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ABSTRACT 
We propose an optimal bit allocation strategy for a 
joint source/channel video codec over noisy channel 
when the channel state is assumed to be known. Our 
approach is to partition source and channel coding bits 
in such a way that the expected distortion is niini- 
mized. The particular source coding algorithin we use 
is rate scalable and is based on 3D subband coding 
with multi-rate quantization. We show that using this 
strategy, transmission of video over very noisy channels 
still renders acceptable visual quality, and outperforms 
schemes that use equal error protection only. The flex- 
ibility of the algorithm also permits the bit allocation 
to be selected optimally when the channel state is in 
the form of a probability distribution instead of a de- 
terministic state. 

1. INTRODUCTION 

The advent of wireless personal communication services 
in recent years has created a number of challenging re- 
search problems in the areas of communications, signal 
processing and networking. A major challenge in deal- 
ing with the wireless channel has to do with its inherent 
unreliability. This is in contrast with wired networks in 
which the physical loss is very small, e.g. of the order 

It is generally argued upon that in practice, wireless 
video applications involve users moving at  relatively 
slow speeds, rather than at  tens of miles per hour. A 
direct consequence of slow moving users is that the re- 
sulting channels suffer from slow fading and shadowing 
effects. If the condition of this slowly changing chan- 
nel is estimated, it is conceivable to adapt/modify the 
source coding, modulation, channel coding, power con- 
trol, or any other aspects of transmission scheme to the 
channel condition. In particular, it is possible to vary 
the source and channel coding bit rates according to 
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the channel condition, in such a way as to minimize 
the distortion of the received signals. Indeed, several 
researchers have applied this idea to speech [l, 71 and 
image [ G ,  21 transmission over the wireless links. In ad- 
dition to adapting to clhannel conditions, one can pro- 
tect different source bits using unequal error protection 
(UEP) schemes such ats Rate Compatible Punctured 
Convolutional (RCPC) codes 15, 1, 2, 7, 61. With the 
exception of [l] which deals with speech, the remaining 
papers mentioned above explicitly require the source 
coder to adapt to the channel condition. As an ex- 
ample, in [8] a whole new codebook might have to be 
designed and used in ‘order to optimally match each 
new channel condition. 

With the recent introduction of highly scalable video 
compression schemes such as [3], it is possible to gen- 
erate one compressed bit stream, such that different 
subsets of it correspond to the compressed version of 
the same video sequence at, different rates. Thus, if one 
uses such a source coder in the wireless scenario, there 
is no need to change the source coding algorithm, or 
any of its parameters, as the channel conditions change. 
This is particularly attractive in multicast situations in 
heterogeneous networks where the wireless link is only 
a small part of a much larger network, and the source 
rate cannot be easily adapted to the individual receiver 
at  the wireless node. 

In this paper, we develop a technique for optimum 
partitioning of source ,and channel coding bits, for the 
scalable video compression algorithm described in [3]. 
By “optimum”, we mean a partitioning which results in 
minimum expected value of distortion, which we choose 
to be Mean Squared Error (MSE). We will consider 
the case where the channel state information (CSI) is 
known, and the joint source/channel codec will adapt 
to the channel and optimally transmit video for the cur- 
rent channel state. In section 2, we briefly describe our 
source coding algorithm, section 3 formulates our prob- 
lem and outlines our b,asic approach, section 4 contains 
details of our optimization based approach and section 
5 includes results. 

0-7803-3258-X/96/$5.00 0 1996 IEEE 767 



2. SCALABLE SOURCE CODER subject to the constraints: 

The source coder we use in this paper is the scalable 
coder described in [ 3 ] .  This coder has been shown to 
generate rates anywhere from tens of kilo bits to few 
mega bits per second with arbitrarily fine granularity. 
In addition, its compression efficiency has been shown 
to be comparable to  standards such as MPEG-1 [3]. 
The fundamental idea behind i t  is to apply three di- 
mensional subband coding to the video sequence to ob- 
tain a set of spatio temporal subbands. Subsequently, 
each subband coefficient is successively refined via lay- 
ered quantization techniques. Finally, conditional arith- 
metic coding is applied to  code different quantization 
layers. In doing so, the spatial, temporal, and inter- 
subband correlations, as well as correlation between 
quantization layers are taken into consideration to min- 
imize the bit rate. The problem of optimal source al- 
location between different quantization layers of differ- 
ent subbands, in the absence of channel errors has been 
discussed in [3]. In the next section, we outline our ap- 
proach for the case where channel errors are not zero. 

3. PROBLEM FORMULATION 

The main problem we solve is: given a total number of 
bits C ,  and a given binary symmetric channel wit8h bit 
error probability P,, find the best source coding rate 
R, and channel coding rate R, such that C = R, + R,, 
and the expected value of MSE is minimized. This is 
equivalent to finding the optimal source to channel bit 
ratio R,”/R,”, with R: + R,“ = C ,  such that the dis- 
tortion is minimized. To find these minima for various 
CSI’s, our approach is to construct distortion curves 
D( &) and to  locate the minima empirically. 

In constructing the above curves for each specific 
value of a, we must answer two questions: first, 
which quantization layers of which subband should be 
included in R,? Second, to what extent should each one 
be protected? If nk denotes the number of source bits 
in subband k of the source coder described in section 
2 ,  and mi,k denotes the number of channel bits used to  
protect source bit i of subband k ,  then our optimization 
problem is that of minimizing the expected value of 
MSE given by [9]: 

R’ 

E [ M S E ]  = 

E [ M S E k ]  = 

4- 

k=  1 k = l  r = l  

In the above equations, hfsEk is the mean square 
error of subband k ,  I< is the total number of subbands, 
g ( m ; , k )  is the bit error probability if m i , k  channel bits 
are used for protection of bit i of subband k ,  and fh ( i )  is 
the resulting MSE if an error occurs at bit i of subband 
k ,  or equivalently the error sensitivity function. 

To simplify the above problem, we can introduce a 
new variable ink  given by: 

n L  

- 5 - h . k  = mk 
U (4) 
t = l  

to replace the variables m,,k. The MSE of subband k 
can now be represented as a function of 2 variables 12k 
and mk: 

I< 

E [ M S E ]  = E [ M S E k ( n k ,  mk)] ( 5 )  
k = l  

However, there is now an additional problem of op- 
timally distributing mk channel bits among n k  source 
bits, or the mapping from mk to the set { m , , k } .  This is 
a discrete non-linear optimization problem which can 
be solved via the well known branch and bound tech- 
nique. To speed up this optimization, we can impose 
the following pruning rules for the branch and bound 
algorithm: first, all bits within the same quantization 
layer must receive the same level of protection; second, 
higher quantization layers never receive more protec- 
tion than lower quantization layers. 

In t,he next section, we focus on the problem of op- 
timizing 5 subject to the constraints in 3 .  

4. OPTIMIZATION PROBLEM 

Our solution to the optimization is based on a varia- 
tion of Lagrange Multipliers, similar to the one devel- 
oped in [4], with the exception that we are considering 
optimization of two sets of variables instead of one. 
The general theorem states the solution to  the uncon- 
strained optimization problem: 

is also the solution to the constrained optimization 
problem described earlier, provided there exists X and 
p such that the constraints in 3 are met with equality. 
The questions left to solve this unconstrained problem 
are: (a) for given X and p ,  how to find the optimal 
solution to 6; (b) how to find X and p to meet the 
constraints stated in 3 .  We will answer those next. 

2 { - d m * , k )  g ( n z ’ ’ k )  f k ( 2 )  3=1 - L?(mj,k)]} 
E =  1 

fir1 - 9 ( m ~ , k ) ] . f k ( ~ k  + 
3 = 1  

(a) 
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Table 1: Source and Channel Rates for various X and p 

4.1. Solving the uncons t r a ined  problem 

We note ithat to solve 6 for given X and p ,  we can solve 
for each set of variables (nk ,mk)  independently. In 
other words, we can solve K independent minimization 
problems of the form: 

To solve each optimization problem, we exploit the 
fact that the number of quantization layers for each 
subband takes on finitely many discrete values. For 
instance, the source video that is coded to 250 kilo 
bits per second, can have a maximum of 7 quantiza- 
tion layers in each subband. This implies that for each 
subband, nk can take on one of 7 discrete values. Our 
approach, to solving the optimization problem in 7 is ex- 
haustive search. Specifically, we step through all values 
of nk and for each one, find the optimum mk using the 
branch and bound technique discussed in section 3. 

4.2. Find ing  the Lagrange Mult ipl iers  

Note thah for each set of (A, p ) ,  we can find the corre- 
sponding values of ( n k ,  mk) ,  and hence (R,  , R,) using 
the approach outlined in section 4.1. As such, we can 
claim that R, and R, are both functions of both X and 
p .  To facilitate our goal of finding (A, p )  that meet the 
constraints in 3 with equality, we make the siniplifyiiig 
assumption that R, ( R,) is only a function of X ( p ) .  
To show numerically that this is a valid assumption, 
we const,ruct Table 1 for CSI of Pe = 0.05, using the 
approach described in section 4.1. We see that as we 
vary p and keep X constant, €2, stays relatively con- 
stant while R, changes dramatically; the opposite is 
true when we keep p constant and vary A. This shows 
R, is more sensitive to changes in X than in p ,  and 
the opposite is true for R,, and our assumption is ap- 
proximately valid. Another important observation one 
can make from Table 1 is that in general, the rate R, 
( R,) is inversely proportional to X ( p ) .  Putting these 
together , we can propose the following search strategy: 

1. Guess an initial value for X1 and pl. Using these val- 
ues, find corresponding Ra and Rk using procedures 
discussed in 4.1. 

Figure 1: MSE vs. R,/R, for various CSI 

If target RZ is larger then Rt, let X2 = a x ' ,  where 
0 < N < 1. Else X2 = (l/a)X' Similar procedure for 
P 2 .  

Construct a linear function R,(l/X) of variable 1 / X  
using previous two sets of points, ( A t v 2 ,  and 
( A t - ' ,  R:-'). Target R: by estimating At using this 
linear function. Similar procedure for 0 t .  

If RE, is within ts of R: and R: is within E, of RZ, 
stop; Otherwise, goto 3. 

Empirically, we found GY = 0.1, E, = 0.05Rf1 and t, = 
0.05Rr results in 15 to 20 iterations. Since we termi- 
nate the search algorithm when it reaches an approx- 
imate solution, a natural questioii is, "how far off is 
the answer from the ideal solution?". To answer this, 
we can apply the lemmia in [4] and show that for our 
experimental results described in section 5, our algo- 
rithm terminates when it is within 5% M S E  of the 
actual solution. 

5. 'RESULTS 

To test the above algorithm numerically, we combine 
the 3D scalable video codec and Rate-Compatible Punc- 
tured Convolutional Codes [5] to build our proposed 
joint source/channel codec. For source coding, we use 
3 levels of spatial and 2 levels of temporal subband de- 
composition. We use 200 frames of the digitized video 
"raiders of the lost ark" to compute the distortion func- 
tions, and apply our bit allocation strategy to search 
for the optimal source to channel coding ratio R,O/R," 
for various CSI ranging from 0.001 to 0.05. The total 
bit budget is 250kbitsls. We see in Figure 1 that there 
exists a unique distortion minimum for various P,. 

We observe that as the error probability P, increases, 
the total number of quantization layers selected de- 
creases; this is due to the decrease of optimal source to 
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channel ratio as the channel condition worsens. From 
P, = 0 to  P, = 0.001, the layers that are dropped are 
mostly high frequency layers; this is due to the low er- 
ror sensitivities of high frequency components. In poor 
channel condition, P, 2 0.01, the number of layers of 
low frequency subbands is reduced, resulting in a more 
uniform distribution of quantization layers among the 
subbands. This is because higher quantization layers 
are useless unless all the preceding lower layers are re- 
ceived error-free. Therefore a subband with too many 
quantization layers will render the higher layers fre- 
quently futile in poor channel condition. 

Although we assume the knowledge of the chan- 
nel, there are times when the estimate of the channel 
is incorrect. Using Figure 1, we can easily determine 
the performance degradations in such situations. For 
example, to find the approximate performance of the 
joint source/channel codec assuming P, = 0.01 but op- 
erating at  Pe = 0.05, we locate the point R,”/R,O for 
Pe = 0.01 on the curve Do 05(Rs/Rc). 

If CSI is given in the form of a probability distribu- 
tion function, then our proposed approach can be used 
to find the optimum operating point: 

where I‘ is the set of all possible CSI’s. In this sit- 
uation, our joint source/channel coding approach has 
better adaptation potential to the channel than previ- 
ous schemes [2]. 

To show that our optimization strategy is essential 
in poor channel condition, Pe = 0.05, we compare its 
performance with other codecs in Figure 2. Curve a in 
Figure 2, shows the PSNR of the scalable codec under 
ideal noiseless conditions for 100 frames. The average 
PSNR in this case is 31.8 dB. Curve b in Figure 2 shows 
the PSNR of our proposed optimized codec operating 
at  the optimal R,/Rc = 0.6, with unequal error protec- 
tion as described in earlier sections. The average PSNR 
in this case is about 4 dB lower than the ideal noise- 
less case. Curve c in Figure 2 shows the performance 
of a codec operating at the optimal R,/Rc = 0.6, but 
using equal error protection. This codec distributes R, 
source bits using traditional bit allocation theory that 
assumes a noiseless channel, then channel codes these 
source bits with Rc channel bits equally. As seen, the 
PSNR is about the same as case b for most frames, 
except for occasional drops of 25 dB. These drops are 
a direct consequence of the fact that important source 
bits not being adequately protected and can result in 
objectionable degradations to the quality of the video. 
Finally curve d in Figure 2 shows the performance of 
the same equal error protection codec as in c but op- 

Dislorfion vs. Source to Channel Coding Ratio (250kbtds) 
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Figure 2: PSNR vs Frames for different Codecs: a) noiseless 
channel; b) proposed codec with unequal error protection 
RZIR; = 0.6, P, = .05; c) equal error codec RZ/R: = 0.6, 
Pe = .05; d) equal error codec R s / R c  = 2, P, = .05 

erating at  non-optimal R,/Rc = 2. As seen, the av- 
erage PSNR of this codec is about 8 dB. The main 
conclusion to be drawn from Figure 2 is that optimal 
source/channel bit distribution does make a significant 
difference in both visual quality and PSNR. 
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