
DEPTH MAP SUPER-RESOLUTION USING SYNTHESIZED VIEW MATCHIN G FOR
DEPTH-IMAGE-BASED RENDERING

Wei Huo, Gene Cheung#, Xin Li∗, Oscar Auo

o Hong Kong University of Science and Technology,# National Institute of Informatics,
∗ West Virginia University

ABSTRACT

In texture-plus-depth format of 3D visual data, texture and
depth maps of multiple viewpoints are coded and transmit-
ted at sender. At receiver, decoded texture and depth maps of
two neighboring viewpoints are used to synthesize a desired
intermediate view via depth-image-based rendering (DIBR).
In this paper, to enable transmission of depth maps at low
resolution for bit saving, we propose a novel super-resolution
(SR) algorithm to increase the resolution of the received depth
map at decoder to match the corresponding received high-
resolution texture map for DIBR. Unlike previous depth map
SR techniques that only utilize the texture map of the same
view 0 to interpolate missing depth pixels of view0, we use
texture maps of the same and neighboring viewpoints,0 and
1, so that the error between the original texture map of view1
and the synthesized image of view1 (interpolated using tex-
ture and depth maps of view0) can be used as a regulariza-
tion term during depth map SR of view0. Further, piecewise
smoothness of the reconstructed depth map is enforced by
computing only the lowest frequency coefficients in Graph-
based Transform (GBT) domain for each interpolated block.
Experimental results show that our SR scheme out-performed
a previous scheme by up to1.7dB in synthesized view quality
in PSNR.

Index Terms— Multiview imaging, depth-image-based
rendering, super-resolution

1. INTRODUCTION

Although there are numerous representations of 3D visual
data proposed in the literature,texture-plus-depth format [1]
has attracted much attention recently, due partly to strong
interest in the free viewpoint TV (FTV) working group in
the MPEG standardization body. In short, texture-plus-depth
format means that texture maps (RGB images) and depth
maps (per-pixel physical distances between captured objects
in the 3D scene and the capturing camera) of multiple closely
spaced viewpoints are encoded and transmitted from sender
to the observing receiver. Having received the compressed
data, the receiver can then synthesize an image of any freely
chosen viewpoint via a depth-image-based rendering (DIBR)

technique like 3D warping [2], using decoded texture and
depth maps of two or more neighboring viewpoints as an-
chors. Transmission of large texture and depth maps of mul-
tiple viewpoints, however, translates to a high network trans-
mission cost. Thus, compression of texture-plus-depth format
of 3D data is an important research problem.

Unlike the more well studied and understood texture
maps, depth maps are a relatively new kind of visual data
that possesses unique characteristics like smooth surfaces and
sharp edges. See Fig. 1 for an illustration. Depth maps can
be acquired either directly using depth-sensing cameras [3],
typically at lower resolution (LR) than corresponding texture
maps, or derived from texture maps using stereo-matching
algorithms. In either case, it has been proposed [4] to en-
code depth maps at LR to save coding bits, and then at re-
ceiver, increase the resolution of the decoded LR depth maps
(super-resolution (SR)) to match the high resolution (HR) of
the corresponding texture maps for DIBR. In the first case,
this means encoding the depth maps at camera-captured LR;
in the second, it means down-sampling the stereo-matched
depth maps to LR prior to encoding.

Fig. 1. The depth map and corresponding texture map of the
left viewpoint forTeddy.

Compared to the more general image SR problem in com-
puter vision [5], depth map SR can be performed more sim-
ply because of the aforementioned unique characteristics and
availability of corresponding HR texture maps from the same
viewpoints as helpful side information. As an example, [4]
proposed to super-resolve depth map of a given view0 using
HR texture map of the same viewpoint0 during depth pixel
interpolation. In this paper, instead we use texture maps ofthe



same and neighboring viewpoints,0 and1, so that the error
between the original texture map of view1 and the synthe-
sized image of view1 (interpolated using texture and depth
maps of view0) can be used as a regularization term during
depth map SR of view0. Further, piecewise smoothness of
the reconstructed depth map is enforced as a prior by com-
puting only the lowest frequency coefficients in Graph-based
Transform (GBT) domain [6] for each interpolated block. Ex-
perimental results show that our SR scheme out-performed
[4] by up to1.7dB in synthesized view quality in PSNR.

The outline of the paper is as follows. We first discuss
related work in Section 2. We then overview GBT, previously
proposed in [6], in Section 3. We discuss our multiview imag-
ing system in Section 4, and present our depth map SR algo-
rithm in Section 5. Finally, we present experimental results
and conclusions in Section 6 and 7, respectively.

2. RELATED WORK

While compression of texture maps is well studied, compres-
sion of depth maps is relatively new, and has been the focus of
many recent research efforts [7, 6, 8]. Many of the proposed
methods exploit depth maps’ unique characteristics of sharp
edges and smooth surfaces for compression gain. Though the
goal of compact representation of depth information is the
same, in this paper we develop a novel SR algorithm to in-
crease resolution of received depth maps at decoder to match
HR texture maps for DIBR, so that depth maps can be en-
coded in LR at encoder, saving coding bits.

Previous depth map SR algorithms typically exploit struc-
ture similarity between depth maps and corresponding texture
maps of the same viewpoints. [9] proposed to super-resolve
depth maps with the linear MPEG up-sampling filter, where
filtering across edges is not allowed, thus preserving edge
sharpness. The edge information of the super-resolved depth
map is extracted from the HR texture map of the same view-
point, where HR edges due to textural changes, rather than
foreground-background transitions, are eliminated by check-
ing the local depth intensity gradients in the LR depth map.
Also taking advantage of the structure similarity, to interpo-
late a pixelu, [4] computed a weight for each ofu’s four
nearest neighbors, based on pixel distance in the depth map
as well as color difference in the corresponding texture map.
Then, the depth map value of the neighbor with the largest
weight will be selected to interpolate pixelu.

Different from previous proposals where the single tex-
ture map from the same viewpoint as the LR depth map is
used, in this paper, we utilize texture maps of the same and
neighboring viewpoints,0 and1, so that the error between the
original texture map of view1 and the synthesized image of
view 1 (interpolated using texture and depth maps of view0)
can be used as a regularization term during depth map SR of
view 0. We will detail our approach in Section 5.

3. GRAPH-BASED TRANSFORM

In our depth map SR scheme, we use GBT to enforce the
piecewise-smooth prior in a pixel block during depth pixel in-
terpolation. To understand GBT, we briefly discuss the three-
step GBT construction procedure [6] in this section. First,
prominent edges in an × n pixel block are identified. Then,
a graph describing the pixel connectivity given the identified
edges (two neighboring pixels are connected except when di-
vided by an edge) is constructed. Finally, an adaptive trans-
form is built based on the connectivity graph.

In the first step, we identify edges (large pixel value tran-
sition across neighboring pixels) in a block. Edge sharpness
can be preserved even if filtering in subsequently constructed
adaptive GBT domain is performed.

In the second step, we treat each pixel in then×n block as
a node in a graphG, and connect it to its four or eight immedi-
ate neighbors in the block, resulting in a 4- or 8-connectivity
graph. Then, if there is an edge between two neighboring
pixels / nodes, we eliminate their connection. Given the con-
nectivity graph, we can define an adjacency matrixA, where
A(i, j) = A(j, i) = 1 if pixel positionsi andj are connected,
and0 otherwise. We can similarly compute the degree matrix
D, whereD(i, i) is the number of connections for nodei, and
D(i, j) = 0 for all i 6= j.

In the third step, using computedA andD, we can com-
pute the Laplacian matrixL = D−A [10]. If we now project
a signalx in the graphG onto the eigenvectors of the Lapla-
cianL, it becomes the spectral decomposition of the signal;
i.e., it provides a “frequency domain” interpretation of sig-
nal x given graph supportG. Hence, we can construct GBT
transform using eigenvectors ofL. In particular, we can stack
pixels in then×n block into a length-n2 vector and compute
y = Et · x, whereE is a matrix with eigenvectors ofL as
columns.

Using constructed GBTE, we can interpret piecewise-
smoothness of a depth blockx as follows: only the low-
estL frequency components ofy = Et · x are non-zero;
L ≥ 1 depends on how “smooth” the depth block is assumed
to bea priori. We will use this interpretation of piecewise-
smoothness in our depth map SR algorithm discussed later.

4. MULTIVIEW IMAGING SYSTEM

We first overview the multiview imaging system we envision
for our depth map SR problem. At sender, texture maps of
left and right views at HR are encoded along with depth maps
of the same viewpoints at LR. As discussed in the Introduc-
tion, texture maps are captured in HR, while depth maps can
be either captured directly in LR, or derived in HR via stereo-
matching and subsequently down-sampled to LR. To preserve
edge sharpness, instead of traditional DCT, each LR depth
block is transform-coded using GBT as done in [6], so that
filtering across detected edges is avoided and detected LR



edges are losslessly encoded and transmitted to receiver for
inverse transform. Both compressed texture and depth maps
are transmitted to receiver in texture-plus-depth format to rep-
resent the 3D scene.

At receiver, after decoding the received texture and depth
maps, LR depth maps must be super-resolved to the same
resolution of the HR texture maps. Receiver can then syn-
thesize texture map of any intermediate virtual view between
left and right captured views using the decoded texture maps
and super-resolved depth maps of left and right views as an-
chors via DIBR. Essentially, a synthesized pixel in the virtual
view is a weighted average of the corresponding pixels in the
left and right texture maps, where the weights are inversely
proportional to the distance between the virtual viewpointand
the left and right views. A synthesized pixel that has no corre-
sponding pixels in both the left and right views is filled using
an inpainting technique. We discuss next how SR of depth
maps at decoder can be optimized for best possible DIBR-
synthesized virtual view quality.

5. DEPTH SUPER RESOLUTION WITH
SYNTHESIZED VIEW MATCHING

While existing depth SR techniques use a single HR texture
map as side information to help super-resolve a LR depth map
of the same viewpoint, we exploit disparity information1 in
both left and right HR texture maps for SR of a single depth
map (left or right). Specifically, for each candidate interpo-
lated pixel in the left HR depth map, one can map a left texture
pixel to the corresponding pixel in the right HR texture map
via DIBR, resulting in asynthesized view matching error—
the difference in intensity between the two pixels. The ideais
then to super-resolve a depth map so that it is consistent with
the LR depth mapand minimizes the sum of synthesized view
matching errors of all interpolated depth pixels.

5.1. Synthesized View Matching Error Approximation

Given the disparity information provided by the left depth
map, a pixel in the left texture map can be mapped to a pixel
in the right texture map. The reverse procedure is the well-
known stereo matching problem, which finds corresponding
pixel patches between the left and right texture maps in order
to estimate a disparity map.

Assuming that a left pixel that is mapped geometry-
correctly to the right should have similar intensity value as the
right corresponding pixel2, we define a per-pixel error func-
tion as the difference in intensity between corresponding pix-
els for a given disparity. This error function, which we refer
to assynthesized view matching error, is defined as follows

1Though there is a one-to-one correspondence between depth and dispar-
ity, we assume disparity maps are encoded instead of depth maps.

2In the case where the 3D scene is Lambertian, the difference is zero.

for rectified texture maps:

El(m,n) = |Il(m,n)− Ir(m,n−Xl(m,n) ∗ r)| (1)

whereIl(m,n) is the intensity of the pixel in rowm and col-
umnn in the left texture map, and it is mapped to the pixel
Ir(m,n−Xl(m,n)∗r) in the right texture map with disparity
Xl(m,n) and scaling factorr.

In cases when no correspondence can be found in the right
texture map due to camera shift, occlusion or unknown dis-
parity in the original disparity map, the above definition of
synthesized view matching error is not meaningful. In these
relatively rare cases, we set the synthesized view matching
error to zero.

5.1.1. Approximation of Matching Error
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Fig. 2. Synthesized view matching error function and corre-
sponding two-piece linear approximation.

For ease of later optimization, we approximate the syn-
thesized view matching error function with a two-piece linear
function:

gi(xi) = max
j

{ai(j)xi + bi(j)} j ∈ {1, 2} (2)

wherexi is the disparity value of pixeli, andai(j)’s and
bi(j)’s are respectively the slopes andy-intercepts of the two-
piece linear function,j ∈ {1, 2}.

For a given depth pixeli, the approximation process is
as follows. First, we find the minimum and maximum dis-
parity, dmin and dmax, of the four immediate neighbors of
pixel i in LR depth map, and define the domain ofxi as
[(1 − δ)dmin, (1 + δ)dmax], whereδ, 0 ≤ δ ≤ 1, is a pre-
defined constant. This is based on the assumption that the
depth value of a pixel is within or close to the depth range of
its neighbors.

Next, we calculate the synthesized view matching error
for disparity values in the defined domain using (1). Then, we
find the minimum synthesized view matching error in the do-
main, and construct line segments from it to the correspond-
ing errors atdmin anddmax to get a two-piece linear func-
tion. Fig. 2 shows an example of the actual synthesized view
matching error function and corresponding two-piece linear



1. Set a search range for pixeli from the minimum and maximum
disparity of its four nearest neighbors. The lower and upper
bound are set as the two endpoints of the two-piece linear func-
tion.

2. Compute the synthesized view matching error of each disparity
value within the search range.

3. Find the disparity with the minimum synthesized view matching
error and set it as the turning point of the two-piece linear func-
tion.

Fig. 3. Construction of the two-piece linear function for syn-
thesized view matching error approximation.

approximation. The left and right piece line segments are de-
fined by slopesai(1) andai(2) and y-interceptsbi(1) and
bi(2), respectively.

Fig. 3 summarizes how we construct the two-piece lin-
ear function. Note that since the constructed two-piece linear
function is the point-wise maximum of two affine functions,
it is a convex function.

5.2. Problem Formulation

As illustrated in Fig. 1, depth maps are piecewise-smooth
2D functions—smooth interior surfaces within sharp edges.
An elegant way of interpreting the piecewise-smooth prior,
as discussed in Section 3, is through GBT: only GBT low-
frequency components are non-zero. We hence pose our SR
problem in GBT domain, where a depth pixel blockX is rep-
resented by inverse GBTΦ−1 and transform coefficientsα:

X = Φ(e)−1α, (3)

wheree = {e1, e2, . . .} denotes the set of defined edges in
a depth pixel block, from which the adaptive GBTΦ is con-
structed as described in Section 3.

Our objective function is a weighted sum of: i) the
square difference between the received LR depth blockY and
the low-pass filtered and sub-sampled version of the recon-
structed HR blockX = Φ(e)−1α in pixel domain, and ii) the
total synthesized view matching error of all depth pixels in
the HR block:

min
e,α

‖DHΦ(e)−1α−Y‖2 + λ
∑

i

gi(φi(e)
−1α)

s.t. αk = 0, k ∈ {L+ 1, L+ 2, . . .}

(4)

whereλ is a weight parameter specifying the desired tradeoff
between the SR term (first term) and synthesized view match-
ing error term,H is a low-pass filter prior to down-sampling,
andD is the down-sampling operator.φi(e)

−1 is the i-th
row in the inverse GBT matrixΦ(e)−1. To enforce piece-
wise smoothness, we only allowL (e.g.,L = 2) lowest GBT
frequency coefficients to be non-zero.

5.3. Optimization Algorithm

Problem (4) is difficult with edge sete as discrete variables
and transform coefficientsα as continuous variables. We pro-
pose to solve it in two separate steps: (i) given LR depth block
Y and LR edges, we guess possible HR edgese; (ii) Given
discovered HR edgese, we can find optimal GBT frequency
coefficientsα.

Fig. 4. An example of depth map super-resolution (from a
2 × 3 pixel block with pixel intensities F and B to a4 × 6
pixel block). Possible HR edges can be inferred from the LR
edges.

5.3.1. Finding HR Edges

First, we define a feasible search space for HR edges using
the LR depth map and LR edges. As shown in Fig. 4, each
LR edge maps to a set of possible HR edges. For example, an
edge between pixels(0, 1) and(0, 2) in the first row of the LR
block means that there should be an edge either between pix-
els(0, 2) and(0, 3), or between pixels(0, 3) and pixel(0, 4)
in the corresponding HR block. Hence, we can get sets of
possible HR edges in a pixel block using LR edges. In order
to compute synthesized view matching error of a depth block,
for a given selection of HR edges within the search space,
we can fill each missing HR depth pixel (e.g., pixel(0, 3) in
Fig. 4) using the nearest filled HR depth pixel on the same
side of the edge (e.g. pixel(0, 4) if there is edge between
pixels(0, 2) and(0, 3)).

Further, since the contour of a physical object tends to be
smooth, we consider anedge-consistent penalty in addition to
the synthesized view matching error during HR edge search,
i.e., edges that go back and forth within a block will be penal-
ized more. We can now solve for the HR edges by minimizing
the weighted sum of the synthesized view matching error and
edge-consistent penalty as follows:

min
e

∑

i

gi(Xi(e)) + µ
∑

j

|∆(ej , ej−1)−∆(ej+1, ej)| (5)

where∆(ej , ej−1) is the direction from edgeej−1 to ej , and
µ is a parameter to control the relative importance of the syn-
thesized view matching error and edge-consistent penalty.

To solve the combinatorial problem (5) is still difficult.
We employ a greedy search strategy to efficiently find a set of
good HR edges. Specifically, starting from an initial guess of
HR edges, we compare each edge to its closest alternative and
select the one with the smaller penalty. We then repeat until
the overall penalty does not decrease further.



5.3.2. Interpolating depth pixels

After finding appropriate HR edgese, (4) becomes a convex
optimization problem and can be easily solved using a convex
optimization toolCVX 3. With the optimal non-zero GBT low
frequency coefficientsα solved, we can get the final super-
resolved depth mapX via inverse GBTΦ(e)−1.

6. EXPERIMENTATION

6.1. Experimental Setup

We tested our proposed SR algorithm based on synthesized
view matching and GBT (SVM-GBT) on two Middlebury
multiview image setsTeddy and Cones4. Experiments
were conducted in the multiview imaging system described
in Section 4, where texture maps of left and right views are
encoded and decoded using H.264/AVC Reference Software
JM 17.15, while depth maps are low-pass-filtered and down-
sampled at encoder and then super-resolved at decoder. GBT
is used to encode the LR depth map and fixed quantization
parameter (QP) values of 24, 28, 32 and 36 are adopted dur-
ing compression. The super-resolved depth maps are then
used for DIBR with a simple implementation of 3D warp-
ing [2]. Our coding scheme is compared against three other
schemes: (1) H.264 intra with DCT encoding original HR
depth maps (HR-DCT); (2) H.264 intra with DCT encod-
ing reduced resolution LR depth maps, which are super-
resolved at decoder with thecolor-based depth SR al-
gorithm proposed in [4]—the state-of-the-art depth map SR
approach to our best knowledge (Color-DCT); (3) GBT en-
coding reduced resolution LR depth maps followed by the
color-based depth SR (Color-GBT).

The weight parameters,λ in (4) andµ in (5), are experi-
mentally set to 0.01 and 10, respectively. The low-pass filter
H in (4) was assumed to be an identity matrix for simplicity.
Note, however, that our formulation is sufficiently generalthat
it can easily adapt to most filters.

6.2. Experimental Results

First, we tried different values for the number of non-zero low
frequency GBT coefficientsL in (4). It turns out thatL = 2
is a good enough value forTeddy andCones.

Fig. 5 demonstrates RD curves of our proposed method
and the aforementioned three competing schemes, with the
synthesized view PSNR calculated with respect to the ground
truth middle texture map. We can see whileColor-GBT per-
forms better thanColor-DCT andHR-DCT, our proposed
SVM-GBT achieves synthesized view PSNR gain of up to1dB
and0.4dB for Teddy andCones respectively when com-
pared toColor-GBT, and up to1.7dB and0.8dB gain when

3http://cvxr.com/cvx/
4http://cat.middlebury.edu/stereo/newdata.html
5http://iphome.hhi.de/suehring/tml/

compared toColor-DCT. Further,3.4dB and2.1dB gain for
Teddy andCones respectively is achieved by our method in
comparison with the baseline schemeHR-DCT.
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Fig. 5. RD curves of different coding schemes forTeddy and
Cones respectively.

Besides objective quality, Fig. 6 and Fig. 7 show super-
resolved depth maps and corresponding synthesized views
of Teddy and Cones respectively with different coding
schemes at comparable bit rate. We see that edges produced
by SVM-GBT are cleaner and sharper, and the interior sur-
faces are much less contaminated by blocking artifacts than
that ofColor-DCT andHR-DCT respectively. More impor-
tantly, the synthesized view facilitated by our generated depth
map withSVM-GBT has much less ringing artifacts along ob-
ject boundary compared to that of the other two methods.

7. CONCLUSION

Compact representation of depth maps is important for
texture-plus-depth format of 3D visual data, which is com-
monly used for view synthesis at decoder via depth-image-
based rendering (DIBR). In this paper, we propose a super-
resolution (SR) algorithm to increase the resolution of the
received depth maps to match high resolution (HR) texture
maps, so that depth maps can be transmitted at encoder at
lower resolution (LR), saving coding bits. The key novelty
is to use HR texture map of the same and neighboring views
to compute a synthesized view matching error, which is used
as a regularization term during SR. Piecewise smoothness is
enforced by searching only low frequency components in the
Graph-based Transform (GBT) of the pixel block during in-
terpolation. Experimental results show that our SR algorithm
outperformed previous ones by up to1.7dB in synthesized
view quality in PSNR.
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