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Motivation ()

* |mage denoising—a basic restoration problem:

noise

observation —, Y = X + € —

desired signal

* |tis under-determined, needs image priors for regularization
fidelity term

- 2 . .
min ”y_)(”2 + A prior(x) «— prior term
X
 Graph Laplacian regularizer: should be small for target patch X
SG (X) = XT X | = D — A <+ graph Laplacian matrix

 Many works use Gaussian kernel to compute graph weights [2]:

AR
W, = ex dISt(IZ, i)
o)

dist(i, j) is some distance metric between pixels i and |

[2] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on graphs: extending high- 4
dimensional data analysis to networks and other irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, 2013.



Motivation (1)

* However...
a. Whyis SG (X) =Xx'LX a good prior?
b. Why using Gaussian kernel for edge weights?

c. How to design a discriminant X'LX for restoration?

 We answer these by viewing

» discrete graph as samples of high-dimensional manifold.

f 'o_ ./;/*'1 o X o. ad
NS P Sll 2pproximate
N PP, SN2 :' o. ‘\o .‘l . "

discrete graph continuous manifold




Our Contributions

1. Using Gaussian kernel to compute graph weights, S_(x) = x'Lx
converges to a continuous functional S, , which can be
interpreted as regularizer in continuous domain.

Graph Laplacian A continuous functional
. converge L
regularizer S S,, for regularization

2. Analysis of functional S, provides understanding of what signals
are being discriminated and to what extent, on a point-by-point
basis in the continuous domain.

3. We design a discriminant S, for regularization in continuous
domain, then obtain the graph Laplacian regularizer S,

[Design discriminant Sgwﬂ\e corresponding S ]
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Road Map

Continuous Domain Discrete Domain

Choose the continuous Sample{f,}\_. to obtain
feature functions{f,},_, the discrete {f >},

4 4

Get metric space G € R*? Compute the weights
on point-by-point basis and Laplacian L € R"*"

Obtain continuous m Graph Laplacian
functional S, (h) Regularizer S.(h°)

- Different {f }", leads to different regularization behavior!




Graph Construction ()

_ fine: Roadmap
First, define: Features Samples
: 2 {f. —) {fo
e 2Ddomain QcR nSn=1 n Sn-1
— the shape of an image ‘ .'
- _ Matrix Graph weights,
’ 1_‘:{Siz[xi y.] |Si€Q11§|SM} G e R* and L e RMM
— a set of M random samples ‘ CEETE ‘
uniformly distributed on Q, Functional Regularizer
construed as pixel locations S, (h) S.(h")

* (Freely) choose N continuous functions
f(X,y):Q—>R,1<n<N

called feature functions, can be

* intensity for gray-scale image (N =1)

* R, G, Bchannels for colorimage (N =3)



Graph Construction (1)

« Sampling f. at positionsin I" gives N Roadmap
: : : Features Samoles
dlscrstlzed feature functions T [ ) {an}F?Ll
fo =010 ) (%o Y2) o 1o (X Y ) ¥ &

Matrix Graph weights,
G e R#? and L e R™

‘ converge ‘

Functional Regularizer
S (h) S:(h°)

* For each pixel location s, €I', define alength N +2 vector
v, =[xy, pEC30) gt (30) ... pEG (D]
pf is a tunable constant

e Build a graph G with M vertices, each pixel location s, eI
have a vertex V

10



Graph Construction (1)

Roadmap

Features ' Samples

N DN
degree before normalization (e Ui

P :Zm_ll//(dij) ‘ ‘

Matrix Graph weights,

* Weight between vertices V, and V,

G e R*? and L e RMM

—(,0I ). w(d;) ¥ e &

normalization factor 7/ Functional RegularDizer
Sq(h) Se(h™)
clipped Gaussian kernel
d’ di d2 =|lv, = v [
exp| ——— | |d|<r, istance d;; =|lv, -V,
v(d)= p( 232j|| ZJZH N "Lz_ o
0 otherwise :Hsi —31H2+ﬂ P (S ORS A §))

where r=¢C_ and C._ isa constant

G isanr-neighborhood graph, i.e., no edge connecting two
vertices with distance greater than r

11



Graph Construction (V)

. Roadmap
* Ourgraph G is very general Features E—
* e.g., choose a small g with proper I ok {f, s

obtain the 2D grid graph

p e

Matrix Graph weights,

o G e R¥ and L e R™™
N 000000 & e &
O—O—0O0—0O0—0—0 Functional Regularizer
b b & & o6 o Sq(h) S:(h°)
« A —its (i,]) entryis W unnormalized Graph
D —its (i, J) entryis Z 1 ,J} Laplacian L=D-A

* h(Xx,y):Q — Ris a continuous candidate function
h® =[h(x,y,) h(x,,V,)...h(x,,, Y, )]' — samples of h(x,y)
« S.(h")=(h")"Lh"— graph Laplacian regularizer, a functional on R

12



Convergence of the Graph Laplacian Regularizer (l)

. _ Roadmap
* The continuous counterpart of S is a T E—
functional S, on domain Q (F3 —) o1,

4 4

2y-1
So(n) =[] (Vh)'G*(Vh)(VaetG)" didy  (Matrix' (Graphweights
G e R*? and L e R™™

Vh=[0,h ayh]T is the gradient of h ‘ T ‘
Functional Regularizer
S (h) S:(h°)

* G is a2-by-2 matrix:
] T T
2
fo [ Znaheth Zaeh)

2x2 identit
matrix ! \ Structure tensor [3] of the
gradients {Vf_(x, y)},

N
=1 +,822an-(an )T
n=1

« G is computed from {Vf,}\., on a point-by-point basis

[3] H. Knutsson, C.-F. Westin, and M. Andersson, “Representing local structure using tensors ii,” 13
in Image Analysis. Springer, 2011, vol. 6688, pp. 545-556.



Convergence of the Graph Laplacian Regularizer (1)

Roadmap

* Theorem : convergence of S. to S,
M 2y-1
lim

fim _1)SG(hD)~
£ \

number of samples M increases
converge
neighborhood I = ¢C_shrinks -
V{1,974 -
means there exist a constant

such that equality holds.

* With results of [4], we proved it by viewing a graph as proxy of an
N + 2 -dimensional Riemannian manifold

Coordinate on Q Coordinate on (N+2)-D manifold

\ Si = (Xi , yi) Vi = [Xi Yi ,Bf1D (1) :szD (1)... /Bfr\? (i)]T

14
[4] M. Hein, “Uniform convergence of adaptive graph-based regularization,” in Learning Theory. Springer, 2006, pp. 50-64.
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Justification of Graph Laplacian Regularizer ()

Roadmap

Sa(n) = [[ (V)G 4(Vh)(VdetG ) dxdy Fg?tures — S{?crprles

G=1+p5" Vi (vf,) ¥ 4

Matrix Graph weights,

S.(h°) = (h°)"LhP G e R* and L e R™"
‘ converge ‘
* S, convergesto S, Functional Regularizer

With S, , any new insights we Sa (M) 507

can gainon S; ??

* The eigen-space of G reflects statistics of {Vf }",

e (Vh)'G™(Vh) measures length of Vh in a metric space
established by G!

« S, integrates the gradient norm

16



Justification of Graph Laplacian Regularizer (ll)

 Metric space defiend

by G A) e 09
Y °
Ellipses are norm-balls, reflects o/®
. N
how concentration of {Vf, }._, Green dots are{Vf (x, y)}",

N

|: Eigenvector corresponds to
the largest eigenvalue of G,
goes through the cluster of {Vf }"

Sa(h) = [[ (V)T G *(vh) (VdetG) " dxdly
G=1+p4Y" Vi (Vf)
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Justification of Graph Laplacian Regularizer (lll)

 The 2D metric space provides a clear picture of what signals are
being discriminated and to what extent, on a point-by-point basis

in the continuous domain!

45 49 ®
y W20 Yy o o2 .
e e 0o * 0\
o Se0 oo o
.0.00 ® o o
]
o /o
Oy 0 Ox
o > >
l
[
(b)

(a)

e (a)is more skewed, or discriminant, than (b)

* In(a), a small distance away from the direction
orthogonal to | brings large metric distance

18



Justification of Graph Laplacian Regularizer (I1V)

e Lesson: Select feature functions properly!

 Suppose Ais the truth gradient, choose {f,}.such that

e (i) | goesthrough A; (ii) Ellipses stretched flat along |.

A 0., A A
9 x
Y O:A.O.. > PS l
¢ Xeo'0 ®
.O.oo °® °
® (
{ ]
d ? e ° Oy
> - - >
0 ® O o o
l °
i °
[ ) ]
(a) A good scheme, {Vf.}\.. are (b) A bad scheme...

similar to the ground-truth A

* For the case of discrete images, one can seek for
similar patches in terms of gradient!

19
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Problem Formulation and Algorithm Development

e Adopt a patch-based recovery framework to denoise the image
* For a noisy patch p, on the image

1. Assume a “self-similar-in-gradient” image model, search for K -1
patches similar to P, in terms of gradient in pre-filtered image.

2. Compute graph Laplacian from the similar patches.
3. Solve the unconstrained quadratic optimization iteratively:
q =argmin |p, —q||§ +q9'Lq
to obtain the denoiseqd patch q°

* Aggregate denoised patches to form an updated image.

* Denoise the given image iteratively to gradually enhance its quality.
* QOur denoising method is named
Graph-based Denoising using Gradient-based Self-similarity (GDGS)

21
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Experimental Results (I)

* Test images: Lena, Barbara, Boats and Peppers
e j.i.d. Additive White Gaussian Noise (AWGN)
* Non-Local GBT (NLGBT) — an existing graph-based denoising method [5]

e Compared to BF, NLM and NLGBT 1.4 dB better
than NLM!

Performance comparisons in PSNR (dB)

Standard Deviation

Image Method
15 20 30
. GDGS NLM 33.47 32.03 32.35 31.51 30.61 29.45
ena
BF NLGBT 27.00 33.22 24.80 31.90 21.52 30.19
GDGS NLM 31.71 30.76 30.33 30.15 28.33 27.91
Barbara
BF NLGBT 25.78 31.22 23.86 29.62 21.03 27.67
5 GDGS NLM 31.59 30.69 30.30 29.74 28.55 27.68
oats
BF NLGBT 26.42 31.05 24.89 29.56 22.19 27.77
GDGS NLM 33.30 31.96 32.38 31.48 30.83 29.50
Peppers
BF NLGBT 28.96 33.18 24.67 32.09 21.49 30.49

[5] W. Hu, X. Li, G. Cheung, and O. Au, “Depth map denoising using graph-based transform and group sparsity,”
in IEEE Int’| Workshop on Multimedia Signal Processing, 2013.



Experimental Results (ll)

GDGS vs NLGBT

GDGS NLGBT GDGS (29.34 dB) NLM (28.62 dB)

Noise standard deviation o =25
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Towards Optimal Graph Laplacian Regularization

e Qur latest work [6] derives the optimal metric space G/, leading
to optimal graph Laplacian regularization for denoising.

4

A

A

Oy

\ A

a1

\ A

* Metric space should be discriminant to the extent that

estimates of ground-truth gradient are reliable.
posterior prob. of ground truth

G = argcgninHAIIG ~G,(9)|; Pr(g | {gk}g)dg

A—whole gradient domain ideal metric space given ground truth ¢

[6] Jiahao Pang, Gene Cheung, Antonio Ortega, Oscar C. Au, "Optimal Graph Laplacian Regularization
for Natural Image Denoising," submitted to /EEE ICASSP, Brisbane, Australia, April, 2015.
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Conclusion

* Image denoising is an ill-posed problem and requires good priors
for regularization.

e graph Laplacian regularizer with Gaussian kernel weights
converges to a continuous functional.

* Analysis of the continuous functional provides theoretical
justification of why and under what conditions the graph Laplacian
regularizer can be discriminant.

* Our denoising algorithm with graph Laplacian regularizer and
gradient-based similarity out-performs NLM by up to 1.4 dB.

* Our latest work obtains the optimal graph Laplacian, which is
discriminant when the estimates are accurate, and robust when
the estimates are not.
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