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ABSTRACT
In interactive multiview video streaming (IMVS), users canperiodi-
cally select one out of many captured views available for observation
as video is played back in time. In single-view video streaming, to
reduce server’s upload burden, cooperative strategies where peers
share received packets of the same video have proven to be effec-
tive, and incentive mechanisms are designed to stimulate user co-
operation. Exploiting user cooperation in high dimensional IMVS,
however, is more challenging. First, small number of peers in a lo-
cal area are likely watching different views among large number of
views available, making it difficult for a peer to find partners of the
exact same view to cooperate. Second, even if a peer can identify
cooperative partners of the same view, they will soon be watching
different views after independent view-switching. In thispaper, we
study the use of a multiview video frame structure for IMVS that
facilitates cooperative view switching, where even if peers are ob-
serving different views, they can nonetheless help each other. To
stimulate user cooperation, we model peers’ interaction asan indi-
rect reciprocity game. Using Markov decision process (MDP)as a
formalism, each peer makes distributed decisions to maximize his
aggregate utilities within his lifetime. Simulation results show that
when the cost to help others is much smaller than the utility gained
from others’ help, users fully cooperate. As the cost-to-gain ratio
increases, users tend to behave differently at different views: given
peers can predict their future view navigation paths probabilistically,
a peer likely to enter a view-switching path not requiring others’ help
will have less incentive to cooperate. When the cost-to-gain ratio is
very large, no users will cooperate.

Index Terms— interactive multiview video, cooperative stream-
ing, incentive mechanisms

1. INTRODUCTION
Multiview video refers to the simultaneous capturing of multiple
videos of the same scene of interest by a large array of closely spaced
cameras from different viewpoints. In new interactive multiview
view streaming (IMVS) services [1], a client can periodically se-
lect one out of many captured views available for observation as the
video is played back in time. In response, server sends only pre-
encoded data for the single requested view (rather than all the cap-
tured views) to lower streaming rate.

In single-view video streaming, to ease server’s burden to up-
load the same video to many users, user cooperation [2] has been
exploited where peers share received packets of the same video, so
that a single server can serve a large number of clients. Incentive
mechanisms [3] are designed to stimulate the appropriate amount of
cooperation among selfish peers. However, exploiting user cooper-
ation in high dimensional IMVS is more challenging. First, small
number of peers in a local area are likely watching differentviews
among large number of views available, making it difficult for a peer
to find partners of the exact same view to cooperate. Second, even if

a peer can identify cooperative partners of the same view, they will
soon be watching different views after independent view-switching.

In the literature, [1] designed frame structures using distributed
source coding (DSC) [4] for IMVS to achieve bandwidth-efficient
view switching. [5] used DSC for both view-switching and coop-
erative packet loss recovery in a WWAN multiview video multicast
system. In this work, we study the use of a multiview video coding
structure based on DSC to facilitatecooperative view-switching to
reduce upload bandwidth from the server: even if users are indiffer-
ent views, they can nonetheless help each other achieve low-bitrate
view-switching. To stimulate user cooperation, we model users’ in-
teraction as an indirect reciprocity game [6], where each user is as-
signed a reputation level. Users that help others will accumulate
high reputations, thus more likely to receive help from others. Using
Markov decision process (MDP) as a formalism, each peer makes
distributed decisions to maximize his aggregate utilitieswithin his
lifetime. Simulation results show when the cost of helping others is
much smaller than the utility gained from others’ help, users fully
cooperate, which also helps reduce server’s upload bandwidth. As
the cost-to-gain ratio increases, users tend to behave differently at
different views: given peers can predict their future view navigation
paths probabilistically, a peer likely to enter a view-switching path
not requiring others’ help will also have less incentive to cooperate.
When the cost-to-gain ratio is very large, no users will cooperate.

The outline of the paper is as follows. We overview the for-
mulation of the IMVS system in Section 2. We model the optimal
decision making using MDP in Section 3. We present simulation
results and conclusions in Section 4 and 5, respectively.

2. PROBLEM FORMULATION
In this section, we first overview an IMVS system that supports peri-
odic view-switching by users. We then describe an interaction model
that captures users’ behavior in view-switching, and a multiview
video coding structure that facilitates cooperative view-switching
among peers. Finally, we propose an indirect reciprocity game to
stimulate user cooperation.
2.1. Overview of IMVS system
A scene of interest is captured by a large one-dimensional array of
evenly spacedM cameras. A server compresses video of each view
into coding segments ofK frames each, and provides IMVS service
to a group ofN users, whereN � M . Once a user selects a view,
he remains in this view forK consecutive frames. At the end of this
segment, he can switch to another view as the video is played back in
time uninterrupted. There is hence a maximum of one segment view-
switching delay. When a user switches views, he may request help
from other peers (cooperative view-switching), so that theamount of
downloaded video data from server can be reduced.

2.2. View Switching Model
Views are divided into two categories:anchor views and normal
views. When seeking interested views, a user first browses views
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Fig. 1. Example of our multiview video coding structure forM = 3 views,
segment sizeK = 3. Circles, squares and diamonds denote I-, P- and DSC
frames, respectively. Each frameFf,v is labeled by its frame indexf and
view v.

coarsely through anchor views. Once he reaches an interested an-
chor view, he can switch to neighboring normal views to refineview
selection. In this work, we assume that users switch interested an-
chor views frequently. After finding an interested anchor view and
remaining for one segment, they will likely seek another interested
anchor view in the next segment. Thus, anchor views are more fre-
quently selected (more popular) than normal views.

Suppose that there arenδ anchor views, which evenly divide
normal views into(nδ + 1) sections ofnσ = (M − nδ)/(nδ + 1)
views each. At each view, a user can only switch to his left and
right closest anchor views,and nearby normal views. Specifically,
at an anchor view, a user will switch to the left and right closest
anchor views with probabilityPδ, and the left and right normal view
sections (and current anchor view) with probability1−Pδ . Similarly,
at a normal view, a user will switch to the left and right closest anchor
views with probabilityPσ, and the normal views in the same section
with probability1− Pσ .

We model transition from view to view using a discrete time
Markov chain, and construct aM ×M transition matrixT , where
tx,y is the view transition probability of a user selecting viewy after
viewingx. From earlier discussion on view switching model, ifx is
an anchor view,

tx,y =











Pδ/|Xδ | , if y ∈ Xδ

(1− Pδ)/|Xσ | , if y ∈ Xσ

0 otherwise,

(1)

where,Xδ andXσ denote viewx’s closest anchor view set, and
nearby normal view set, respectively. Ifx is a normal view,tx,y can
be defined similarly.

2.3. Multiview Video Coding Structure and IMVS Service

Fig. 1 shows an example of our proposed frame structure. Eachview
is encoded into segments ofK frames. We encode the first seg-
ment using an intra-coded I-frameI1,v withK−1 trailing P-frames.
For the next segment, for view-switching we encode the first frame
FK+1,v into two versions. The first version is an intra-coded I-frame
IK+1,v, which can be decoded independently. The second version
is a DSC frame WK+1,v [4]. To encodeWK+1,v, we use at most
three decoded P-framesPK,max(1,v−1), . . . , PK,min(M,v+1) as pre-
dictors, and use the I-frameIK+1,v as the target. As long as one of
the predictor frames is available at the decoder buffer,WK+1,v can
be correctly decoded, and the decoded frame is bit-by-bit equiva-
lent to the frame decoded fromIK+1,v. WK+1,v is followed by
K − 1 trailing P-frames, and each of the following segments has
the same structure. LetLI , LW , andLP denote the frame size of
an I-frame, DSC frame, and P-frame, respectively, and averagely,
LI � LW > LP .

This structure can support cooperative view switching as fol-
lows. Suppose that a peer switches from viewv to v′. If v′ is adja-
cent tov, he can ask the server to transmit the DSC frameWiK+1,v′

and the following P-frames to reconstruct the video in viewv′. How-
ever, ifv′ is not adjacent tov, he has to either receive help from other
peers or request from the server the I-frame in viewv′. Using Fig. 1
as an example, suppose that the peeri switches from view 1 to view
3 after the first segment. If another peer is watching view 2 and
would like to share the reconstructed frameF3,2, theni only needs
to ask the server for the DSC frameW4,3 and the following P-frames
to reconstruct the video in view 3. If he cannot get help, he has to
request the I-frameI4,3 from the server.

2.4. Game Formulation: Indirect Reciprocity Game
In this work, we assume that the upload bandwidth of the server is
limited and expensive. Thus, it charges virtual currency from peers
that pull video data from it to compensate its cost, andb denotes the
price for the transmission of each single bit from the server. As dis-
cussed in section 2.3, when a peer switches to a non-adjacentview,
if he can get help from others, he will download the reconstructed
frame of the last segment from the helper for free, and will only
download a DSC frame from the server instead of an I-frame. Thus,
he can gain an utilityg = b(LI −LW ) for paying less to the server.
However, uploading a video frame will incur a costc to the helper
due to the consumed bandwidth and CPU time, etc. Since users
are selfish, they want to receive others’ help, but do not wantto co-
operate and upload video packets. In this work, to stimulateuser
cooperation, we design a reputation-based mechanism, where peers
that keep helping others will accumulate good/high reputations, and
peers that have good reputations also tend to receive others’ help.
In this mechanism, peeri helping peerj is not becausej directly
helpedi previously, butj helped someone else. Thus, it is an indi-
rect reciprocity game.

2.4.1. Peer Reputation and Interaction
In this system, each peeri is assigned a discrete reputation value
ri ∈ R = {1, ..., L}. A larger value ofri means a better reputation.
Reputation values change as peers interact with each other.When a
peer needs help for cooperative view-switching, he first needs view
information of other peers to find a suitable helper. To implement
this, we can either let peers exchange their view information and
seek help in a distributed way, or have a central controller that tracks
peers’ up-to-date view information and assigns helpers to peers that
need help. For simplicity, we assume here that there is a trustworthy
local agent closed to theN peers, which tracks peers’ view switch-
ing, helps each peer find helpers, observes their interactions, and
updates their reputations. Our work can also be extended to adis-
tributed system. Thus, in this centralized system,when peer j needs
help, the local agent randomly selectsi from peers that can help, and
sends a help request. Upon receiving a help request,i takes an action
ai ∈ A = {1, . . . , L + 1}. The actionai is not a direct answer of
whether to help or not, but areputation threshold. i sends the action
ai back to the local agent, who then comparesj’s reputationrj with
the thresholdai. If rj ≥ ai, the local agent informsi to upload the
needed video data toj. Otherwise, the local agent informsj to pull
the I-frame from the streaming server. Thus, ifai = L + 1, i will
not cooperate regardless ofj’s reputation.

2.4.2. Social Norm and Reputation Updating
Based on the previous observed interaction between peeri and j,
the local agent updatesi’ reputation, since he is the decision maker,
while j’ reputation remains the same. The reputation is updated
following a social norm Q [6], which effects changes in a peer’s
reputation after an interaction:
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Fig. 2. An example of MDP.

Q =

(

rj ≥ ri rj < ri

ai ≤ rj , uploading L ri
ai > rj , not uploading 1 ri

)

, (2)

where the rows ofQ denote the results of this interaction of whether
i uploads the requested frame toj. The columns ofQ denotej’s rep-
utation being larger or smaller thani’s reputation. Whenrj ≥ ri,
i will gain an immediate reputationL by helpingj, or be punished
with an immediate reputation1 by not helping. Whenrj < ri, no
matter whetheri helpsj, i’s reputation remains the same. With this
social norm, peers are encouraged to help those whose reputations
are larger than or equal to their own, while they are discouraged to
cooperate with others that have smaller reputations, sincecooperat-
ing does not improve their own reputations.

Letψ(ai, rj) andφ(ri, rj) be functions that return the row and
column indices ofQ, respectively. Ifrj ≥ ai, ψ(ai, rj) = 1;
otherwiseψ(ai, rj) = 2. If rj ≥ ri, φ(ri, rj) = 1; otherwise
φ(ri, rj) = 2. Then,i’ reputation is updated by,

ri(t) = round
[

λri(t− 1) + (1− λ)Qψ(ai,rj),φ(ri,rj)

]

,(3)

where round[·] is the rounding function, andλ is a parameter
weighting the past versus immediate reputation values.

Given this reputation system, helpers need reputation informa-
tion of users that need help to decide appropriate actions. In this
work, we consider that they also take the future interactions into con-
sideration. Since they do not know who they will interact with at a
later time, they need peers’ reputation distribution to assist their de-
cision making. Given that the local agent has the record of all peers’
reputations at different time instances, it can calculate the probabil-
ity mass functionPr(l) of each reputation value,l ∈ R, appearing
in the peer population since the beginning of the game,

Pr(l) =

∑Tc
t=1

∑N

i=1 I [ri(t) = l]

NTc
, (4)

whereTc is the current segment index, andI [·] is the indicator func-
tion. LetD = {Pr(1), Pr(2), ..., Pr(L)}. The local agent broad-
castsD to all peers periodically to assist their decision making.

3. OPTIMAL ACTION SELECTION WITH MARKOV
DECISION PROCESS

In this work, we formalize peers’ distributed decision making pro-
cess using MDP, which is used in previous work [7]. Each peer
considers actions taking future utility into consideration, and finds
the optimal actions to maximize his utility within his lifetime.

3.1. State Space, Action Space and State Transition Probability

For a peeri, MDP is a recursion with finite levels into the future,
as shown in Fig. 2, where each levelt in the future is marked by
its statessti’s and actionsatsi ’s. In this work, a statesti(ri, vi) rep-
resents reputationri and viewvi at the momentt peeri receives
a help request. Hence the state space is denoted asS = R × V,

whereV = {1, ...,M} and is the view space. At statesti, he re-
sponses to the help request by choosing actionatsi from the action
spaceA. From state-action pair(sti, a

t
si
), he transits to a new state

st+1
i (r′i, v

′
i) in the next level with probabilityP

st
i
→s

t+1

i
(atsi), when

he receives another help request after playback ofLs video seg-
ments. Here,Ls can be learned from his past history. To derive the
state transition probabilities, we first derive its reputation and view
transition probabilities, respectively.

For actionatsi taken at timet, peeri’s reputation is updated us-
ing (3). Suppose that the user that needs this help isj with reputation
rj . In (3),Qψ(atsi

,rj),φ(ri,rj)
can be one of three values:1, ri orL.

Thus, the updated reputation ofi can also only be one of three pos-
sible values. Letr′i(1), r

′
i(ri) andr′i(L) be the updated reputation

value whenQψ(atsi
,rj),φ(ri,rj)

= 1, ri or L, respectively. Sincei
does not know the exact value ofrj , he assumes thatrj follows the
reputation distributionD. Thus, the probability that the reputation
value updates tor′i = r′i(1) is
Pri→r′

i
(1)(a

t
si
) = P (Qψ(atsi

,rj),φ(ri,rj)
= 1) = P (ri ≤ rj < atsi )

=
∑

l: ri≤l<atsi

D(l). (5)

Similarly, we can derivePri→r′
i
(ri)

(atsi) =
∑

l: l<ri D(l), and

Pri→r′
i
(L)(a

t
si
) = 1 − Pri→r′

i
(1)(a

t
si
) − Pri→r′

i
(ri)

(atsi). Once
updated tor′i, i’s reputation stays the same atr′i, till the next instant
he receives another help request at statest+1

i (r′i, v
′
i).

The view transition probability follows the view transition ma-
trix T and is independent of the reputation transition probability.
From statesti, there areLs segments and view transitions beforei
receives another help request at statest+1

i . LetTLs

vi,v
′

i

denotes the en-

try of row vi and columnv′i of TLs . Thus, the probability of switch-
ing from vi to v′i is Pvi→v′

i
= TLs

vi,v
′

i

. Therefore, given the above

discussion on reputation and view transition probabilities, the state
transition probability isP

st
i
→s

t+1

i
(atsi) = Pri→r′

i
(atsi)Pvi→v′

i
.

3.2. Utility Function
In this subsection, we derive peeri’s utility based on his state and ac-
tion. We first discuss his utility cost for helping others upload video
packets. Then, we study the utility gain he receives from others’
help. Finally, we derive the utility of his life time since the cur-
rent statesti. As discussed previously, helping one neighbor upload
video data will incur a costc, and the user that receives this help
gains an utilityg. Wheni is in statesti and take the actionatsi , he
assumes the reputation of the user that requests this help follows D,
and therefore, he will upload video packet with probability

Pu(a
t
si
) =

∑

l: l≥atsi

D(l). (6)

Thus, the cost incurred by the actionatsi is cPu(atsi).
After this interaction, his reputation changes tor′i and he is in

view vi. He will keep the reputationr′i for Ls segments till the next
time he receives another help request at statest+1

i . During these
Ls segments, he may require others’ help, and the utility he/she can
gain from others’ help depends on his reputationr′i, the viewvi he
currently watches, and other peers’ actions. LetP lsv denote the prob-
ability that he needs help when transferring to viewv at thelsth seg-
ment after the current statesti, wherev ∈ V and1 ≤ ls ≤ Ls, and
let P vh denote the probability that a helperk can be found to help in
view v. The helperk is in statesk(l, vk) with probabilityD(l)Pvk ,
wherel ∈ R andvk ∈ V. At sk, k will take actionask following his
action policy, and only whenr′i ≥ ask , i can receive help fromk.
LetU(r′i, vi) denote the utility he can gain from others’ help during
theLs segments, and we have,
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Fig. 3. User 1’ actions at each segment. (Top):c/g = 0.3, (middle):
c/g = 0.6, and (bottom):c/g = 0.9.

U(r′i, vi) = g

Ls
∑

ls=1







M
∑

v=1

P lsv P vh





L
∑

l=1

M
∑

vk=1

D(l)PvkI[r
′
i ≥ ask ]











(7)

Given above analysis, we can derive the utility function forpeer
i’s lifetime since the current state asW (sti),
W (sti(ri, vi)) = −Pu(a

t
si
)c+

∑

q∈{1,ri,L}

Pri→r′
i
(q)(a

t
si
)U(r′i(q), vi)

+η
∑

q∈{1,ri,L}

M
∑

v′
i
=1

Pri→r′
i
(q)(a

t
si
)Pvi→v′

i
W (st+1

i (r′i(q), v
′
i)) (8)

whereη is the discounting factor. In (8), we deriveW (sti) recur-
sively. The first term is the utility cost for helping others.The second
term is the utility gain he receives through others’ help in theLs seg-
ments. The last term is his life time utility since the next statest+1

i . i
wants to find the optimal action at each state to maximize the utility
for his life time. To achieve this, we use dynamic programming, and
let the life time utility at theH th state aftersti, W (st+Hi ) = 0, if
ηH < 0.1, to avoid the infinite recursion.

4. EXPERIMENTATION
This section evaluates the system performance by simulations. In the
simulation setup, the server provides IMVS withM = 11 views to a
group ofN = 3 users. The video segment size isK = 10. The av-
erage sizes of I- and DSC frame are 5 and1.5 packets, respectively.
For the view switch model, the 4th and 8th views are anchor views,
which divide the rest normal views into 3 sections withnσ = 3
views per section. If a user is in a normal view, the probability of
switching to the closest anchor views isPσ = 0.7. If he/she is in an
anchor view, the probability of switching to the closest anchor views
is Pδ = 0.3. In the reputation system,L = 2 andλ = 0.3. The
discounting factorη = 0.9. We test the system for 2000 segments.

Fig. 3 shows user 1’s actions in each segment, and for other users
we have similar observation. The top figure shows his/her actions
when the cost to gain ratioc/g = 0.3, where he always playa = 2
at the steady state, and we observe that users reputations are all 2.
Sincea = 2 means he will cooperate with others whose reputation
is larger or equal to 2, he fully cooperates. This is because the cost
is comparatively low, and cooperating help him receive highutility.
At the bottom figure whenc/g = 0.9, the cost is high, and he will
receive negative utility, if he helps upload video packets.Thus, he
tends to not help and plays the actiona = 3 at the steady state, which
means he does not cooperate regardless of others’ reputations. For
the case whenc/g = 0.6, we observe that sometimes he plays action
a = 3 and do not cooperate, but sometimes he plays actiona = 1
or 2 and cooperate. To understand this better, we study his actions at
different views. Table 1 shows the percentages of his actions from

v1 v2 v3 v4 v5 v6
a = 1 11% 12% 0 8% 5% 5%
a = 2 89% 88% 0 92% 94% 95%
a = 3 0 0 100% 0 1% 0

Table 1. Percentages of users’ actions at different views.
v1 to v6. Views fromv7 to v11 are symmetric to views fromv5 to
v1, which have similar results and are omitted in this table. From
this table, we observe that when he receives requests atv3, most of
his responses area = 3 and he does not cooperate. When he is in
the other views, he usesa = 1 or 2 and cooperates. This is because
v3 is adjacent to an popular anchor viewv4 that is also the only
popular view aroundv3. Thus, a user inv3 probably switches tov4
in the next segment, and this view switching does not need others’
help. Therefore, he also has less incentive to cooperate andmaintain
a high reputation.

We also evaluate the reduction of bandwidth consumption at the
server side due to user cooperation asCd = (LI−LW )nh

LInn
, wherenh

denotes the number of times that the 3 users get help from others,
andnn denotes the number of times that the 3 users switch to non-
adjacent views. Whenc/g = 0.3, users fully cooperate with each
other andCd = 37%. Whenc/g = 0.6, although users do not coop-
erate at view 3 and 9, they cooperate at other views andCd = 33%.
Thus, our indirect reciprocity scheme can simulate user cooperation
and reduce bandwidth consumption.

5. CONCLUSION
In this work, we propose an IMVS system that supports coopera-
tive view-switching. To stimulate user cooperation, we model users’
interaction as an indirect reciprocity game. Using MDP as a formal-
ism, each peer makes distributed decisions to maximize his aggre-
gate utilities within his lifetime. Simulation results show that when
the cost of helping others is much smaller than the utility gain from
others’ help, users fully cooperate, which also helps reduce server’s
upload bandwidth. As the cost-to-gain ratio increases, users tend to
behave differently at different views: given peers can predict their
future view navigation paths probabilistically, a peer likely to enter
a view-switching path not requiring others’ help will also have less
incentive to cooperate. When the cost-to-gain ratio is verylarge, no
users will cooperate.
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