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ABSTRACT
In interactive multiview video streaming (IMVS), users gaariodi-
cally select one out of many captured views available foeolzion
as video is played back in time. In single-view video streamio
reduce server's upload burden, cooperative strategiesewpeers

a peer can identify cooperative partners of the same viesy, will
soon be watching different views after independent vieviteswng.
In the literature, [1] designed frame structures usingritisted
source coding (DSC) [4] for IMVS to achieve bandwidth-e#iui
view switching. [5] used DSC for both view-switching and peo

share received packets of the same video have proven to éxe eff erative packet loss recovery in a WWAN multiview video medist

tive, and incentive mechanisms are designed to stimulae as
operation. Exploiting user cooperation in high dimensidv/S,
however, is more challenging. First, small number of pees lio-
cal area are likely watching different views among large banof
views available, making it difficult for a peer to find partaaf the

system. In this work, we study the use of a multiview videoingd
structure based on DSC to facilitateoperative view-switching to
reduce upload bandwidth from the server: even if users addfer-
ent views, they can nonetheless help each other achievbitoate
view-switching. To stimulate user cooperation, we modeksisin-

exact same view to cooperate. Second, even if a peer carifydent teraction as an indirect reciprocity game [6], where eadr issas-

cooperative partners of the same view, they will soon be hiagc
different views after independent view-switching. In theper, we
study the use of a multiview video frame structure for IMV&ith
facilitates cooperative view switching, where even if [geare ob-
serving different views, they can nonetheless help eacér.otfio
stimulate user cooperation, we model peers’ interactioanamdi-
rect reciprocity game. Using Markov decision process (MB®a
formalism, each peer makes distributed decisions to maeirhis
aggregate utilities within his lifetime. Simulation resushow that
when the cost to help others is much smaller than the utihiped
from others’ help, users fully cooperate. As the cost-tmgatio
increases, users tend to behave differently at differeawsi given
peers can predict their future view navigation paths priistibally,
a peer likely to enter a view-switching path not requirinigess’ help
will have less incentive to cooperate. When the cost-to-gaiio is
very large, no users will cooperate.

Index Terms— interactive multiview video, cooperative stream-

ing, incentive mechanisms

1. INTRODUCTION

Multiview video refers to the simultaneous capturing of tipé
videos of the same scene of interest by a large array of glepakced
cameras from different viewpoints. In new interactive rvigtv
view streaming (IMVS) services [1], a client can periodigae-
lect one out of many captured views available for obsermad®the

video is played back in time. In response, server sends amely p

encoded data for the single requested view (rather thahealtap-
tured views) to lower streaming rate.

signed a reputation level. Users that help others will acdata
high reputations, thus more likely to receive help from ash&sing
Markov decision process (MDP) as a formalism, each peer snake
distributed decisions to maximize his aggregate utilitighin his
lifetime. Simulation results show when the cost of helpitigeos is
much smaller than the utility gained from others’ help, askeily
cooperate, which also helps reduce server’s upload barttdwis
the cost-to-gain ratio increases, users tend to behaverefiffly at
different views: given peers can predict their future vieavigation
paths probabilistically, a peer likely to enter a view-shihg path
not requiring others’ help will also have less incentive tojgerate.
When the cost-to-gain ratio is very large, no users will @age.

The outline of the paper is as follows. We overview the for-
mulation of the IMVS system in Section 2. We model the optimal
decision making using MDP in Section 3. We present simufatio
results and conclusions in Section 4 and 5, respectively.

2. PROBLEM FORMULATION

In this section, we first overview an IMVS system that supppsri-
odic view-switching by users. We then describe an intevactiodel
that captures users’ behavior in view-switching, and a ivialy
video coding structure that facilitates cooperative viemitching
among peers. Finally, we propose an indirect reciprocitygao
stimulate user cooperation.

2.1. Overview of IMVS system

A scene of interest is captured by a large one-dimensiomay af
evenly spaced/ cameras. A server compresses video of each view
into coding segments dt frames each, and provides IMVS service
to a group ofN users, wheréV <« M. Once a user selects a view,

In single-view video streaming, to ease server's burdenpto U he remains in this view fokK consecutive frames. At the end of this
load the same video to many users, user cooperation [2] es begegment, he can switch to another view as the video is plageklib

exploited where peers share received packets of the saree,\s8d
that a single server can serve a large number of clients.ntivee
mechanisms [3] are designed to stimulate the appropriateianof
cooperation among selfish peers. However, exploiting useper-
ation in high dimensional IMVS is more challenging. Firgnpal

number of peers in a local area are likely watching differeatvs

among large number of views available, making it difficultépeer
to find partners of the exact same view to cooperate. Secwed,ie

time uninterrupted. There is hence a maximum of one segni@mt v
switching delay. When a user switches views, he may requedst h
from other peers (cooperative view-switching), so thaimeunt of
downloaded video data from server can be reduced.

2.2. View Switching Model

Views are divided into two categoriesnchor views and normal
views. When seeking interested views, a user first browses views
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Fig. 1. Example of our multiview video coding structure fdf = 3 views,
segment sizé = 3. Circles, squares and diamonds denote |-, P- and DS
frames, respectively. Each frantg ,, is labeled by its frame index and
VIEW v.
coarsely through anchor views. Once he reaches an intdraste
chor view, he can switch to neighboring normal views to refiiesv
selection. In this work, we assume that users switch intedezn-
chor views frequently. After finding an interested anchawiand
remaining for one segment, they will likely seek anotheeiiested
anchor view in the next segment. Thus, anchor views are mere f
quently selected (more popular) than normal views.

Suppose that there ares anchor views, which evenly divide
normal views inta(ns + 1) sections ofn, = (M — ns)/(ns + 1)

This structure can support cooperative view switching as fo
lows. Suppose that a peer switches from vieto v’. If v’ is adja-
cent tov, he can ask the server to transmit the DSC fraing ., ; .
and the following P-frames to reconstruct the video in viéwHow-
ever, ifv’ is not adjacent te, he has to either receive help from other
peers or request from the server the I-frame in viéwUsing Fig. 1
as an example, suppose that the gemwitches from view 1 to view
3 after the first segment. If another peer is watching view @ an
would like to share the reconstructed fraifigs, theni only needs
to ask the server for the DSC frarfié, 3 and the following P-frames
to reconstruct the video in view 3. If he cannot get help, hetoba
request the I-framé, 3 from the server.

©.4. Game Formulation: Indirect Reciprocity Game

In this work, we assume that the upload bandwidth of the sasve
limited and expensive. Thus, it charges virtual currenoyfipeers
that pull video data from it to compensate its cost, alénotes the
price for the transmission of each single bit from the semerdis-
cussed in section 2.3, when a peer switches to a hon-adjaiesnt
if he can get help from others, he will download the recorcsad
frame of the last segment from the helper for free, and wiliyon
download a DSC frame from the server instead of an I-fram&sTh
he can gain an utility = b(L; — Lw ) for paying less to the server.
However, uploading a video frame will incur a caesto the helper
due to the consumed bandwidth and CPU time, etc. Since users

views each. At each view, a user can only switch to his left and;q selfish, they want to receive others’ help, but do not wanb-

right closest anchor viewsnd nearby normal views. Specifically,
at an anchor view, a user will switch to the left and right ekis
anchor views with probability?s, and the left and right normal view
sections (and current anchor view) with probability Ps. Similarly,

at a normal view, a user will switch to the left and right clsisenchor
views with probabilityP,., and the normal views in the same section
with probability1 — P,.

We model transition from view to view using a discrete time
Markov chain, and construct & x M transition matrixl’, where
t«,y Is the view transition probability of a user selecting vigwafter
viewing z. From earlier discussion on view switching model; iis
an anchor view,

P5/|X5| ,if y€X5
tey =4 (1= Ps)/|Xo| ,if ye Xo (8]
0 otherwise

where, X5 and X, denote viewz’s closest anchor view set, and
nearby normal view set, respectively.aliis a normal viewy, , can
be defined similarly.

2.3. Multiview Video Coding Structure and IMVS Service

Fig. 1 shows an example of our proposed frame structure. Heash
is encoded into segments &f frames. We encode the first seg-
ment using an intra-coded I-franfg , with K — 1 trailing P-frames.
For the next segment, for view-switching we encode the fieshe
Fx 41,0 into two versions. The first version is an intra-coded I-feam

Ik 41,4, Which can be decoded independently. The second versiofﬁ

isa DSC frame Wik 41,» [4]. To encodeW i 11,,, We use at most
three decoded P-framé%c 0z (1,0—-1) - - - s Pi,min(0,0+1) &S pre-
dictors, and use the I-framB¢1,, as the target. As long as one of
the predictor frames is available at the decoder bufiéx, 1 ., can
be correctly decoded, and the decoded frame is bit-by-hiivag
lent to the frame decoded frofx+1,,. Wk+1,» is followed by

operate and upload video packets. In this work, to stimuliatr
cooperation, we design a reputation-based mechanismevpears
that keep helping others will accumulate good/high rejparat and
peers that have good reputations also tend to receive bteds

In this mechanism, peerhelping peer; is not becausg directly
helped: previously, butj helped someone else. Thus, it is an indi-
rect reciprocity game.

2.4.1. Peer Reputation and Interaction

In this system, each peéris assigned a discrete reputation value
r; € R ={1,..., L}. Alarger value of-; means a better reputation.
Reputation values change as peers interact with each dhemn a
peer needs help for cooperative view-switching, he firstaegew
information of other peers to find a suitable helper. To immat
this, we can either let peers exchange their view informmatind
seek helpin a distributed way, or have a central contrdfiat tracks
peers’ up-to-date view information and assigns helpere&ypthat
need help. For simplicity, we assume here that there is aatouthy
local agent closed to th& peers, which tracks peers’ view switch-
ing, helps each peer find helpers, observes their interegtiand
updates their reputations. Our work can also be extendedlis-a
tributed system. Thus, in this centralized system,when peeeds
help, the local agent randomly sele¢fsom peers that can help, and
sends a help request. Upon receiving a help reqi&stes an action
a; € A={1,..., L+ 1}. The actiona; is not a direct answer of
whether to help or not, butr@putation threshold. : sends the action
back to the local agent, who then compayfsseputationr; with

e threshold:;. If r; > a;, the local agent informéto upload the
needed video data th Otherwise, the local agent informisto pull
the I-frame from the streaming server. Thusgif= L + 1, ¢ will
not cooperate regardless {3 reputation.

2.4.2. Social Norm and Reputation Updating
Based on the previous observed interaction between jpard j,

K — 1 trailing P-frames, and each of the following segments haghe local agent updatesreputation, since he is the decision maker,

the same structure. Ldt;, Ly, and Lp denote the frame size of
an I-frame, DSC frame, and P-frame, respectively, and getya
Lr>Lw > Lp.

while j' reputation remains the same. The reputation is updated
following a social norm @ [6], which effects changes in a peer's
reputation after an interaction:
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Fig. 2. An example of MDP.

ri>ri r; <7

a; < r;, uploading L T

Q=4 > 7, notuploadi ; )
P > Ty, ploading 1 T

where the rows of) denote the results of this interaction of whether 5 e updates to!

1 uploads the requested framejtoThe columns of) denotej’s rep-
utation being larger or smaller thals reputation. When; > r;,
¢ will gain an immediate reputatioh by helpingj, or be punished
with an immediate reputatioh by not helping. When; < r;, no

matter whethei helpsj, i's reputation remains the same. With this Similarly, we can

social norm, peers are encouraged to help those whose tiepsta
are larger than or equal to their own, while they are disapedato
cooperate with others that have smaller reputations, siooperat-
ing does not improve their own reputations.

Let(aq, ;) ande(r;, ;) be functions that return the row and
column indices ofQ, respectively. Ifr; > a;, ¥(ai,r;) = 1;
otherwisey(as,r5) = 2. If r; > 7, ¢(ri,r;) = 1; otherwise
¢(rs,rj) = 2. Then,i’ reputation is updated by,

Ti(t) round P\”I‘i(t — 1) —+ (1 — )‘)Qw(am?‘j)@(”ﬂ‘j)} ,(3)
where round]-] is the rounding function, and is a parameter
weighting the past versus immediate reputation values.

Given this reputation system, helpers need reputationrirde
tion of users that need help to decide appropriate actionghis
work, we consider that they also take the future interastinto con-
sideration. Since they do not know who they will interacthatt a
later time, they need peers’ reputation distribution tastskeir de-
cision making. Given that the local agent has the record| gfesrs’
reputations at different time instances, it can calculageprobabil-
ity mass functionP,. (1) of each reputation valué,c R, appearing
in the peer population since the beginning of the game,

oy Sy I[r(t) = 1]
t=1
40 T : @)
whereT is the current segment index, anf] is the indicator func-
tion. LetD = {P-(1), P-(2),..., P-(L)}. The local agent broad-
castsD to all peers periodically to assist their decision making.

3. OPTIMAL ACTION SELECTION WITH MARKOV
DECISION PROCESS

In this work, we formalize peers’ distributed decision nmakipro-
cess using MDP, which is used in previous work [7].
considers actions taking future utility into consideratiand finds
the optimal actions to maximize his utility within his lifete.

3.1. State Space, Action Space and State Transition Probdity

For a peeri, MDP is a recursion with finite levels into the future,
as shown in Fig. 2, where each levein the future is marked by
its statess}’s and actions:%_’s. In this work, a state(r;, v;) rep-
resents reputation; and viewwv; at the moment peeri receives
a help request. Hence the state space is denotéd-asR x V,

whereY = {1,..., M} and is the view space. At staté, he re-

sponses to the help request by choosmg acrtiiorfrom the action

spaceA. From state-action paifs, a, ), he transits to a new state
st (], v)) in the next level with pI’ObabI|It)P st st (a%,), when

he receives another help request after pIaybaclLsofwdeo seg-
ments. Here[s can be learned from his past history. To derive the
state transition probabilities, we first derive its repiatatand view
transition probabilities, respectively.

For actiona’, taken at timef, peer:’s reputation is updated us-
ing (3). Suppose that the user that needs this helwvih reputation
r;. In (3), QI,,W )b (ryry) €N be one of three values; r; or L.

Thus, the updated reputatlon ©tan also only be one of three pos-
sible values. Let;(1), ri(r;) andr;(L) be the updated reputation
value WherQw(ag_,rj),¢(”,rj) = 1, r; or L, respectively. Since
does not know the exact value of, he assumes thaj follows the
reputation distributiorD. Thus, the probability that the reputation
ri(1)is

Priﬂrg(l)( 21) = (Qw(aéi,rj),db(ri,rj) = 1) =

= > D).

i 7“1<l<at

derlvePT —r! (7" ( ) Zl I<r; ()1 and
Pr ~>7"(L)( ) =1- Pr,b*)r;(l)( ti) - Pmﬁr;(ri (ail) Once
updated to;, i's reputation stays the samerat till the next instant
he receives another help request at stété (v}, v}).

The view transition probability follows the view transitiona-
trix 7' and is independent of the reputation transition probahilit
From states!, there areL, segments and view transitions befare
receives another help request at stite . LetTUL:U{ denotes the en-

P(r; <r; < aii)
®)

try of row v; and colummw, of TX=. Thus, the probability of switch-
ing from v; to vj is P, S TLSU Therefore, given the above

discussion on reputation and view transition probabditidne state
transition probability |SPSHS;+1(a =P (aﬁi)Pvﬁv,

3.2. Utility Function

In this subsection, we derive pe&s utility based on his state and ac-
tion. We first discuss his utility cost for helping othersagud video
packets. Then, we study the utility gain he receives froneisth
help. Finally, we derive the utility of his life time sincedtcur-
rent states’. As discussed previously, helping one neighbor upload
video data will incur a cost, and the user that receives this help
gains an utilityg. Whens is in states! and take the ac:tlonS , he
assumes the reputation of the user that requests this thwid)

and therefore, he will upload video packet with probability

> D)
Il 1>at,
Thus, the cost incurred by the actiof, is cP. (a,).
After this interaction, his reputation changesrtoand he is in
view v;. He will keep the reputation; for L, segments till the next
time he receives another help request at stté. During these
Ls segments, he may require others’ help, and the utility lee¢sim

(6)

Each peegain from others’ help depends on his reputationthe viewwv; he

currently watches, and other peers’ actions. Pgtdenote the prob-
ability that he needs help when transferring to vieat thelsth seg-
ment after the current staté, wherev € V and1 < I, < L,, and
let P;, denote the probability that a helpkican be found to help in
view v. The helpelk is in states; (, vi) with probabilityD(1) P, ,
wherel € R andvy € V. At s, k will take actionas,, following his
action policy, and only when; > as, , ¢ can receive help fronk.
LetU(r;,v;) denote the utility he can gain from others’ help during
the L segments, and we have,
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Given above analysis, we can derive the utility functiongdeer
i’'s lifetime since the current state 88(s!),

{Z pPlapy [Z > DU)Py, I

I=1vp=1

W(sg(rhvi)) = _Pu( )C-‘r Z Pmﬁri(q)(a;)U(T;(q)vUL)
qge{1l,r;,L}
+n Z Z P = (q)(a‘ ) v; HU/W(S +1(T ((]) ))

qe{1l,r;, L} vi=1

wheren is the discounting factor. In (8), we deriu& (s) recur-
sively. The first term is the utility cost for helping othefi$e second
term is the utility gain he receives through others’ helgief s seg-
ments. The last term is his life time utility since the nesttes’*".
wants to find the optimal action at each state to maximize titieyu
for his life time. To achieve this, we use dynamic prograngnand
Iet the life time utility at theH th state aftest, W (s:T) = 0, if
nf! < 0.1, to avoid the infinite recursion.

4. EXPERIMENTATION

This section evaluates the system performance by simokatia the
simulation setup, the server provides IMVS with = 11 views to a
group of N = 3 users. The video segment sizelis= 10. The av-
erage sizes of |- and DSC frame are 5 dnflpackets, respectively.
For the view switch model, the 4th and 8th views are anchavsjie
which divide the rest normal views into 3 sections with = 3
views per section. If a user is in a normal view, the probgbibif
switching to the closest anchor viewslts = 0.7. If he/she isin an
anchor view, the probability of switching to the closestlaorcviews
is Ps = 0.3. In the reputation systenf, = 2 and\ = 0.3. The
discounting factor = 0.9. We test the system for 2000 segments.
Fig. 3 shows user 1's actions in each segment, and for otkes us
we have similar observation. The top figure shows his/heorst
when the cost to gain ratie/g = 0.3, where he always play = 2
at the steady state, and we observe that users reputatieosdl ar

Sincea = 2 means he will cooperate with others whose reputation

is larger or equal to 2, he fully cooperates. This is becaoseost
is comparatively low, and cooperating help him receive hitlity.
At the bottom figure wher/g = 0.9, the cost is high, and he will
receive negative utility, if he helps upload video packéibus, he
tends to not help and plays the actioa- 3 at the steady state, which
means he does not cooperate regardless of others’ remstatior

the case when/g = 0.6, we observe that sometimes he plays actlonm

a = 3 and do not cooperate, but sometimes he plays actien 1
or 2 and cooperate. To understand this better, we study tithaat
different views. Table 1 shows the percentages of his astiom

U1 V2 VU3 V4 Vs Ve
a=1 11% 12% | 0 8% 5% 5%
a=2 89% | 8% | 0 92% | 94% | 95%
a=3 0 0 100% | O 1% 0

Table 1. Percentages of users’ actions at different views.

v1 to ve. Views fromwy; to v1; are symmetric to views froms to

v1, which have similar results and are omitted in this tableonfrr
this table, we observe that when he receives requests atost of
his responses are = 3 and he does not cooperate. When he is in
the other views, he uses= 1 or 2 and cooperates. This is because
vs IS adjacent to an popular anchor view that is also the only
popular view arounds. Thus, a user ims probably switches to,

in the next segment, and this view switching does not neeergth
help. Therefore, he also has less incentive to cooperateairdain

a high reputation.

We also evaluate the reduction of bandwidth consumptioheat t
server side due to user cooperatiorCas= LW wheren,
denotes the number of times that the 3 users get help frommspthe
andn,, denotes the number of times that the 3 users switch to non-
adjacent views. When/g = 0.3, users fully cooperate with each
other and”; = 37%. Whenc/g = 0.6, although users do not coop-
erate at view 3 and 9, they cooperate at other views@ne: 33%.
Thus, our indirect reciprocity scheme can simulate usepeiion

(B)and reduce bandwidth consumption.

5. CONCLUSION

In this work, we propose an IMVS system that supports coepera
tive view-switching. To stimulate user cooperation, we elagers’
interaction as an indirect reciprocity game. Using MDP asrenfl-
ism, each peer makes distributed decisions to maximizeduysea
gate utilities within his lifetime. Simulation results sindhat when
the cost of helping others is much smaller than the utility deom
others’ help, users fully cooperate, which also helps recgrver’'s
upload bandwidth. As the cost-to-gain ratio increases;susad to
behave differently at different views: given peers can jutettheir
future view navigation paths probabilistically, a peeelikto enter
a view-switching path not requiring others’ help will alsave less
incentive to cooperate. When the cost-to-gain ratio is \@mye, no
users will cooperate.
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