

p

F F F1 F3 5 7

(2, 4) (2, 4)

(3, 4) 5

1 3

Fig. 2. Optimization Trellis.

We first show that the optimal solution to (5) can be computed
by first constructing a trellis, and then finding the shortest path from
the left end of the trellis to the right end using the famed Viterbi
Algorithm (VA). Nevertheless, the complexity of constructing the
full trellis is large, and hence we will discuss methods to reduce the
complexity using the monotonicity property described earlier.

We can construct a trellis—one corresponding to the earlier
example is shown in Fig. 2—for the selection of coded view in-
dices J , texture and depth quantization levels q and p, as follows.
Each captured view ji ∈ N is represented by a plane of states,
where each state represents a pair of levels (qji , pji)

ji for texture
and depth maps. States in the first plane corresponding to the first
view 1 will be populated with Lagrangian costs φ1(q1, p1)’s for
different level pairs (q1, p1)1’s. Each directed edge from a state
(q1, p1)1 in the first plane to a state in the second plane (qj , pj)j

of neighboring captured view j ∈ N will carry a Lagrangian cost
φj,1(qj , pj , q1, p1) and designated synthesized view distortionsP

1<j′<j ds
j′,1,j(q1, p1, qj , pj). Selecting such edge would mean

captured views 1 and j are both selected as coded views in J .
Each directed edge from a state (q1, p1)1 in the first plane to a state
(qk, pk)k in a further-away plane of captured view k ∈ N will carry
similar Lagrangian cost φk,1(qk, pk, q1, p1) and synthesized view
distortions

P
1<j′<k ds

j′,1,k(q1, p1, qk, pk). Selecting such edge
would mean captured view 1 and k are both selected as coded views
in J with no coded views in-between.

We state without proof that the shortest path from any state in the
left-most plane to any state in the right-most plane, found using VA,
corresponds to the optimal solution to (5). However, the number of
states and edges in the trellis alone are prohibitive: O(|Q||P|N) and
O(|Q|2|P|2N2), respectively. Hence the crux to reduce complexity

is to find the shortest path by visiting only a small subset of states
and edges. We discuss this next.

4.4. Reducing Complexity
Let Φj(qj , pj) be the shortest sub-path from any states of first view
to state (qj , pj)j of captured view j. The first lemma eliminates
sub-optimal states (qj , pj)j’s, given computed Φj(qj , pj)’s, using
monotonicity in quantization level.

Lemma 1 For given pji , if at state plane of captured view ji,
Φji(q

+
ji

, pji) > Φji(q
∗
ji

, pji), ∀q+
ji

> q∗ji
, then sub-paths up to

states (q+
ji

, pji)
ji , ∀q+

ji
> q∗ji

, cannot belong to shortest path.

Proof of Lemma 1 We prove by contradiction. Suppose shortest sub-path
up to state (q+

ji
, pji

)ji , q+
ji

> q∗ji
, is part of an end-to-end shortest path. If

we replace sub-path to (q+
ji

, pji
) with sub-path to (q∗ji

, pji
), a synthesized

view j′ to the right of ji and coded view ji+1 that depend on view ji’s texture
map will have no larger distortion ds

j′,ji
or Lagrangian cost φji+1,ji

, if

q∗ji
is used instead of q+

ji
, by monotonicity in quantization level (6) and (7).

Given Φji
(q+

ji
, pji

) > Φji
(q∗ji

, pji
), we see that replacing sub-path to

(q+
ji

, pji
)ji with sub-path to (q∗ji

, pji
)ji will yield strictly lower Lagrangian

cost. A contradiction. �

Lemma 1 also holds true for depth quantization level pji : given
qji , if Φji (qji , p

+
ji

) > Φji(qji , p
∗
ji

), ∀p+
ji

> p∗ji
, then states

(qji , p
+
ji

)ji ’s, ∀p+
ji

> p∗ji
, are sub-optimal and can be eliminated.

The second lemma eliminates sub-optimal edges from state
(pj , qj)j of captured view j to a state in further-away coded view k
using monotonicity in prediction distance.

Lemma 2 Given start state (qji , pji)
ji of view ji, end state

(qk, pk)k of view k, and intermediate view ji+1, ji < ji+1 < k,
if cost of traversing state (qji , pji)

ji+1 of view ji+1, φji+1,ji +P
ji<j′<ji+1

ds
j′,ji,ji+1

is smaller than a lower-bound cost of skip-

ping view ji+1,
P

ji<j′≤ji+1
ds

j′,ji,k, then edge (qji , pji)
ji →

(qk, pk)k cannot belong to an end-to-end shortest path.

Proof of Lemma 2 We prove by contradiction. Suppose an optimal end-to-
end path includes edge (qji

, pji
)ji → (qk, pk)k . If we replace it with two

edges (qji
, pji

)ji → (qji
, pji

)ji+1 → (qk, pk)k , the cost of traversing
state (qji

, pji
)ji+1 for views j′’s, ji < j′ ≤ ji+1, is smaller than not

traversing it by assumption. Moreover, Lagrangian cost of coded view k and
distortion of a synthesized view to the right that depended on coded view ji
will not increase using view ji+1 instead with same quantization levels due
to monotonicity of prediction distance (8) and (9). Hence a path using the
two replacement edges will yield lower cost. A contradiction. �

The corollary of Lemma 2 is that if the said condition holds,

then edges (qji , pji)
ji → (qk+ , pk+)k+

, ∀qk+ ≥ qk, pk+ ≥ pk,
where k+ means all indices larger than k, also cannot belong to the
shortest path. The reason is: synthesized distortion ds

ji+1,ji,k using
view ji and k as predictors is surely no larger than ds

ji+1,ji,k+ us-

ing same ji and further-away k+ with same or coarser quantization
levels. Hence the said condition must hold also for (qk+ , pk+)k+

as well, and the same argument as proof 2 follows to rule out edge

(qji , pji)
ji → (qk+ , pk+)k+

. As an example, in Fig. 2 if the cost of
traversing state (2, 4)3, φ3,1 + ds

2,1,3, is smaller than ds
3,1,5 + ds

2,1,5,
then edges from (2, 4)1 to all states on the shaded region, including
(3, 4)5 of view 5, can be eliminated.

4.5. Bit Allocation Algorithm
We now describe a bit allocation algorithm, shown in Fig. 3, ex-
ploiting the lemmas derived in previous section to reduce complex-
ity from the full trellis. The basic idea is to try to prune as many
states and edges in the trellis as early as possible. Starting from
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1. Initialize i = 1. Compute φ(q1, p1)’s as Φ(qi, p1)’s for all states
(q1, p1)1’s of F1.

2. For each pi of view i, find q∗i s.t. Φi(q+
i , pi) > Φi(q∗i , pi), ∀q+

i >
q∗i . Eliminate states (q+

i , pi)i’s from consideration.

3. For each qi of view i, find p∗i s.t. Φi(qi, p
+
i ) > Φi(qi, p∗i ), ∀p+

i >
p∗i . Eliminate states (qi, p

+
i )i’s from consideration.

4. For each survived state (qi, pi)i of view i, evaluate forward sub-
paths to states (qj , pj)j ’s of neighboring captured view j, j > i.

5. For each survived state (qi, pi)i of view i, using state (qi, pi)j of
neighboring captured view j, evaluate sub-paths forward:

(a) Initialize k to be neighboring captured view of j, k > j, and
length-Pmax vector Qlim to [Qmax, . . . , Qmax].

(b) for each state (qk, pk)k , qk ≤ Qlim(pj), if φj,i +P
i<j′<j ds

j′ ,i,j >
P

i<j′≤j ds
j′,i,k, then evaluate possi-

ble path with edge (qi, pi)i → (qk, pk)k to state (qk, pk)k .
If not, Qlim(p+

k ) = qk − 1, ∀p+
k ≥ pk .

(c) If k < N and Qlim is non-zero vector, increment k to next
neighboring captured view and repeat step 5(b).

6. If i < N , increment i to next neighboring captured view and repeat
step 2 to 5.

Fig. 3. Bit Allocation Algorithm

the left-side of trellis, for each captured view i, using computed sub-
paths to states (qi, pi)i’s with Lagrangian costs Φi(qi, pi)’s2, we first
eliminate states with larger Lagrangian costs Φi’s and coarser tex-
ture quantization levels q+

i ’s than a minimum state (q∗i , pi), given
pi. Same procedure is applied for the depth quantization levels
pi’s given fixed qi. These sub-optimal states are eliminated due to
lemma 1.

In step 4, for each survived state (qi, pi)i of view i, we evaluate
all forward sub-paths to states (qj , pj)j’s of the next captured view
j. By “evaluate”, we mean comparing the sum of Φi(qi, pi) and
φj,i +

P
i<j′<j ds

j′,i,j to the cost of the best sub-path to (qj , pj)j

to date, Φj(qj , pj), for each state (qj , pj)j . If the former is smaller,
Φj(qj , pj) will be updated accordingly.

In step 5, for each survived state (qi, pi)i, we next evaluate
feasible edges to states (qk, pk)k’s of captured views k’s, k > j.
Feasible edges are ones that satisfy φj,i +

P
i<j′<j ds

j′,i,j >P
i<j′≤j ds

j′,i,k. We stop when there are no more forward feasible
edges. We can identify the shortest end-to-end path by finding the
minimum cost state (qN , pN)N of view N and tracing its back to
view 1.

5. EXPERIMENTATION

To test the effectiveness of our proposed bit allocation scheme,
we used H.264 JM16.2 video codec to encode texture and depth
maps (texture and depth maps were encoded independently from
each other), and used ViSBD 2.1 as view synthesis tool at the de-
coder. For test sequences, we used two Middlebury still image
sequences [9], midd2 and bowling2, of size 1366 × 1110 and
1330 × 1110, respectively. We assumed captured camera views
were N = {0, 2, 4, 6}, and designated synthesized views were
M = {1, 3, 5}, whereas the available quantization levels for both
texture and depth maps were Q = P = {10, 15, . . . , 50}. Rate
controls were disabled in JM16.2, and software modifications were
made so that a particular quantization level can be specified for each
individual frame.

2Lagrangian costs of first view 1 are simply φ1(q1, p1)’s.
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Fig. 4. Performance Comparison between Optimal and Heuristic
Coded View and Quantization Level Selection Schemes

We tested the performance of our proposed scheme opt with
a simple heuristic scheme heur that selects all captured views N
for coding, i.e., J = N , and assigns a constant quantization level
to all texture and depth maps of coded views. In Fig.4, we see the
performance of both schemes, shown as PSNR (quality) versus bi-
trate per captured view (including both texture and depth maps) for
the two test sequences. First, we see that opt has better RD per-
formance than heur—by up to 1.2dB and 2.0dB for midd2 and
bowling2, respectively. This shows that correct selection of quan-
tization levels per frame is important. Second, as bitrate decreased,
opt selected fewer captured views for coding and relied instead on
decoder’s view synthesis (five left-most points of opt in midd2
represented selections of uncoded views). This is also the region
where opt out-performed heur the most, hence selection of cap-
tured views for coding is also important for best RD performance.

When generating opt curves, we tracked the amount of compu-
tation performed using our scheme over a full trellis search approach.
We found the computation savings ranged from 40% to 66%, with
the maximum saving occurring at the right-most RD point.

6. CONCLUSIONS
Towards the goal of efficient depth-image-based rendering (DIBR),
in the paper we presented an algorithm to select captured views for
coding and quantization levels of corresponding texture and depth
maps in a rate-distortion (RD) optimal manner. We show that using
monotonicity in predictor’s quantization level and distance, search
complexity can be drastically reduced without loss of optimality. Ex-
periments show that our selection scheme outperformed a heuristic
scheme by up to 2.0dB in PSNR for the same bitrate.
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