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ABSTRACT technique like 3D warping [2], using decoded texture and

In texture-plus-depth format of 3D visual data, texture anoderjth maps of wo or more neighboring viewpoints as an-

depth maps of multiple viewpoints are coded and transmit(-:.hors‘ Transmission of large texture and depth maps of mul-

ted at sender. At receiver, decoded texture and depth maps%?.le y|ewp0|nts, however, tran_slates to a high networksra
two neighboring viewpoints are used to synthesize a desired'Ssion C°$t- Th_us, compression of texture-plus-depthéor
intermediate view via depth-image-based rendering (DIBR)Of sb d.ata IS an important resefflrch problem.

In this paper, to enable transmission of depth maps at low Uniike the more well studied and understood texture
resolution for bit saving, we propose a novel super-regmiut MapPs. depth maps are a relatively new kind of visual data
(SR) algorithm to increase the resolution of the receiveaiiue that possesses unique character!stlcs I'k_e smooth seriace
map at decoder to match the corresponding received higﬁ-harp ed_ges. _See F_'g' 1 for an illustration. Depth maps can
resolution texture map for DIBR. Unlike previous depth mapP€ acquired either directly using depth-sensing cameias [3
SR techniques that only utilize the texture map of the sam&/Pically at lower resolution (LR) than corresponding teet
view 0 to interpolate missing depth pixels of vigwwe use Maps, or derived from texture maps using stereo-matching
texture maps of the same and neighboring viewpointnd algorithms. In either case, it has be_en p_roposed [4] to en-
1, so that the error between the original texture map of view co_de d_epth maps at LR to_ save coding bits, and then at re-
and the synthesized image of viaw(interpolated using tex- ceiver, increase the resolution of the fjecoded L_R depth maps
ture and depth maps of vied) can be used as a regulariza- (SUPer-resolution (SR)) to match the high resolution (HR) of
tion term during depth map SR of vieW Further, piecewise thg correspondlng texture maps for DIBR. In the first case,
smoothness of the reconstructed depth map is enforced KiS means encoding the depth maps at camera-captured LR;
computing only the lowest frequency coefficients in Graph-In the second, it means down-s_ampllng the stereo-matched
based Transform (GBT) domain for each interpolated blockd€Pth maps to LR prior to encoding.

Experimental results show that our SR scheme out-performe
a previous scheme by up 1o7dB in synthesized view quality
in PSNR.

Index Terms— Multiview imaging, depth-image-based
rendering, super-resolution

1. INTRODUCTION

Although there are numerous representations of 3D visual

data proposed in the literaturexture-plus-depth format [1] ~ Fig. 1. The depth map and corresponding texture map of the
has attracted much attention recently, due partly to stronl§ft viewpoint for Teddy.

interest in the free viewpoint TV (FTV) working group in

the MPEG standardization body. In short, texture-plustidep Compared to the more general image SR problem in com-
format means that texture maps (RGB images) and deptbuter vision [5], depth map SR can be performed more sim-
maps (per-pixel physical distances between captured Bbjegly because of the aforementioned unique characteristits a
in the 3D scene and the capturing camera) of multiple closelgvailability of corresponding HR texture maps from the same
spaced viewpoints are encoded and transmitted from sendeiewpoints as helpful side information. As an example, [4]
to the observing receiver. Having received the compressgaroposed to super-resolve depth map of a given viewsing
data, the receiver can then synthesize an image of any freelyR texture map of the same viewpoihduring depth pixel
chosen viewpoint via a depth-image-based rendering (DIBRinterpolation. In this paper, instead we use texture mapseof



same and neighboring viewpointsand1, so that the error 3. GRAPH-BASED TRANSFORM
between the original texture map of viewand the synthe-
sized image of viewl (interpolated using texture and depth In our depth map SR scheme, we use GBT to enforce the
maps of view0) can be used as a regularization term duringpiecewise-smooth prior in a pixel block during depth pixel i
depth map SR of viewd. Further, piecewise smoothness of terpolation. To understand GBT, we briefly discuss the three
the reconstructed depth map is enforced as a prior by constep GBT construction procedure [6] in this section. First,
puting only the lowest frequency coefficients in Graph-dase prominent edges in a x n pixel block are identified. Then,
Transform (GBT) domain [6] for each interpolated block. Ex-a graph describing the pixel connectivity given the ideeifi
perimental results show that our SR scheme out-performeetiges (two neighboring pixels are connected except when di-
[4] by up to1.7dB in synthesized view quality in PSNR. vided by an edge) is constructed. Finally, an adaptive trans
The outline of the paper is as follows. We first discussform is built based on the connectivity graph.
related work in Section 2. We then overview GBT, previously  In the first step, we identify edges (large pixel value tran-
proposed in [6], in Section 3. We discuss our multiview imag-sition across neighboring pixels) in a block. Edge sharpnes
ing system in Section 4, and present our depth map SR algéan be preserved even if filtering in subsequently constlct
rithm in Section 5. Finally, we present experimental ressult adaptive GBT domain is performed.
and conclusions in Section 6 and 7, respectively. In the second step, we treat each pixel inithen block as
anode inagrap§i, and connectit to its four or eight immedi-
ate neighbors in the block, resulting in a 4- or 8-connefgtivi
2. RELATED WORK graph. Then, if there is an edge between two neighboring
pixels / nodes, we eliminate their connection. Given the-con
While compression of texture maps is well studied, compresféectivity graph, we can define an adjacency maiixvhere
sion of depth maps is relatively new, and has been the focus @%(7, j) = A(j, ) = 1if pixel positionsi and; are connected,
many recent research efforts [7, 6, 8]. Many of the proposeando otherwise. We can similarly compute the degree matrix
methods exploit depth maps’ unique characteristics ofpsharD, whereD (i, ) is the number of connections for nodeind
edges and smooth surfaces for compression gain. Though th¥(4,j) = 0 for all i # j.
goal of compact representation of depth information is the In the third step, using computetl andD, we can com-
same, in this paper we develop a novel SR algorithm to inpute the Laplacian matrik = D — A [10]. If we now project
crease resolution of received depth maps at decoder to matetsignalx in the graphg onto the eigenvectors of the Lapla-
HR texture maps for DIBR, so that depth maps can be ersianL, it becomes the spectral decomposition of the signal;
coded in LR at encoder, saving coding bits. i.e., it provides a “frequency domain” interpretation ofj-si
Previous depth map SR algorithms typically exploit struc-nal x given graph suppog. Hence, we can construct GBT
ture similarity between depth maps and correspondingtextu transform using eigenvectors bf In particular, we can stack
maps of the same viewpoints. [9] proposed to super-resol&ixels in then x n block into a lengths? vector and compute
depth maps with the linear MPEG up-sampling filter, wherey = E' - x, whereE is a matrix with eigenvectors df as
filtering across edges is not allowed, thus preserving edgeolumns.
sharpness. The edge information of the super-resolvetidept Using constructed GBE, we can interpret piecewise-
map is extracted from the HR texture map of the same viewsmoothness of a depth block as follows: only the low-
point, where HR edges due to textural changes, rather th&$t L frequency components of = E’ - x are non-zero;
foreground-background transitions, are eliminated byckhe L > 1 depends on how “smooth” the depth block is assumed
ing the local depth intensity gradients in the LR depth mapto bea priori. We will use this interpretation of piecewise-
Also taking advantage of the structure similarity, to ipr ~ Smoothness in our depth map SR algorithm discussed later.
late a pixelu, [4] computed a weight for each afs four
nearest neighbors, based on pixel distance in the depth map 4. MULTIVIEW IMAGING SYSTEM
as well as color difference in the corresponding texture.map
Then, the depth map value of the neighbor with the largesjve first overview the multiview imaging system we envision
weight will be selected to interpolate pixel for our depth map SR problem. At sender, texture maps of
Different from previous proposals where the single texdeft and right views at HR are encoded along with depth maps
ture map from the same viewpoint as the LR depth map isf the same viewpoints at LR. As discussed in the Introduc-
used, in this paper, we utilize texture maps of the same antibn, texture maps are captured in HR, while depth maps can
neighboring viewpointg) and1, so that the error between the be either captured directly in LR, or derived in HR via stereo
original texture map of viewt and the synthesized image of matching and subsequently down-sampledto LR. To preserve
view 1 (interpolated using texture and depth maps of vidw edge sharpness, instead of traditional DCT, each LR depth
can be used as a regularization term during depth map SR bfock is transform-coded using GBT as done in [6], so that
view 0. We will detail our approach in Section 5. filtering across detected edges is avoided and detected LR



edges are losslessly encoded and transmitted to receiver fior rectified texture maps:
inverse transform. Both compressed texture and depth maps
are transmitted to receiver in texture-plus-depth formagp- Ey(m,n) = [L(m,n) — I,(m,n — Xy(m,n) xr)| (1)
resent the 3D scene. _ _ _ o

At receiver, after decoding the received texture and deptW/nereli(m,n) is the intensity of the pixel in row: and col-
maps, LR depth maps must be super-resolved to the sangnn in the left texture map, and it is mappeq to _the plxel
resolution of the HR texture maps. Receiver can then synkr(m,n—Xi(m, n)«r) in the right texture map with disparity
thesize texture map of any intermediate virtual view betwee X(1m, n) and scaling factor.
left and right captured views using the decoded texture maps !N cases when no correspondence can be found in the right
and Super-resoh/ed depth maps of left and r|ght views as aﬁexture map due to camera Shlft, occlusion or unknown dis-
chors via DIBR. Essentially, a synthesized pixel in theuatt ~ Parity in the original disparity map, the above definition of
view is a weighted average of the corresponding pixels in théynthesized view matching error is not meaningful. In these
left and right texture maps, where the weights are inverseljelatively rare cases, we set the synthesized view matching
proportional to the distance between the virtual viewpaird ~ ©rror to zero.
the left and right views. A synthesized pixel that has no&orr
sponding pixels in both the left and right views is filled usin 5.1.1. Approximation of Matching Error
an inpainting technique. We discuss next how SR of depth
maps at decoder can be optimized for best possible DIBR-
synthesized virtual view quality. 4

abs err vs. depth value

5. DEPTH SUPER RESOLUTION WITH
SYNTHESIZED VIEW MATCHING

absolute error

o gt
While existing depth SR techniques use a single HR texture 2 erfunc
. . . two—piece linear
map as side information to help super-resolve a LR depth map 15 - - %
of the same viewpoint, we exploit disparity informattan depth value

both left and right HR te>§t_ure maps for SR of "’,‘ sing!e deF)ﬂ’Fig. 2. Synthesized view matching error function and corre-
map (left or right). Specifically, for each candidate interp sponding two-piece linear approximation.
lated pixelin the left HR depth map, one can map a left texture

pixel to the corresponding pixel in the right HR texture map
via D.IBR' resgltlpg n ?syntheﬂzed view matchmg SO thesized view matching error function with a two-piece éine
the difference in intensity between the two pixels. The idea function:

then to super-resolve a depth map so that it is consisteht wit '

the LR_depth mapnd minimizes the sum of_synthe3|zed view gi(xs) = max{a;(j)z: + b:(j)} e {1,2} )
matching errors of all interpolated depth pixels. J

For ease of later optimization, we approximate the syn-

wherez; is the disparity value of pixel, anda;(j)'s and
5.1. Synthesized View Matching Error Approximation bi(j)'s are respectively the slopes apdhtercepts of the two-
) , L i i piece linear functionj € {1, 2}.
Given th(_e d|_spar|ty information provided by the left dep_th For a given depth pixel, the approximation process is
map, a_plxel in the left texture map can be mappe_d toa plxeés follows. First, we find the minimum and maximum dis-
in the right texture map. The reverse procedure is the We"barity, i aNd dyas, Of the four immediate neighbors of

known stereo matching problem, which finds corresponding ixel i in LR depth map, and define the domain xof as
pixel patches between the left and right texture maps inrord (1 = 8)dumin, (1 + 8)dumax], Wheres, 0 < & < 1, is a pre-

to estimate a disparity map. defined constant. This is based on the assumption that the

Assuming that a left pixel that is mapped geometry-qenih value of a pixel is within or close to the depth range of
correctly to the right should have similar intensity valsdize o neighbors.

right corresponding pixé] we define a per-pixel error func- Next, we calculate the synthesized view matching error

tion as the difference in intensity between correspondirg p for disparity values in the defined domain using (1). Then, we

els for a gr;]|v§r;(§1|§par|ty. Thh's error fu.ncdt'ofn’ V(\;h'ChfW”e "€ find the minimum synthesized view matching error in the do-
to assynthesized view matching error, is defined as follows  ,5in and construct line segments from it to the correspond-

1Though there is a one-to-one correspondence between daptlispar- Ihg errprs aldinin aNddinax 10 get a two-piece “near_ func-_
ity, we assume disparity maps are encoded instead of depts. ma tion. Fig. 2 shows an example of the actual synthesized view

2n the case where the 3D scene is Lambertian, the differerpero. matching error function and corresponding two-piece linea




1. Set a search range for pixefrom the minimum and maximum 5.3. Optimization Algorithm
disparity of its four nearest neighbors. The lower and upper
bound are set as the two endpoints of the two-piece linearfun Problem (4) is difficult with edge set as discrete variables

tion. and transform coefficients as continuous variables. We pro-
2. Compute the synthesized view matching error of each dtgpa POse to solve it in two separate steps: (i) given LR depthkbloc
value within the search range. Y and LR edges, we guess possible HR edge§) Given

3. Find the disparity with the minimum synthesized view g~ discovered HR edgas we can find optimal GBT frequency

error and set it as the turning point of the two-piece linemct  Coefficientsx.
tion.

. . . . . 0o 1 2 o F F B —— LR edges
Fig. 3. Construction of the two-piece linear function for syn- "¢

thesized view matching error approximation F1B |:> 1 — Possible
. 1|ElBslB 2| F B B HR edges

3

approximation. The left and right piece line segments are de

fined by slopes:;(1) anda;(2) and y-interceptsb;(1) and  Fig. 4. An example of depth map super-resolution (from a

bi(2), respectively. 2 x 3 pixel block with pixel intensities F and B to & x 6
Fig. 3 summarizes how we construct the two-piece linpixel block). Possible HR edges can be inferred from the LR

ear function. Note that since the constructed two-pieealin edges.

function is the point-wise maximum of two affine functions,

it is a convex function. 5.3.1. Finding HR Edges

First, we define a feasible search space for HR edges using
the LR depth map and LR edges. As shown in Fig. 4, each

As illustrated in Fig. 1, depth maps are piecewise-smoothR €dge maps to a set of possible HR edges. For example, an
2D functions—smooth interior surfaces within sharp edges¢dge between pixe(s), 1) and(0, 2) in the firstrow of the LR
An elegant way of interpreting the piecewise-smooth prior,blOCk means that there should bg an edge e|the.r between pix-
as discussed in Section 3, is through GBT: only GBT low-&!S (0, 2) and(0,3), or between pixel$0, 3) and pixel(0, 4)
frequency components are non-zero. We hence pose our dRthe corresponding HR block. Hence, we can get sets of
problem in GBT domain, where a depth pixel bla¥kis rep- possible HR edges in a pixel block using LR edges. In order

5.2. Problem Formulation

resented by inverse GBF—! and transform coefficients: to compute synthesized view matching error of a depth block,
for a given selection of HR edges within the search space,
X = d(e) ta, (3) we can fill each missing HR depth pixel (e.g., pixel3) in

Fig. 4) using the nearest filled HR depth pixel on the same

wheree = {ej,ea,...} denotes the set of defined edges inside of the edge (e.g. pix¢D, 4) if there is edge between
a depth pixel block, from which the adaptive GBis con-  pixels(0, 2) and(0, 3)).
structed as described in Section 3. Further, since the contour of a physical object tends to be

Our objective function is a weighted sum of: i) the smooth, we consider atige-consistent penalty in addition to
square difference between the received LR depth b¥ekd  the synthesized view matching error during HR edge search,
the low-pass filtered and sub-sampled version of the recon-€., edges that go back and forth within a block will be penal
structed HR block = ®(e) '« in pixel domain, and i) the ized more. We can now solve for the HR edges by minimizing
total synthesized view matching error of all depth pixels inthe weighted sum of the synthesized view matching error and
the HR block: edge-consistent penalty as follows:

min IDH®(e) o= Y2+ 1) gi(di(e) ') min ~ g:(Xi(e) + 1) |A(ej,e5-1) = Alesin.e5)| (5

e 7 (4) i j
st. ar=0,ke{L+1,L+2,...} whereA(e;, e;—1) is the direction from edge;_ toe;, and
1 is a parameter to control the relative importance of the syn-

where) is a weight parameter specifying the desired tradeofthesized view matching error and edge-consistent penalty.
between the SR term (first term) and synthesized view match- To solve the combinatorial problem (5) is still difficult.
ing error term,H is a low-pass filter prior to down-sampling, We employ a greedy search strategy to efficiently find a set of
and D is the down-sampling operato; (e)~* is thei-th  good HR edges. Specifically, starting from an initial guefss o
row in the inverse GBT matrix(e)~!. To enforce piece- HR edges, we compare each edge to its closest alternative and
wise smoothness, we only allolv(e.g.,L. = 2) lowest GBT  select the one with the smaller penalty. We then repeat until
frequency coefficients to be non-zero. the overall penalty does not decrease further.



5.3.2. Interpolating depth pixels
After finding appropriate HR edges (4) becomes a convex

optimization problem and can be easily solved using a convex

optimization toolCVX 2. With the optimal non-zero GBT low
frequency coefficients: solved, we can get the final super-
resolved depth maK via inverse GBT®(e) 1.

6. EXPERIMENTATION

6.1. Experimental Setup

We tested our proposed SR algorithm based on synthesized

view matching and GBT VM GBT) on two Middlebury
multiview image setsTeddy and Cones®. Experiments
were conducted in the multiview imaging system describe

in Section 4, where texture maps of left and right views are
encoded and decoded using H.264/AVC Reference Software

JM 17.15, while depth maps are low-pass-filtered and down
sampled at encoder and then super-resolved at decoder. G

is used to encode the LR depth map and fixed quantizatio
parameter (QP) values of 24, 28, 32 and 36 are adopted dL*r—
ing compression. The super-resolved depth maps are th?ﬁ

used for DIBR with a simple implementation of 3D warp-
ing [2]. Our coding scheme is compared against three oth

depth maps HR- DCT); (2) H.264 intra with DCT encod-

e
schemes: (1) H.264 intra with DCT encoding original HR

compared t&ol or - DCT. Further3.4dB and2.1dB gain for
Teddy andCones respectively is achieved by our method in
comparison with the baseline schehie- DCT.

PSNR vs. Coded Depth Map Size for Teddy PSNR vs. Coded Depth Map Size for Cones
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Fig. 5. RD curves of different coding schemes féeddy and

é:ones respectively.

Besides objective quality, Fig. 6 and Fig. 7 show super-
résolved depth maps and corresponding synthesized views

Qﬁ' Teddy and Cones respectively with different coding

%chemes at comparable bit rate. We see that edges produced
by SVM GBT are cleaner and sharper, and the interior sur-

ces are much less contaminated by blocking artifacts than
at of Col or - DCT andHR- DCT respectively. More impor-
tantly, the synthesized view facilitated by our generaieutid

r%ap withSVM GBT has much less ringing artifacts along ob-

ject boundary compared to that of the other two methods.

ing reduced resolution LR depth maps, which are super-

resolved at decoder with theol or - based depth SR al-

7. CONCLUSION

gorithm proposed in [4]—the state-of-the-art depth map SR

approach to our best knowleddgeo| or - DCT); (3) GBT en-

Compact representation of depth maps is important for

coding reduced resolution LR depth maps followed by thgexture-plus-depth format of 3D visual data, which is com-

col or - based depth SR Col or - GBT).
The weight parameters, in (4) andy in (5), are experi-

monly used for view synthesis at decoder via depth-image-
based rendering (DIBR). In this paper, we propose a super-

mentally set to 0.01 and 10, respectively. The low-pass filteresolution (SR) algorithm to increase the resolution of the

H in (4) was assumed to be an identity matrix for simplicity.
Note, however, that our formulation is sufficiently genéinait
it can easily adapt to most filters.

6.2. Experimental Results

First, we tried different values for the number of non-zexe |
frequency GBT coefficients in (4). It turns out thatl, = 2
is a good enough value fareddy andCones.

received depth maps to match high resolution (HR) texture
maps, so that depth maps can be transmitted at encoder at
lower resolution (LR), saving coding bits. The key novelty

is to use HR texture map of the same and neighboring views
to compute a synthesized view matching error, which is used
as a regularization term during SR. Piecewise smoothness is
enforced by searching only low frequency components in the
Graph-based Transform (GBT) of the pixel block during in-
terpolation. Experimental results show that our SR albarit

Fig. 5 demonstrates RD curves of our proposed methodutperformed previous ones by up td&rdB in synthesized
and the aforementioned three competing schemes, with théew quality in PSNR.
synthesized view PSNR calculated with respect to the ground

truth middle texture map. We can see wititel or - GBT per-
forms better tharCol or - DCT andHR- DCT, our proposed
SVM GBT achieves synthesized view PSNR gain of upd&
and0.4dB for Teddy and Cones respectively when com-
pared toCol or - GBT, and up tol.7dB and0.8dB gain when

Shttp://cvxr.com/cvx/
“http://cat.middlebury.edu/stereo/newdata.html
Shttp://iphome.hhi.de/suehring/tml/
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