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NIl Overview

 National Institute of Informatics

e Chiyoda-ku, Tokyo, Japan.

e Government-funded research lab. .
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of Informatics

o Offers graduate courses & degrees
through The Graduate University for
Advanced Studies.

60+ faculty in “informatics’:
quantum computing, discrete
algorithms, database, machine
learning, computer vision, speech &
audio, image & video processing.

e Getinvolved!
e 2-6 month Internships.

e Short-term visits vid
MOU grant.

e |Lecture series,
Sabbatical.



Outline

e Traditional vs. Graph Signal Processing
e Graph Fourier Transform (GFT)

e Depth Map Compression

e Depth Map Denoising

e Depth Map Interpolation
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Traditional Signal Processing

e Traditional discrete signals live on regular
data kernels (unstructured).

e Ex.1: audio / music / speech on regularly
sampled timeline.

e Ex.2: image on 2D grid.
e Ex.3: video on 3D grid.

e Wealth of SP tools (transforms, wavelets,
dictionaries, etc) for tasks such as:

e compression, denoising, classification.
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Graph Signal Processing

e Signals live on graph.
e Graph is sefs of nodes and edges.
e Edgesreveals

e Data kernel itself is structured.

1. Data domain is naturally a graph.

: @
e Ex.1: posts on social networks.
e EX.2: temperatures on sensor networks.
2. Embed signal structure in graph. %

e Ex.1:images: 2D grid — structured graph.

Graph Signal Processing (GSP) addresses the problem of
processing signals that live on graphs.



Graph Signal Processing

Research questions:

 Sampling: how to efficiently acquire / node
sense a graph-signale edge

e Graph sampling theorem:s.

 Representation: Given graph signal, how
to compactly represent it¢

* Transforms, wavelets, dictionaries.

e Signal restoration: Given noisy and/or
partial graph-signal, how to recover ite

e Graph-signal priors.
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Outline

e Traditional vs. Graph Signal Processing
e Graph Fourier Transform (GFT)

e Depth Map Compression

e Depth Map Denoising

e Depth Map Interpolation
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Graph Fourier Transtorm (GFT)

for Graph-signals
Graph Fourier Transform: —0
e Signal-adaptive transform:

1. If two connected pixels are “similar”, then

edge weight is large — adjacency matrix A.

2. Compute graph Laplacian L = D-A.

3. Perform eigen-decomposition on L for GFT.

X = Zai§0i

e [ntuition: Embed gebme’rric stfructure of

signal as edge weights in graph.
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Facts of Graph Laplacian & GFT

O-O-0+0

L is a high-pass filter.

X' LX is one measure of variation in signal.

X' LX :%Zwu(xi —x,f = 2 Ao
1] I

| il
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B -1 0
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\

L for 4-node un-
weighted line graph

L is positive semi-definite; eigenvalues A's 20 —

eigenvalues are graph frequencies.

L=D - A; A =0 must be eigenvalue w/ vector [1 ... 1]

Use eigenvectors for spectral decomposition of signal.

e GFT defaults to DCT for un-weighted connected line.

e GFT defaults to DFT for un-weighted connected circle.

Usage Example: first non-zero eigenvalue — spectral clustering (Shi
& MCI'I'(’OO) DJI visit 05/2015
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e Traditional vs. Graph Signal Processing

Outline

Graph Fourier Transform (GFT)
Depth Map Compression
Depth Map Denoising

Depth Map Interpolation

DJI visit 05/2015



-42

-42

-41

-41

Depth Map Compression
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« DCT are fixed basis. Can we do betterz

e |[dea: use adaptive GFT to improve sparsity.

1.

2.

Assign edge weight 1 to adjacent pixel pairs.
Assign edge weight 0 to sharp depth discontinuity.

Compute GFT for transform coding, fransmit coeft.

«—  GFT
a =YX

Transmit bits (contour) to identify chosen GFT to

decoder (overhead of GFT).
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Depth Map Compression

Q: Why GFT leads to sparsenesse

Ans 1. Capture statistical structure of signal in edge
weights of graph.
o Adjacent pixel correlation O or 1 for piecewise smooth (PWS)
signal.

e Can be shown GFT approximates KLT given Gaussian Random
Markov Field (GRMF) model.

filtering
operation

Ans 2: Avoid filtering across sharp edges. /
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C. Zhang and D. Florencio, “Analyzing the optimality of predictive transform coding using graph-based models,” 13
IEEE Signal Processing Letters, vol. 20, NO. 1, January 2013, pp. 106—-109.
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Depth Map Compression |
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o LP-filter & down-sample signal before GFT.
DCT < LP & down-sample
y= DHXx operators

e GFT on LR block. =
a =Yy

LR-GFT

* Details:
GFT 1

PSNR vs. Coded Depth Map Size for Teddy 0
B 2. Enc: Encode down-sampled LR block using GFT (texture).

A

Enc: Detect & encode HR edges (sfructure).

w
-

w
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o 3. Dec: Deduce LR edges from HR edges (structure).

4. Dec: Decode LR block in GFT, up-sample & interpolate
using HR edges (smooth texture).

N
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o ~0--HR-DCT

--roct Results: up to 68% bitrate reduction compared to HR-DCT.

& HR-GBT
A . MR-GBT Wei Hu, Gene Cheung, Antonio Ortega, Oscar Au, "Multiresolution Graph Fourier Transform

0 20 30 40 50 80 70 for Compression of Piecewise Smooth Images,” IEEE Transactions on Image Processing, vol.24, 14
coded depth map size in kbits no.1, pp.419-433, January 2015.
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e Traditional vs. Graph Signal Processing

Outline

Graph Fourier Transform (GFT)
Depth Map Compression
Depth Map Denoising

Depth Map Interpolation
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Depth Image Denoising

* Problem:
 Acquired depth images are nois,y/ desired signal
observation Y=X+V<—— noise

e Strong signal prior: piecewise smooth (sparsity in GFT).
o Self-similarity in images (non-local means#).

e Our algorithm (in a nutshell):

1. ldentify similar patches (same structure).

2. Compute average patch for cluster, compute GFT.

Intuition: up sparsification.
Sparsely represented signal = Denoised signal

# A. Buades, B. Coll, J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale 16
Modeling Simulation (SIAM Interdisciplinary J.), vol.4., no.2, pp.490-530, 2005.



Denoising Algorithm

common GFT from avg. patch |

observation i

NN

N
Sy -Uaf: a3 lal,

W = |w;; : code vector for observation |
wis) Algorithm:
g2 1. Identify similar patches, compute average
] 7 . . .
wij =e patch. (self-similarity)
2. Given average patch, compute “similarity”
L=D_—W between adjacent pixels. Construct graph.
3. Compute graph transform (GFT).
LU = UA 4. Given GFT, seek sparse representation.
*Wei Hu, Xin Li, Gene Cheung, Oscar Au, "Depth Map Denoising using Graph-based Transform and Group Sparsity," IEEE International 17

Workshop on Multimedia Signal Processing, Pula (Sardinia), Italy, October, 2013. (Top 10% paper award.)



Depth Image Denoising

 Experimental Setup:

« Test Middleburry depth maps: Sawtooth
« Additive White Gaussian Noise (AWGN)

« Compare to: Bilateral Filtering (BF), Non-Local Means Denoising, (NLM),
Block-Matching 3D (BM3D).

 Results: 2.28dB improvement over BM3D.

NLGBT BM3D
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e Traditional vs. Graph Signal Processing

Outline

Graph Fourier Transform (GFT)
Depth Map Compression
Depth Map Denoising

Depth Map Inferpolation
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Depth Image Inferpolation
 Problem:

e |dea:*

« Adaptive kernel

) Wi,j = €X[P4

 Fill holes in sparsely sampled depth images.

1. Find right graph for missing pixels.

2. Compute edge weights using initial values.
_ ‘yi - yj

R

> %

O

3. Find smooth graﬁh-signa| gi\fen observations.

2
: yiH2 + AX'LX
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Denoising Results

Original Noised
(theta = 20)
LARK Our Proposal

(26.990B) (27.360B)
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Interpolation Results

Original Partial sample

LARK QOur Proposal
(34.82dB) (35.31dB)
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Summary & Open Problems

* By embedding image structure onto a graph, signal is
smooth wrt graph.

e Current Work:

e GSP for joint denoising / SR of GPWS images (ICIP'14).
e GSP for bit-depth enhancement in images (ICIP'14).
e Variants of graph transforms (in submitted SPL).

e Open Questions:
e Appropriate graphe
e Optimize desired signal and graph simultaneously.

e Given graph, appropriate set of basise

e Other fransforms, (biorthogonal) wavelets, dictionaries.
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