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• Image denoising—a basic restoration problem:

• It is under-determined, needs image priors for regularization

• Graph Laplacian regularizer: should be small for target patch 

• Many works use Gaussian kernel to compute graph weights [2]:

is some distance metric between pixels     and

Motivation (I)
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graph Laplacian matrix

[2] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on graphs: extending high-
dimensional data analysis to networks and other irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.
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approximate

discrete graph continuous manifold

Motivation (II)
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• However…

a. Why is  a good prior?

b. Why using Gaussian kernel for edge weights?

c. How to design a discriminant for restoration?

T( )S x x LxG

T
x Lx

• We answer these by viewing 

• discrete graph as samples of high-dimensional manifold. 



Our Contributions

6

1. Using Gaussian kernel to compute graph weights,
converges to a continuous functional       , which can be 
interpreted as regularizer in continuous domain.

T( )S x x LxG

S

A continuous functional
for regularization

Graph Laplacian 
regularizer SG S

converge

2. Analysis of functional        provides understanding of what signals 
are being discriminated and to what extent, on a point-by-point 
basis in the continuous domain.

S

3. We design a discriminant for regularization in continuous 
domain, then obtain the graph Laplacian regularizer

S

SG

The correspondingDesign discriminant SGobtainS
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Road Map

Continuous Domain Discrete Domain

Obtain continuous 

functional ( )S h

Choose the continuous

feature functions 1{ }N

n nf 

SAMPLE

Get metric space         

on point-by-point basis

2 2R G Compute the weights 

and Laplacian M MR L

Sample            to obtain

the discrete 1}{ D N

n nf
1{ }N

n nf 

Graph Laplacian 

Regularizer ( )DS hG

CONVERGE

• Different                 leads to different regularization behavior!1{ }N

n nf 
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• First, define:

• 2D domain
— the shape of an image

•

— a set of random samples
uniformly distributed on      ,
construed as pixel locations

2R

 T [ ] | ,1i i i iyx i M     s s



M

Graph Construction (I)

Functional
( )S h

Matrix
2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer
( )DS hG

converge

Roadmap

• (Freely) choose      continuous functions

called feature functions, can be

• intensity for gray-scale image  (          )

• R, G, B channels for color image  (           )

( , ) : ,  1nf x R n Ny   

N

1N 

3N  𝑥

𝑦
𝑓𝑛(𝑥, 𝑦)

Ω
𝑂
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• For each pixel location            , define a length vector

is a tunable constant

• Build a graph      with       vertices, each pixel location             
have a vertex 

T

1 2[ ( ) ( ) ( )]D D D

i i i Nx y i i i   v f f f

i s

iV

G i s



2N 

M

Graph Construction (II)

Functional
( )S h

Matrix
2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer
( )DS hG

converge

Roadmap• Sampling       at positions in      gives

discretized feature functions
T

1 1 2 2[ ( , ) ( , ) ( , )]D

n n MMn nf x y f x y f x y f

nf  N

𝑥

𝑦
𝑓𝑛(𝑥, 𝑦)

Ω𝒔𝑖

𝑓𝑛(𝑥𝑖 , 𝑦𝑖)

𝑂



• Weight between vertices      and
iV

jV
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where                and         is a constant
rC

Graph Construction (III)

Functional
( )S h

Matrix
2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer
( )DS hG

converge

Roadmap

• is an r-neighborhood graph, i.e., no edge connecting two 
vertices with distance greater than
G

r

rCr 


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• — its            entry is        

— its           entry is

unnormalized Graph 

Laplacian

A ijw( , )i j

D ( , )i j
1 ij

m

j
w

  L D A

Graph Construction (IV)

Functional
( )S h

Matrix
2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer
( )DS hG

converge

Roadmap
• Our graph      is very general

• e.g., choose a small      with proper     , 

obtain the 2D grid graph

G

 r

• is a continuous candidate function

— samples of 

• — graph Laplacian regularizer, a functional on

( , ) :h x y R

T

1 1 2 2[ ( , ) ( , ) ( , )]D

M Mh x y h x y h x y h

T( ) ( )D D DS h h LhG
MR

( , )h x y



• The continuous counterpart of       is a 
functional        on domain

is the gradient of

 
2 1

T 1( ) ( ) ( ) detS h h h dxdy
 






   G G

T[  ]x yh h h    h

SG
S 
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Convergence of the Graph Laplacian Regularizer (I)

[3] H. Knutsson, C.-F. Westin, and M. Andersson, “Representing local structure using tensors ii,”
in Image Analysis. Springer, 2011, vol. 6688, pp. 545–556.

• is a 2-by-2 matrix:
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matrix Structure tensor [3] of the

gradients                       1{ ( , )}N

n nx yf 

G

Functional
( )S h

Matrix
2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer
( )DS hG

converge

Roadmap

• is computed from                on a point-by-point basis G 1{ }N

n nf 
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• Theorem : convergence of       to      

“~” means there exist a constant
such that equality holds.

neighborhood               shrinks

SG

number of samples increases

S

M

Convergence of the Graph Laplacian Regularizer (II)

[4] M. Hein, “Uniform convergence of adaptive graph-based regularization,” in Learning Theory. Springer, 2006, pp. 50–64.

Functional
( )S h

Matrix
2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer
( )DS hG

converge

Roadmap

• With results of [4], we proved it by viewing a graph as proxy of an
-dimensional Riemannian manifold

Vertex Coordinate on Ω Coordinate on (N+2)-D manifold

2N 

iV  ,i i iyxs
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 
2 1

T 1( ) ( ) ( ) detS h h h dxdy
 






   G G

T( ) ( )D D DS h h LhG

 2

1

T
· n

N

n nf f


   G I

Justification of Graph Laplacian Regularizer (I)

Functional
( )S h

Matrix
2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer
( )DS hG

converge

Roadmap

• converges to       ,
With       , any new insights we 
can gain on       ??

SG S

SG

S

• The eigen-space of       reflects statistics of 

• measures length of         in a metric space 
established by      !

• integrates the gradient norm

T 1( ) ( )h h G h
G

G 1{ }N

n nf 

S
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Green dots are 1{ ( , )}N

n nx yf 

Justification of Graph Laplacian Regularizer (II)

• Metric space defiend
by    

𝜕𝑥

𝜕𝑦

𝑙

𝑂

G

l: Eigenvector corresponds to
the largest eigenvalue of      , 

goes through the cluster of             .
G

1{ }N

n nf 

Ellipses are norm-balls, reflects
how concentration of             1{ }N

n nf 

 
2 1

T 1( ) ( ) ( ) detS h h h dxdy
 






   G G

 2

1

T
· n

N

n nf f


   G I
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Justification of Graph Laplacian Regularizer (III)

• The 2D metric space provides a clear picture of what signals are 
being discriminated and to what extent, on a point-by-point basis 
in the continuous domain!

𝜕𝑥

𝜕𝑦

𝑙
𝑂

(a)

𝜕𝑥

𝜕𝑦

𝑙

𝑂

(b)

• (a) is more skewed, or discriminant, than (b)

• In (a), a small distance away from the direction 
orthogonal to l brings large metric distance
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• Lesson: Select feature functions properly!

• Suppose  A is the truth gradient, choose            such that

• (i) l goes through A;     (ii) Ellipses stretched flat along l.

1{ }N

n nf 

Justification of Graph Laplacian Regularizer (IV)

• For the case of discrete images, one can seek for 
similar patches in terms of gradient!

(b) A bad scheme…

𝜕𝑥

𝜕𝑦 𝐴

𝑙

𝑂

(a) A good scheme,                are
similar to the ground-truth A

1{ }N

n nf 

𝜕𝑥

𝜕𝑦

𝑙
𝑂

𝐴
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Problem Formulation and Algorithm Development

• Adopt a patch-based recovery framework to denoise the image

• For a noisy patch       on the image

1. Assume a “self-similar-in-gradient” image model, search for            
patches similar to       in terms of gradient in pre-filtered image.

2. Compute graph Laplacian from the similar patches.

3. Solve the unconstrained quadratic optimization iteratively:

to obtain the denoised patch 

• Aggregate denoised patches to form an updated image.

• Denoise the given image iteratively to gradually enhance its quality.

0p

q
・

1K 

0p

2 T

0 2
arg min   

q

q p q q Lq
・

• Our denoising method is named

Graph-based Denoising using Gradient-based Self-similarity (GDGS)
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• Test images: Lena, Barbara, Boats and Peppers

• i.i.d. Additive White Gaussian Noise (AWGN)

• Non-Local GBT (NLGBT) – an existing graph-based denoising method [5]

• Compared to BF, NLM and NLGBT

Image Method
Standard Deviation 

15 20 30

Lena
GDGS NLM 33.47 32.03 32.35 31.51 30.61 29.45

BF NLGBT 27.00 33.22 24.80 31.90 21.52 30.19

Barbara
GDGS NLM 31.71 30.76 30.33 30.15 28.33 27.91

BF NLGBT 25.78 31.22 23.86 29.62 21.03 27.67

Boats
GDGS NLM 31.59 30.69 30.30 29.74 28.55 27.68

BF NLGBT 26.42 31.05 24.89 29.56 22.19 27.77

Peppers
GDGS NLM 33.30 31.96 32.38 31.48 30.83 29.50

BF NLGBT 28.96 33.18 24.67 32.09 21.49 30.49

Experimental Results (I)

[5] W. Hu, X. Li, G. Cheung, and O. Au, “Depth map denoising using graph-based transform and group sparsity,” 
in IEEE Int’l Workshop on Multimedia Signal Processing, 2013.

Performance comparisons in PSNR (dB)

1.4 dB better 
than NLM!
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25 Noise standard deviation 

GDGS (31.39 dB) NLM (30.38 dB)

GDGS (29.34 dB) NLM (28.62 dB)

Experimental Results (II)

GDGS NLGBT

GDGS NLGBT

• GDGS vs NLGBT • GDGS vs NLM
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• Our latest work [6] derives the optimal metric space      , leading 
to optimal graph Laplacian regularization for denoising.

26

Towards Optimal Graph Laplacian Regularization

[6] Jiahao Pang, Gene Cheung, Antonio Ortega, Oscar C. Au, "Optimal Graph Laplacian Regularization 
for Natural Image Denoising," submitted to IEEE ICASSP, Brisbane, Australia, April, 2015.

G
・

𝜕𝑥

𝜕𝑦

𝑙

𝑂 𝜕𝑥

𝜕𝑦

𝑙
𝑂

𝜕𝑥

𝜕𝑦

𝑙

𝑂

• Metric space should be discriminant to the extent that 
estimates of ground-truth gradient are reliable.

  2 1

0 0
arg min ( ) |

K

k kF
Pr d




 

G

G G G g g g g
・

∆—whole gradient domain ideal metric space given ground truth g

posterior prob. of ground truth
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Conclusion

Before After

• Image denoising is an ill-posed problem and requires good priors 
for regularization.

• graph Laplacian regularizer with Gaussian kernel weights 
converges to a continuous functional.

• Analysis of the continuous functional provides theoretical
justification of why and under what conditions the graph Laplacian 
regularizer can be discriminant.

• Our denoising algorithm with graph Laplacian regularizer and 
gradient-based similarity out-performs NLM by up to 1.4 dB.

• Our latest work obtains the optimal graph Laplacian, which is 
discriminant when the estimates are accurate, and robust when 
the estimates are not.
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