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Abstract— In addition to network congestion, a link/node
failure is another major cause of performance degradation for
video streaming over the Internet. Such failures may be followed
by a long routing instability period, during which packets can
be black-holed due to invalid paths or caught in routing loops.
This paper proposes a routing proxy approach to improve media
streaming adaptation against both link/node failures and network
congestion. In particular, we first argue that it is important to
distinguish between network performance degradation due to
network congestion versus link/node failures, and then model
link/node failures using empirical models derived from mea-
surements. We then show how by means of proper congestion
control, such timely notifications from the network layer can be
exploited at the streaming server to improve the performance of
a rate-adaptive Automatic Retransmission reQuest (ARQ) video
streaming scheme. Simulation results show that a rate-adaptive
streaming scheme using feedbacks from our proposed proxy
can recover much faster from link/node failures than a scheme
without such feedbacks.

I. I NTRODUCTION

There are two major causes of network performance degra-
dation when streaming video over the Internet: network con-
gestion and routing instability due to link/node failures. Past
literature on video streaming over Internet has been focusing
on coping with bandwidth variation and data losses due to
network congestion [1]–[4]. However, recent studies have
found that the level of congestion in core IP backbone is
always negligible and has relatively small impact on latency
sensitive applications such as Voice-over-IP (VoIP) [5]. On the
other hand, link/node failures have been observed to be fairly
common in the day to day operation of a network [6] due
to fiber cuts, faulty equipments, or router misconfigurations.
Re-routing after a link/node failure can take tens of seconds
within a single domain [6], while inter-domain route changes
through Border Gateway Protocol (BGP) can take up to
minutes to converge [7]. During this transient period of route
convergence, packets can be dropped because of invalid paths
or caught in routing loops leading to additional delays. Such
discontinuity in routing results in service disruptions at the
application layer and can adversely affect the quality of real-
time video streaming.

Our hypothesis is that if we can distinguish losses and
delays due to link/node failure versus network congestion at
the network layer, we can perform proper congestion control
to provide the best video quality at the receiver. For example,
a typical transmission strategy reduces video transmission rate
after deducing network congestion from increased packet loss.

However, if losses are due to failures, then a better solution is
to maintain sending rate but increase video packet protection
using automatic retransmission request (ARQ), etc. Hence, it is
important to re-evaluate the various optimized video streaming
schemes by considering realistic Internet failure scenarios.

Our main contributions in this paper are twofold. First,
we identify the importance of differentiating two causes
of network performance degradation: link/node failures and
network congestion. Two feasible mechanisms are discussed
as to how the network infrastructure can obtain this dif-
ferentiation and inform the application. We then construct
realistic empirical models of failure patterns based on collected
network traces. Second, we show how a version of the rate-
distortion optimized streaming algorithm proposed in [4]
can be modified to benefit from such network feedbacks. We
performed simulation studies using ns-2.26 to evaluate the
performance of the modified scheme under realistic failure
scenarios. We compare its performance to a scheme that does
not differentiate between congestion and failures.

The paper is organized as follows. Section II provides
a general overview of the considered network infrastructure
and discusses the two mechanisms for inferring network
failures/congestion: (a) router-assisted, and (b) proxy-assisted.
We then describe the adopted empirical models for link/node
failures and routing instability. In Section III, beginning with a
discussion on source model and objective measure, we present
the rate-distortion optimized ARQ streaming scheme which we
modify to rate-adapt based on link/node failure notifications
from network layer. Our simulation results using ns-2.26 are
discussed in Section IV. We conclude the paper and discuss
future research directions in Section V.

II. SYSTEM OVERVIEW

We focus our discussion on non-interactive, server-client
streaming services.

A. Inferring Network Failures and Congestion

To determine the cause of the performance degradation, we
propose two mechanisms to infer theloss-mode—whether it
is network congestion or link/node failure induced.
Router-assisted approach:The first mechanism relies on the
deployment of active queue management at network routers
to provide congestion indications through marking of packets
instead of dropping them. This uses an Explicit Congestion
Notification (ECN) [8] field in the IP header with two bits



making four ECN code-points, ’00’ to ’11’1. The video server
first sets the ECN-Capable Transport (ECT) code-points ’10’
or ’01’ to indicate that the end-points of the transport protocol
are ECN-capable. When the router’s buffer is approaching
full occupancy and the router is prepared to drop a packet
to inform end nodes of incipient congestion, the router first
checks to see if the ECT code-point is set in that packet’s IP
header. If so, then instead of dropping the packet, the router
sets the Congestion Experienced (CE) code-point in the IP
header(’11’). Slight modification is needed at the video client
side to interpret ECN marking. We tag a one-bitcongestion
notificationfield in the RTCP report for the receiver to notify
the sender when a packet with CE code-point is received.
When a sender receives an RTCP report withcongestion
notification marked, it will attribute the cause of subsequent
delays/losses to network congestion. On the other hand, if the
congestion notificationis missing, itinfers that the losses are
due to failures. The main disadvantage of the router-assisted
approach is that it requires the cooperation of network routers.
In addition, the loss of ECN-marked packets may cause the
sender to inaccurately attribute network congestion induced
losses to link/node failures.
Proxy-based approach:We propose to deploy routing proxies
in the network to detect link or node failures directly. The
proxy contains a listener software, such as Python Routing
Toolkit (PyRT) [9] or Zebra [10], that allows it to receive
routing messages from an adjacent network router. Since most
network domains run link-state routing protocols, such as IS-
IS [11] or OSPF [12], any changes in the routing topology
(link/node addition or deletion) are flooded throughout the
network, e.g., via Link-State Announcements (LSAs) in OSPF.
The routing proxy associated with a video server keeps track
of the end-to-end paths used for video streaming to its various
clients. Such path information can be obtained by running
traceroute from the video server to its client. When the
proxy receives an LSA announcing a link or node failure that
affects the path of the video streaming, it notifies the video
server of the failure. This marks the start time of a routing
instability period, which can take up to tens of seconds [6]
before the network convergences to the backup routing paths.

We have illustrated the availability of timely feedback
mechanisms (Figure 1) to allow the video server toinfer
network loss-modes, but a detailed comparison of the two
methods is out of scope of our discussion. The focus of our
work is to model link/node failures and to evaluate video
streaming strategies under realistic failure scenarios.

B. Empirical Models for Failures and Routing Loops

Previous empirical studies have shown that congestion
losses can be modelled with low order Markov chains, and
the number of lost packets in a loss period is approximately
geometric [13]. However, the use of similar model for loss
patterns during link/node failure and routing instability has not

1The four ECN code-points: Non-ECN-Capable Transport (’00’), ECN-
Capable Transport (’01’ and ’10’), and Congestion Experienced (’11’).
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Fig. 1. Available feedback mechanisms to a video server.

been validated. When a link or node fails, it is often followed
by a transient routing instability (or route re-convergence)
period during which all network routers are notified of the
failure, recompute their routing tables and reconfigure their
forwarding paths. There are two distinct stages during the
convergence period:

• Black-out stage: All packets traversing the failed link
are dropped initially due to invalid forwarding path.

• Routing-loop stage:Subsequently, some of these packets
may be caught in routing loops because of inconsistent
forwarding tables at different routers. Routing loops from
which packets do not escape contribute to an increase
packet loss rate but have no effect on the delay per-
formance. However, delay of packets that do escape a
routing loop will be increased.

Once the routing protocol converges, the traffic will be
forwarded on the backup path, which could be longer than the
original path and result in increased end-to-end delay. After
the link or node recovers, traffic forwarding will resume on
the original path.

The distribution of the frequency and duration of link
failures observed in a Tier-1 ISP backbone are reported in
our previous work [6]. It was observed that failures are fairly
well spread out across weeks, days, and even over the course
of a single day. Clearly, they need to be taken into account as
part of every day operations. The cumulative distribution of
the duration of failures observed over the same period show
that most failures aretransient(i.e., short-lived):50% last less
than a minute and85% last less than ten minutes. However,
as discussed earlier, the actual failure duration is much less
important since the packets will be forwarded correctly on
the recomputed (alternate) paths once the routing protocol
converges. Hence, we only concentrate on modeling the loss
behavior during there-convergence periodfollowing a failure,
but not the failure duration itself. The experiments conducted
in the same study indicate that this instability period can last
between 2 to 6.6 seconds. This is in agreement with the parallel
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Fig. 2. Empirical distributions of routing loop durations that we consider in
our simulation studies.
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Fig. 3. Distributions of TTL decrements/loop for packets caught in routing
loops.

work that the duration of routing loops is mostly under 10
seconds [14].

For simplicity, we collapse the two stages and model the
impact of network failures on losses and delays as follows:

• Immediately after a failure, packet loss burst duration is
uniformly distributed between 1 to 2 seconds.

• This is followed by a transient routing loop with finite
duration. The duration of routing loops is chosen based on
empirical distributions reported in [14] (two examples are
shown in Figure 2). We observe that the empirical CDF
is well approximated by a Weibull distribution:F (x) =
1 − exp(−(x/α)β), x ≥ 0. The Weibull parameters can
be derived for each set of the empirical data based on
maximum-likelihood estimation.

• If the routing loop duration is non-zero, the packets
caught in the loop will traverse a random number of
extra hops and hence experience extra delay before it is
successfully delivered to its destination. Since the Time-
To-Live (TTL) field of a packet is decrement by each
router that it goes through, the additional TTL decrements
(or extra hops) experienced by a packet caught in a
routing loop can be used to estimate the increase in end-
to-end delay. We adopt the empirical distribution of the
Time-to-Live (TTL) decrements observed in Hengartner’s

studies [14](Figure 3) and estimate the additional delay
per hop as 25 ms. Hence, packets that manage to escape
routing loops will incur between 50-500 ms extra delay.

III. R ATE-DISTORTION OPTIMIZATION OF V IDEO

STREAMING

Given the models for link/node failures, we now discuss
how a rate-distortion optimized video streaming scheme can be
modified to rate-adapt during link/node failure. We begin with
a discussion on source model and objective measure, follow
by a formalization of the streaming optimization problem.

A. Video Source Model and Quality Measure

Objective Quality Measure: We will use the most commonly
used metric in the video processing literature [1]–[4], peak
signal to noise ratio(PSNR), to evaluate the visual quality at
the receiver. We assume there is a predictively coded (IPPP...)
video sequence with a fixed I-frame frequency. We capture
the receiver behavior as follow in face of packet loss. When
the receiver is able to decode frame i, we calculate the PSNR
between the encoded and original frame i. When the receiver
is unable to decode framei, the most recent correctly decoded
frame j is used for display for framei, and we can calculate
the PSNR using original framei and encoded framej instead.
If no such frame is available, the PSNR for this frame is simply
0.

We use the directed acyclic graph (DAG) based source
model introduced in [4] to model the pre-coded video se-
quence. Each framei is abstractly represented by one data
unit (DUi). For simplicity of discussion, we assume for now
that each DU is transmitted in one RTP packet. EachDUi is
characterized by three numbers: delivery deadlineTi, size in
byteBi and reduction in distortiondi, wheredi is defined by:
di = PSNR(i, i)+

∑L
j=i+1 PSNR(i, j)−∑L

j=i PSNR(i−
1, j) for i ≥ 2; di = PSNR(i, i) +

∑L
j=2 PSNR(i, j), for

i = 1. PSNR(j, i) is the PSNR between original framei
and encoded framej. L is the last P-frame in the GOP.DUi

is correctly decoded if eachDUj , k ≤ j ≤ i, is correctly
delivered by the corresponding delivery deadlineTj to the
client, whereDUk is the most recent I-frame. If correctly
decoded,DUi reduces distortion at the client bydi.

B. Problem Formulation

Using the network and source models derived previously, we
now formalize the optimization problem for video streaming.
Our discussion is loosely based on a simplified version of the
rate-distortion optimized streaming framework (RaDiO) in [4].

At any given optimization instanceTstart, an optimization
window equal toM -frame time is selected. The window is
defined to be the set of data units whose delivery deadline
falls within start timestart(t) and end timeend(t). start(t)
brings data units into the optimization window; by keeping
the window small, it keeps the optimization computationally
feasible and the instantaneous client buffer small.end(t)
expires data units when they cannot be reasonably be expected
to be delivered to the client on time. The slope of both
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functions — the rate at which the window advance in time
— is the playback speed at the client. The optimization is
performed again inP seconds (to be discussed). See Figure 4
for a plot of data unit deadlineT against sender running time
t.

C. Data Unit Selection Algorithm

Data units within the optimization window are selected
for transmission as follows. For eachDUl in the window,
we find the associatedλl = λ′lSl/Bl. λl can be loosely
interpreted as thebenefitof deliveringDUl at this optimization
instance. It is a function of bothλ′l, the increase in successful
delivery likelihood ofDUl if one transmission is sent at this
optimization instant, andSl, the sensitivity of DUl — the
overall expected decrease in distortion ifDUl is successfully
delivered. The topH data-units with the largest benefit value
λ are selected at each round of the optimization.

In mathematically terms, we letπl to be the number of
transmissions ofDUl to date, andε(πl) be the loss probability
of DUl given πl. If we let εR be the estimated end-to-end
packet loss rate, we can write

ε(πl) =
{

0 if client ACK received
(εR)πl o.w.

(1)

We can now writeλ′l simply as follows:

λ′l = ε(πl)− ε(πl + 1) (2)

Using the above definitions and the source model, we can
write the sensitivitySl of DUl as:

Sl =
∑

l¹l′
∆Dl′

∏

l′′¹l′
l′′ 6=l

(1− ε(πl′′)) (3)

where{l ¹ l′} are the set of P-frames that depends on the
correct decoding ofDUl, and {l′′ ¹ l′|l′′ 6= l} are the set
of frames thatDUl′ depends on for correct decoding, but not
equal toDUl.

D. Failure-aware Rate-adaptive Congestion Control

To be “TCP-friendly” and not claim more bandwidth than
what a normal TCP connection would use under the same
network condition, the transmitted data units will be spaced
by Ts using a well-known TCP-friendly congestion control
equation [15]:

Ts = µR

√
2εR/3 + 3(µR + 4σR)εR(1 + 32ε2R)

√
3εR/8 (4)

whereµR andσ2
R are the estimated mean and variance of RTT,

respectively. After sendingH data units, the optimization will
be run again afterP = HTs seconds with a new (and possibly
overlapping) optimization window of data units.

As we learn from Section II-B, there are two stages fol-
lowing a link/node failure:black-out stagewhere a burst of
consecutive packets are dropped, androuting-loop stagewhere
packets are delayed due to routing loops. As such, black-out
stage increases the estimate of the packet loss rateεR, and
routing-loop stage increases the estimate of mean and variance
of RTT, µR and σ2

R, respectively. This translates to a larger
packet spacing using (4), resulting in a lower sending rate. As
these are transient negative effects not attributed to network
congestion, it would be unwise to include these contributions
in the calculation ofεR, µR and σ2

R. So a better strategy
for the streaming server is to maintain the current observable
statistics, and therefore the same sending rate, upon receipt of
failure notification from the network layer, for a time duration
equals to the expected combined length of the black-out stage
and the routing-loop stage. After such time, normal operation
will resume. We will show in Section IV that this rate-adaptive
strategy enables the video stream to recover much faster than
a scheme without such strategy.

IV. SIMULATION STUDIES

We use network simulator ns-2.26 to generate realistic
failure scenarios, as described in Section II-B, and characterize
the received video quality when different transmission strate-
gies are used. We track successfully delivered video frame
sequences in the presence of network failure and congestion,
and then compare it with the original video streams to compute
the PSNR.

A. Simulation framework

We consider the setup shown in Figure 1. All the links
have equal capacity of105bps. The client will send an ACK
packet back to the sender when the packet is received correctly.
We also introduce a routing proxy node that periodically
sends the video server control packets (notifications) when
there is a network failure. To simulate a background level of
network congestion, we increase the rate of background traffic
to overload the link between the video server and the client.

Based on feedback control packets from the proxy, the
video server will decide whether the network is in congestion
or failure mode. We consider two transmission strategies:
(a) failure-unaware and (b) failure-aware rate-adaptive ARQ
scheme described in Section III. In case (a), the source will
rate-adapt by interpreting all packet loss as network conges-
tion. In case (b), the source will rate-adapt by distinguishing
between network congestion and route failure.

B. Simulation Results

In this section, we present and discuss our simulation
results. For source, two 300-frame standard video sequences,
foreman and container , are encoded using H.263 ver-
sion2 at QCIF, 30 frames per second and 120kps. The I-
frame frequency in each sequence is 1 in 25 frames. For each
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Fig. 5. 1 run of Streaming Simulation w/o and w/ Proxy (’foreman ’).

sequence container foreman
PSNR w/o Proxy w/ Failure 14.12 13.47
PSNR w/ Proxy w/ Failure 22.18 18.54

PSNR w/o Failure 34.31 30.70

Fig. 6. Average Streaming Performance w/o and w/ Proxy

sequence, PSNR between original framei and reconstructed
frame j is calculated for every combinationi and j for
i ≤ j and input into matrixdArray[i, j]. The matrix is
then loaded into the simulated client in the simulator to esti-
mate client’s performance based on successfully received data
units. We assume initial network parameters(εR, µR, σ2

R) =
(3%, 200ms, 0ms) before link/node failure which results in
the initial packet spacing ofTs = 30.2248ms using (4).
The Weibull parameters(α, β) used in the calculation of the
routing-loop stage duration are(0.5, 0.58). Figure 5 shows
the typical performance of the discussed optimized streaming
scheme not using the proposed route proxy and the one using
the proxy for rate adaptation. In this specific simulation run,
we see that starting at7.0s, both schemes began to experience
the effects of the black-out stage and PSNR in both cases was
soon driven to zero. Because packet loss rate is heightened
during blackout stage and RTT is lengthened during routing-
loop stage, scheme (a), not knowing the effects were due to
failure instead of congestion, had packet spacing unnecessarily
enlarged using equation (4), and the low streaming perfor-
mance persisted at the client for a long period. Scheme (b),
on the other hand, knew the losses were due to failure and not
congestion, and hence it did not perform unnecessary con-
gestion control and recovered from the failure much quicker.
Figure 6 shows the mean PSNR of the two sequences for the
two competing schemes in the failure scenario and the mean
PSNR in the failure-free scenario. In the simulation, we used
the same Weibull parameters and same network parameters as
in previous part, averaged from the beginning of the blackout
stage to 5 seconds after the end of the blackout stage. The
blackout stage lasts for1.00s and the looping stage lasts

104ms. We again see that because scheme (b) recognized
the loss were due to failure instead of congestion, its quick
recovery led to a much higher streaming performance than
scheme (a).

V. CONCLUSIONS ANDFUTURE WORK

We propose two approaches to differentiate network loss
modes, i.e., whether it is failure or congestion induced, by
inferring (router-assisted) or directly detecting (proxy-based)
routing failures. We then present a rate-adaptive ARQ trans-
mission scheme at the video server that employs routing-layer
feedbacks to provide resiliency against both network failures
and congestion. We formulate the problem using a rate-
distortion optimization framework and considering realistic
delay and loss patterns observed in a Tier-1 IP backbone.
Numerical investigations through ns-2.26 simulations show
that our optimal scheme can recover much faster from routing
failures than unprotected scheme by avoiding the unnecessary
rate-reduction introduced by blind congestion control. We
intend to generalize our analytical model in the near future
to include the effects of different source coding schemes, e.g.,
distributed scalable coding and multiple description coding.
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