
Software Synthesis of Variable-length Code Decoder using a Mixture of
Programmed Logic and Table Lookups

Gene Cheung, Steve McCanne, Christos Papadimitriou
Department of EECS

University of California, Berkeley

Abstract

Implementation of variable-length code (VLC) decoders can involve a tradeoff between number of decoding steps
and memory usage. In this paper, we proposed a novel scheme for optimizing this tradeoff using a machine model
abstracted from general purpose processors with hierarchical memories. We formulate the VLC decode problem as an
optimization problem where the objective is to minimize the average decoding time. After showing that the problem
is NP-complete, we present a Lagrangian algorithm that finds an approximate solution with bounded error. An imple-
mentation is automatically synthesized by a code generator. To demonstrate the efficacy of our approach, we conducted
experiments of decoding codebooks for pruned tree-structured vector quantizer and H.263 motion vector that show a
performance gain of our proposed algorithm over single table lookup implementation and logic implementation.

I. INTRODUCTION

The cornerstone of a wide variety of data compression algorithms is variable-length coding
(VLC). Huffman code [1], for instance, maps a sequence of recurring, statistically independent
symbols into a minimally described bit sequence by representing frequently occurring symbols with
short codewords and rare symbols with longer codewords. Likewise, a pruned tree-structured vector
quantizer (PTSVQ) maps an input vector into one of a finite number of codewords in a multi-stage
approximation that produces short codewords for coarse vectors and longer codewords for finer-
grained vectors. In either case, anencodermaps an information source into discrete codewords that
are transmitted to adecoder, which in turn maps the codewords back to a discrete set of symbols
that, perhaps only approximately, reconstitutes the original information source.

In many applications, the decoder’s performance is critical and should thus be optimized. Un-
fortunately, the most straightforward and well-known method for decoding a set of prefix VLCs is
quite suboptimal. In this approach, the set of codewords is represented as a binary tree, where each
edge defines an input decision and a leaf node represents a terminal symbol. The decoder parses
the next symbol from the input bit stream by traversing the tree from the root, following the corre-
sponding edge for each bit in the input until a leaf is reached, i.e., the symbol is decoded. While this
approach is space-efficient, as it only requires memory size proportional to the number of symbols
in the codebook, it is time-inefficient because the cost of decoding each symbol isO(d), whered is
the the length of the longest codeword.

A more efficient approach can be realized by trading space for decoding steps. Rather than
processing only one bit at a time, the decoder could process several bits in parallel using table
lookups. In this approach, the decoder forms an index from the nextd bits of input and use this
index to locate an entry in a lookup table. The entry contains both the corresponding symbol and
the length of the codeword identified. Accordingly, the decoder consumes the proper number of bits
from the input and simultaneously determines the next symbol in the coded bit stream. While this
approach is time-efficient as it requires anO(1) processing cost to decode each symbol, its space
requirements can be prohibitive as the lookup table requiresO(2d) space.

Clearly, an “optimal” implementation would lie somewhere in between these two extremes and,
in particular, would depend on how optimal performance is defined. In a hardware implementation,
space might be more important, while in a software environment, memory might be cheap while

1

optimizer C / Assemblyopt. config. generatorVLC’s

c(cmp) = Q
P

M

M 2

1

T

T

1

21S

S2

a) Optimizer-Generator Pair b) Machine Model

Fig. 1. Block Diagram of Proposed System and Machine Model

processing cycles scarce. Depending on these criteria, a number of previous works have proposed
various schemes for exploiting this decoding steps / space tradeoff.

To minimize memory required to represent the Huffman tree, [3] [4] present compact data struc-
tures used to store the VLC set while maintaining reasonable decoding speed. To improve the de-
code speed, [5] proposes to decode groups ofn bits each at a time using different context-dependent
decoding tables. The price of the speedup is the increase in memory usage for the tables. To avoid
excess memory usage, [6] first defines a metric calledmemory efficiency, then presents a tree cluster-
ing algorithm that creates data structures with high memory efficiency used for Huffman decoding.
To decode very large data symbol set (n = 106), [7] uses a special set of VLCs called acanonical
codeto implement minimum redundancy coding. Because of its numerical sequence property, a
canonical code can be represented without explicitly specifying the binary tree. A fast decoding
algorithm was derived based on this property.

We build on these previous approaches with a novel framework that systematically optimizes
a VLC implementation to explicitly account for the tradeoff between decoding steps and space
that is tailored for general purpose machine architectures (e.g., a Pentium PC). In our approach, a
VLC decoder implementation is synthesized and optimized by carefully balancing the performance
tradeoffs of memory accesses against iteratively programmed logic. Rather than restricting our im-
plementation to a single lookup table or to a single tree-based data structure, our system decomposes
the decoding algorithm into a mixture of multiple table lookup stages and imperative logic in a way
that best matches the resource constraints of the target computing environment. For example, if we
know parameters like the size of the CPU’s on-chip processor cache, the relative cost of a cache
miss (i.e. off-chip memory access), the cost of an imperative logical comparison, we could lay out
a set of lookup tables that are congruent with the target environment’s memory hierarchy. That is,
given a machine model and a set of VLCs, we can synthesize an implementation that minimizes the
expected time to decode a symbol by creating sub-tables and assigning these sub-tables to memories
such that frequently accessed tables reside in local, fast cache memory, while larger, less frequently
accessed tables reside in slower, larger memories. Note that we are solving the general case of
decoding VLCs, a superset that includes the set of minimum redundancy codes. While minimum
redundancy coding has the freedom to choose any codebook that has the minimum average code-
word length, the general case assumes the particular choice of codebook is important. Applications
where the codebook is important include PTSVQ, alphabetic minimum redundancy codes [8] etc.

A typical computing configuration might consist of a very fast 16KB on-chip level 1 (L1) cache, a
512KB off-chip medium-speed level 2 (L2) cache, and a large 128MB DRAM slow-speed memory.
Figure 1b, for example, illustrates how we might capture these characteristics with a parameterized
machine model. Given this model, we can use theoptimizer-generatorpair of Figure 1a to optimally
layout the decoding tables with respect to the machine model (theoptimizer) and synthesize a native
implementation for the target architecture (thegenerator).

To formally address this problem, we formulated a precise definition of the optimization prob-
lem in Section II. Unfortunately, this optimization problem turns out to be NP-complete, shown

2

4

32

1

0

1

1

10

0
s3 s4s2

s1s0

0

1 00 s4
01 s3

M1

10 s2
11 -

0 1

s1 s0

1

a) binary tree representation b) Hybrid of lookup table and logic

Fig. 2. Example of a Configuration

in Section III). To avoid the combinatorial cost of the NP-complete optimal solution, we devel-
oped an approximate algorithm based on a particular Lagrangian-based optimization technique in
[11]. Our approximate algorithm, presented in Section IV, has fast execution time and generates
a VLC decoder whose performance deviates from optimality by a bounded amount. In Section V,
implementation of the code generator is discussed, and results are presented.

II. M ACHINE MODEL

Modern general-purpose processors use hierarchical memories to enhance performance, where
small, fast memories are located near the CPU and larger, slower memories are situated further
away. Consequently, the execution speed of a machine instruction that accesses memory depends
on the type of memory referenced. A machine model that reflect this characteristic is shown in
Figure 1b. If the processorP accesses a datum residing in type 1 memoryM1 (type 2 memoryM2),
it incurs memory access timeT1 (T2). If the instruction does not involve memory access, then the
execution time depends on the complexity of the instruction itself. In Figure 1b, the cost of a logical
comparisoncmp isQ. For the chosen machine model, the size of the type 1 memory isS1, and the
size of the type 2 memory isS2 =1.

Given such a machine model, we can evaluate the average decoding time of a VLC decoding
algorithm that uses a mixture of lookup tables and programmed logics. For example, if the set of
VLCs in Figure 2a is implemented as shown in Figure 2b, where a width 2-bit lookup table located
in type 1 memory is first indexed, followed possibly by a logical comparison, then the average
lookup time is:p0(Q + T1) + p1(Q + T1) + p2T1 + p3T1 + p4T1, wherepj is the probability of
symbolj. We call a particular arrangement of logical comparisons and lookup tables in hierarchical
memories aconfiguration. More generally, we can compute the average decoding time per symbol
of a configurationb, denotedH(b), as:

H(b) =
X
j

pj(ajT1 + bjT2 + cjQ) (1)

whereaj (bj) is the number of type 1 (type 2) memory access needed to decode symbolj, andcj
is the number of logical comparisons needed. In other words,aj (bj) is the number of lookup tables
residing in type 1 (type 2) memory used in the decoding process of symbolj.

We can pose a well-formed optimization problem that we call the “VLC decode problem”:

min
b2B

H(b) s.t. R(b) � S1 (2)

whereB is the set of possible configurations andR(b) is the total size of lookup tables assigned
to type 1 memory. In words, the problem is: given a set of VLCs and their associated probabilities,
what is the optimal configuration such that the decoding time is minimized? Note that the optimal
configuration must not assign tables to type 1 memory in such a way that it exceeds the memory
capacity of the machine model. This is of real concern in practice, where the length of the longest
codeword can be13 bits or longer [9]; a full lookup table containing213 elements would be too
large to fit into type 1 memory (L1 cache) of common processors.

3

x2 x1 x0 y2 y1 y0 z2 z1 z0
a0 1 0 0 1 0 0 1 0 0
a1 0 0 1 0 0 1 0 0 1
a2 0 0 1 1 0 0 0 1 0
a3 0 1 0 0 1 0 0 1 0
K 1 1 1 1 1 1 1 1 1

Fig. 3. Partial Sum Version of 3D Matching Problem:N = 3,M = 4

We can also write the cost of a configuration in terms of the probability density (weight) of nodes
in the binary tree. For example, the decoding time of the configuration shown in Figure 2b can be
written as:

H(b) = w4T1 + w1Q (3)

wherew4 = p0 + � � �+ p4 is theweightof node 4, andw1 = p0 + p1 is the weight of node 1. Cost
of a configuration written in this form is used in Section IV.

We will next show that even in the case when we use only lookup tables, the problem is NP-
complete. So the general problem using a combination of logical comparisons and lookup tables is
also NP-complete, and we turn to an approximate solution, which we present in Section IV.

III. NP-COMPLETENESSPROOF

We first rephrase the VLC decode problem as a decision problem: given a set of VLCs with
associated probabilities, does there exist a configuration of lookup tables and table assignments to
hierarchical memories that has a cost below a target cost�C, where cost is expressed in (1)? In this
section, we sketch an outline of the proof of NP-completeness for this decision problem. The details
of the proof can be found in [13].

A. 3D Matching Problem

The proof is by reduction from a version of the “3D matching problem” [10]. This well-known
NP-complete problem assumes the input is categorized into three distinct groups, say men, women
and pets, each of sizeN . A list of 3-tuples of sizeM > N specifies all possible matches of men,
women and pets. For example, a tuple(im; jm; km) specifies manim, womanjm and petkm is a
possible match. The decision problem is: given a list of 3-tuples, is it possible to selectN of M
possible matches such that each ofN men, women and pets is uniquely assigned to one match.

The same problem can be reformulated as the “partial sum” version as follows. Suppose we have
M numbers in numeric baseM + 1, each with3N digits. We transform each 3-tuple(im; jm; km)
in the input list to a numberam = (M + 1)2N+im + (M + 1)N+jm + (M + 1)km , 8im; jm; km 2
f0:::N � 1g. Notice each number has exactly three 1’s in three digit positions and the rest of
the digits are zeroes. Note further that overflow in any digit position is avoided for any subset of
numbers by selecting the numeric base to beM +1. Now, the decision problem is: does there exist
a subset of theseM numbers such that the sum of the subset is exactlyK, a number with ones in
all 3N digit positions. An example of the partial sum version is shown in Figure 3 forN = 3 and
M = 4. We see that the numbers in the subsetfa0; a1; a3g add up toK. This version of the 3D
matching problem is equivalent to the original version discussed earlier.

B. Overview of Proof

By reduction from the partial sum version of the 3D matching problem, we will show the VLC
decode problem is NP-complete, stated below as a theorem.

Theorem 1:The VLC decode problem using only lookup tables and under a hierarchical memory con-
straint is NP-complete.

We now sketch the outline of the proof. For every instance of the partial sum version of the 3D
matching problem, we create a corresponding instance of the VLC decode problem, polynomially

4

...
0

h

h

h

1,0

2,0
3,0

Hmax

w

H

r

2,0

q1,0

q3,0

q

r rM-1

3,m

2,mq

q1,m

q

2,m

rm

h = 4

h = 2
h = 3

1,m

3,m

a) Construction Overview b) Gadget Construction for eacham

Fig. 4. Proof Constructs used in the NP-complete Proof of VLC decode Problem

transformed from the instance of the partial sum problem. If we solve the corresponding instance
of the VLC decode decision problem, we also solve the original instance of the partial sum decision
problem, and therefore the VLC decode problem is at least as hard as the partial sum problem. Since
the partial sum problem is NP-complete, the VLC decode problem is also NP-complete.

We construct the corresponding instance of the VLC decode problem as follows. We first con-
struct the set of VLCs, represented by a binary tree. It is a full binary tree with rootr of height
H such that2H > M , attached at the bottom withM subtrees — one for each numberam,
m 2 f0:::M � 1g. This is shown in Figure 4a. In addition, there is one non-zero probability
leaf at the bottom of the full tree, called theheavy leaf, with probabilityw. The subtrees are the
gadgetsnecessary to map the numbersam’s in the 3D matching problem to the VLC decode prob-
lem. Each subtreem is a concatenation of three mini-trees of heighth1;m, h2;m andh3;m and has a
single leaf with non-zero probabilityq1;m, q2;m andq3;m respectively. Mini-tree 2 and 3 are single
sided, and mini-tree 1 has three branches of the same heighth1;m, with non-zero probability leaf in
the middle branch and concatenations to mini-tree 2 and 3 at the other branches. See Figure 4b for
an example of the three mini-trees in a subtreem.

We first set type 1 memory sizeS1 of the machine model to be2H + K. We selectH so that
a lookup table of widthh > H will not fit in type 1 memory (2H+1 > S1). Now we can set the
probability of the heavy leafw large enough so that the optimal configuration must contain a type 1
memory assigned lookup table rooted atr of widthH — this is the only way to ensure that decoding
the codeword corresponding to the heavy leaf takes only one type 1 memory access. This leaves
K type 1 memory space for theM subtrees. Knowing the optimal configuration must contain the
above mentioned table at rootr, the decision problem is now reduced to: does there exist a set of
configurations for theM subtrees such that the resulting cost is smaller than�C, whereK is the size
of the type 1 memory available for the subtrees?

We call the subtree configuration that employs one type 1 memory assigned lookup table for
each of the three mini-trees the3-triangle configuration. We selecth1;m, h2;m andh3;m properly
so that the combined size of the three tables of subtreem is am. Therefore, type 1 memory usage
for 3-triangle configured subtreem is alsoam. We call the subtree configuration that uses one
type 2 memory assigned lookup table for the entire subtreem the default configuration. Type 1
memory usage in this case is0. By selecting machine model parameterT1, T2 and leaf probabilities
q1;m, q2;m, q3;m properly, 3-triangle configuration of subtreem reduces lookup cost byam over the
default configuration. Moreover, other configurations besides 3-triangle and default configuration
are inferior in that they use up too much type 1 memory space while reducing cost only marginally.

Given the above constructions, we claim the following: If there exists a subset of numbers that
adds up toK in the partial sum problem, then there exists a corresponding subset of subtrees in
the VLC decode problem, in 3-triangle configurations, that will reduce the cost byK while using
up exactlyK leftover type 1 memory. The converse is also true. That means by answering the

5

corresponding VLC decode decision problem, we also answer the partial sum decision problem.
Therefore the VLC decision problem is as least as hard as the partial sum problem, and so the VLC
decode problem is NP-complete. See [13] for the details of the NP-completeness proof.

IV. L AGRANGE APPROXIMATION ALGORITHM

Given that the VLC decode problem is NP-complete, we propose the following approximate
algorithm that has fast execution time and terminates with bounded error. We first present a high-
level description of the algorithm, then we detail the notion ofsingular value— special multiplier
values used in the algorithm to ensure it converges in finite time.

A. Development of Algorithm

Our algorithm is based on an application of Lagrange multipliers to discrete optimization prob-
lems with constraints, as was done by Shoham and Gersho [11] for bit allocation problems. Instead
of solving the original constrained VLC decode problem in (2), we solve the corresponding La-
grangian problem, which is unconstrained:

min
b2B

H(b) + �R(b) (4)

where� is a Lagrange multiplier with non-negative value, andH(b) , B andR(b) are defined as
before. If there exists a multiplier value�� such that the solution of the Lagrangian problem,b�,
satisfies the constraint of original problem with equality — i.e.R(b�) = S1, thenb� is also the
solution to the original problem. Because the Lagrangian is unconstrained, it is potentially easier to
solve. However, there is an additional step of adjusting the multiplier value� so that the constraint
variable,R(b), satisfying the constraint in (2).

To solve (4) for a particular value of�, we first represent the set of VLCs in question by a binary
tree, where nodes are numbered in post-order with rootr. We define a functionf�(i), which returns
the minimum Lagrangian cost,H(b) + �R(b), of all possible configurations for the binary tree
rooted at nodei for given multiplier value�. We can solvef�(i) via the following case analysis. At
nodei, we have three choices: i) perform a logical comparison at nodei with costwiQ; ii) create a
lookup table at nodei of some widthh and place it in type 1 memory with costwiT1 + �2h; and,
iii) create a table of widthh and place it in type 2 memory with costwiT2. The minimum of these
three costs for all possible table width plus the recursive cost of the children nodes will be the cost
of the function at nodei, expressed below:

f�(i) = min

8<
:wiQ+

X
j2L1;i

f�(j); min
1�h�Hi

2
4wiT1 + �2h +

X
j2Lh;i

f�(j)

3
5 ; min

1�h�Hi

2
4wiT2 +

X
j2Lh;i

f�(j)

3
5
9=
; (5)

whereHi is the height of binary tree rooted at nodei, andLh;i is the set of nodes at heighth of tree
rooted at nodei. We can simplify (5) by the following observations. First, since there is no penalty
cost for placement of lookup table in type 2 memory, the best possible choice given a table at nodei
is assigned to type 2 memory is to create a widthHi table — this eliminates the cost of the children
nodes. Second, we can restrict our search space of configurations,B in (2) and (4), to the set of
configurations that does not assign a table of size greater thanS1 to type 1 memory — a necessary
condition to satisfy constraint in (2). Now we can simplify (5):

f�(i) = min

8<
:wiQ+

X
j2L1;i

f�(j); min
1�h�blog2 S1c

2
4wiT1 + �2h +

X
j2Lh;i

f�(j)

3
5 ; wiT2

9=
; (6)

We note that there are overlapping sub-problems when solvingf�(r) using (6); ifs is a children
node ofr andt is a children node ofs, thenf�(t) will be used in the calculation off�(r) as well as
the calculation off�(s). To avoid solving the same sub-problem more than once, we use a dynamic

6

λ3 λ

R(b)

λ2

*

λ1

R1

R2

I II III

λ

L(λ) = f (r)
x1 x3

x4

x2λ

λ λ21

a) constraint variable vs. multiplier b) Lagrangian cost vs. multiplier

Fig. 5. Constraint variable and Lagrangian cost as functions of multiplier

programming tableF�[] of sizer �1 to store the calculated valuesf�(i) for i = 1:::r. Each time the
functionf�(i) is called, it first checks if the entryF�[i] has been filled. If it has, thenf�(i) simply
returns the valueF�[i]. Otherwise, it calculates the value using (6) and stores it in the table. After
solving the Lagrangian problem using (6), we have a configuration, denoted byb�, that minimizes
the Lagrangian problem for a particular multiplier value�.

The crux of the algorithm is to find� such that the memory size constraint is met with equality,
i.e. R(b�) = S1. It can be shown that the constraint variableR(b�) is inverse proportional to the
multiplier �. Therefore, a simple strategy to search for the appropriate multiplier value is to do
binary search on the real line to driveR(b�) to the actual memory sizeS1. Note that there may not
exist a multiplier value such thatR(b�) = S1. In that case, we find the smallest multiplier value
such thatR(b�) < S1. The solution to the Lagrangian now becomes an approximate solution, with
the error bounded by the following theorem:

Theorem 2:Let b� be the optimal solution to (2). Letb1, b2 be optimal solutions to (4) for multipliers�1,
�2 respectively, such thatR(b1) < S1 andR(b2) > S1. The error of the approximate solutionb1 to (2) can
be bounded as follows:

jH(b1)�H(b�)j � jH(b1)�H(b2)j (7)
See lemma 3 of [12] for a proof of this theorem.

B. Singular Values — multiplier values with multiple solutions

When the constraint variable is close to the memory size, there is a faster method to find the next
multiplier value than binary search. Because the problem is discrete, there are only finite number
of optimal configurations for0 � � � 1. As a consequence, if we sweep� from 0 to 1, there is
a discrete set of multiplier values at which the optimal configuration changes from one to another.
In Figure 5a, we see that the constraint variableR(b�) is a decreasing step function with respect to
multiplier �. Notice at special values of�, there are multiple optimal configurations, denoted by
circles, and therefore multiple values of constraint variable. For example, there are two values of
R(b�),R2 andR1, that resulted simultaneously from two optimal configurations for� = �2. These
unique values of� which yield multiple optimal solutions are calledsingular valuesin [11].

An important observation is that neighboring singular values share a common optimal solution.
For example, singular values�1 and�2 share a common optimal solution withR(b�) = R2. Be-
cause constraint variableR(b�) is non-increasing with respect to multiplier�, together with the
above observation, we can conclude that by solely looking at the optimal configurations of the sin-
gular values, it is sufficient to discover all configurations that are solutions to the Lagrangian. Our
approach when constraint variableR(b�) is close to constraintS1, is to step to the neighboring
multiplier value until the best possible value is found. This approach is similar to the one in [11].

To find the neighboring singular value, we first observe from (5) that by construction, the optimal

7

configuration has Lagrangian cost of form:

f�(i) =
X
x2X

wxT1 +
X
x2X

2hx�+
X
y2Y

wyT2 +
X
z2Z

wzQ (8)

whereX is a set of tables assigned to type 1 memory,Y is a set of tables assigned to type 2 memory,
andZ is a set of nodes performing logical comparisons. Rewriting the equation yields a simpler
representation: a linear function of� with slopemi and y-interceptci:

f�(i) = ci +mi� (9)

ci =
X
x2X

wxT1 +
X
y2Y

wyT2 +
X
z2Z

wzQ (10)

mi =
X
x2X

2hx (11)

Note that this linear function is the optimal solution to the Lagrangian only within a small neigh-
borhood of the current multiplier value�. As � increases, if another configuration with a different
slope and y-intercept becomes the minimum of all configurations, then that configuration becomes
the optimal solution to the Lagrangian. In Figure 5b, as� increases from�1�� to�1+�, optimal
configuration switches fromx1 tox3. As shown, minimum Lagrangian cost as function of the multi-
plier,L(�) = f�(r), is a piecewise linear function. Locating the point at whichL(�) switches from
one linear piece to another, means locating where the optimal configuration changes, and therefore
where constraint variableR(b�) changes.

To locate the larger neighboring singular value, we first defineg�(i) as a function that returns the
next potential larger singular value for the tree rooted at nodei. This value can be derived from one
of two cases. First, it is the value at which a new configuration that uses a new lookup operator at
nodei (for example, a logical comparison at nodei instead of a type 1 memory lookup table), in
combination with the configurations of the children nodes, becomes optimal as the multiplier value
increases. Second, it is the value at which one of the children nodes of nodei changes its optimal
configuration, which affects the optimality calculation for nodei. g�(i) will return the smaller of
these two values, as expressed in the following pseudo-code:
1. temp := I

�
[ci;mi]; [wiQ+

P
j2L1;i

cj ;
P

j2L1;i
mj]

�

if temp > �, then g�(i) := temp // check config. w/ logic at node i

elseg�(i) :=1

2. temp := min1�h�blog S1c

n
I

�
[ci;mi]; [wiT1 +

P
j2Lh;i

cj ; 2
h +
P

j2Lh;i
mj]

�o

if temp > � & temp < g�(i), then g�(i) := temp // check config. w/ type 1 memory table at node i

3. temp := I ([ci;mi]; [wiT2; 0])
if temp > � & temp < g�(i), then g�(i) := temp // check config. w/ type 2 memory table at node i

4. temp := minj2L1;i g�(j)

if temp > � & temp < g�(i), then g�(i) := temp // check the potential s.v.’s of children nodes

where functionI([c1;m1]; [c2;m2]) takes in the slopesm’s and y-interceptsc’s of two lines, and
returns the intersection point. If they are parallel lines, it returns1.
g�(i) can be tabulated as (6) is being solved; the slopemi and y-interceptci of nodei are calcu-

lated using (9) after the optimal configuration is found for tree rooted ati, and they are then stored
in dynamic programming tableM [] andC[], similar to tableF�[] used in solving (6). When the
constraint variable is sufficiently close to the memory size, multiplier valueg�(r) is used instead.

V. IMPLEMENTATION & RESULTS

A. Implementation of Optimizer-Code Generator Pair

An optimizer serves as the front-end of our optimizer-generator pair. A VLC table containing
the symbols and associated codewords and probabilities are input into the optimizer, along with the
values of the parameters of the machine model that models the underlying processor. The optimizer

8

1

table width

symbol

0 table offset

0 00000 logic offset

a) Array element layout

#define initDec()
int off[1];
asm lea EAX, logic0
asm lea EBX, logic0
asm sub EBX, EAX
asm mov off[0], EBX

p[0]= -2147483648;
p[1]= -2147483647;
p[2]= -2147483646;
p[0+3]= off[0];

#define match(index, A)
... // table lookup
logic0: if (A >= 0) f
index = 3;
asm jmp done g

else f
index = 4;
asm jmp done g

done: ;

b) Initialization macro c) Decoding macro

Fig. 6. Array Element Layout, Example of Generated Code

parses the table and transforms it into a binary tree. It then performs the optimization described in
Section IV. The computed configuration is passed on to the code generator.

In general, the computed configuration has a mixture of lookup tables and logical comparisons,
and it is the code generator’s job to implement the configuration using a mixture of C and native
assembly code. Code generation for programmed logic is relatively straight-forward; a sequence of
nestedif statements with labels are generated corresponding to the section of the binary tree that
uses logical comparisons. Code generation for lookup tables is more complicated, as tables need to
reside in hierarchical memories corresponding to their memory assignments. In architecture where
explicit cache movement is possible via native assembly codes (e.g. DEC Alpha), we can create
lookup tables and assign them explicitly to the hierarchical memories as prescribed in the computed
configuration. In other architectures such as the Pentium, we use the following approximation
scheme instead, which creates lookup tables assigned to type 1 memory in a way that they will be
more likely to reside in the L1 cache.

We first define an arrayp, large enough to contain all the elements in all the tables. For all
the tables that are assigned to type 1 memory, we map the tables onto the array in breadth-first
order, starting at the root of the tree. This will ensure that all type 1 memory assigned tables are
in contiguous memory, and that each type 1 memory assigned mother-child table pairs are closer
together than other type 1 assigned tables. We then do the same procedure for the type 2 memory
assigned tables starting at the root of the tree. This ensures that type 1 memory assigned tables are
more likely to be in the cache than type 2 memory ones.

The encoding scheme for each array element is shown in Figure 6a. If the most significant bit
(MSB) of the element is 1, then we have reached the leaf of the tree, and the next 31 bits contain the
symbol number. If MSB is zero and the next5 bits are non-zero, then the5 bits encode the width
of the next table. The last26 bits contains the offset in memory location of the next table relative
to the first element of the arrayp. If the 5 bits are zeroes, then the last26 bits contains the offset in
memory location of the next programmed logic instruction relative to the first logic instruction.

The code generator first generates an initialization macroinitDec() , written in C and in-line
Pentium Assembly code, that performs initializations of all such array elements. It then generates
the decoding macromatch(index, A) , which performs the decoding procedure outlined by the
configuration. In Figure 6, we see the example initialization macro and decoding macro for the
configuration in Figure 2b.match(index, A) first performs a table lookup. If it is successful,
then it will jump todone and return the correct symbol number in variableindex . Otherwise, it
will jump to logic0 to perform a logical comparison.

B. Results

To test our algorithm, we ran our algorithm with two different sets of inputs. The first set of VLCs
is the motion vector VLC table from H.263 video compression standard [9]. The longest codeword
in this case is 13 bits. We fed the codebook and codeword probabilities into our optimizer-generator

9

Logic only Optimal Full Table Moffat & Turpin
H.263 VLC 3.87 4.76 4.32 3.82

PTSVQ 2.67 4.16 3.70 -

Fig. 7. Results for decoding TSVQ and H.263 VLC, in mil lookups per sec

pair to generate an optimal VLC decoder. For the parameters of the cost model, we letS1 = 16kB,
T1 = 1, T2 = 3, andQ = 0:5, which are estimates for our testbed, a 266MHz Pentium processor.

To compare our approximate solution to the optimal, we use the pseudo-polynomial algorithm
discussed in [12] to find the optimal solution. We first note that the execution of the approximate
algorithm takes seconds on this data set, while the pseudo-polynomial algorithm takes 10-15 min-
utes. Note also the the pseudo-polynomial algorithm would be completely impractical for larger
codebooks. When the optimal solution is found, we notice that the optimal configuration is the
same as our approximate configuration.

For a test bit stream, we generated 10 million random codewords using the available codeword
probabilities. Using our testbed machine, we execute our VLC decoder 20 times on the bit stream to
obtain an average lookup speed. In Figure 7, we first compare the performance of our decoder to two
simple decoders: single table lookup implementation, and logic only implementation discussed in
the Introduction. we see our decoder is a10:2% faster than the single table lookup implementation,
and is23:0% faster than the logic only implementation. Since the set of VLCs is a canonical code,
we are able to compare our algorithm to algorithm ONE-SHIFT in [7]. We see in Figure 7 that our
algorithm has a24:6% improvement over algorithm ONE-SHIFT.

The second set of VLCs is the codebook of a pruned tree-structured vector quantizer. We ob-
tained the TSVQ source code from [14]. The training set used for the construction of the codebook
consists of three 512x512 grey-scale images: the well-knownlena , tiffany andbaboon im-
ages. Using the training set as input to the program, we obtained the PTSVQ codebook and the
codeword probabilities for vector dimension 4 and rate 5. The longest codeword was length 15. In
Figure 7, we see that we have 12.4% improvement over the full table lookup implementation and
55% improvement over the logic only implementation.

REFERENCES

[1] A. Huffman, “A Method for the Construction of Minimum Redundancy Codes,”PROC. IRE, 40 (1952) 1098-1101.
[2] A. Gersho, R.M. Gray,Vector Quantization and Signal Compression, 1992.
[3] D. Hirschberg, D. Lelewer, “Efficient Decoding of Prefix Codes,”Communications of the ACMvol.33, No.4,

pp.449-59, April 1990.
[4] Kuo-Liang Chung, Yih-Kai Lin, “A Novel Memory-efficient Huffman Decoding Algorithm and its Applications,”

Signal Processing, Oct. 1997, vol.62, (No.2):207-13.
[5] Andrzej Sieminski, “Fast Decoding of the Huffman Codes,”Information Processing Letters, No.26, pp.237-241,

1998.
[6] R.Hashemian, “Memory Efficient and High-Speed Search Huffman Coding,”IEEE Trans. Commun., vol.43, No.10,

pp.2576-2581, October 1995.
[7] A.Moffat and A.Turpin, “On the Implementation of Minimum Redundancy Prefix Codes,”IEEE Trans. Comm.,

vol.45, No.10, pp.1200-1207, October 1997.
[8] R.Yeung, “Alphabetic Codes Revisited,”IEEE Trans. on Info. Theoryvol.37, No.3, pp.564-572, May 1991.
[9] Draft ITU-T Recommendation H.263, Video Coding for Low Bitrate Communication, 1995.
[10] Garey and Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness, pp.224, 1979.
[11] Y.Shoham and A.Gersho, “Efficient Bit Allocation for an Arbitrary Set of Quantizers,”IEEE Trans. ASSP, vol.36,

pp.1445-1453, September 1988.
[12] G.Cheung and S.McCanne, “Optimal Routing Table Design for IP Address Lookups Under Memory Constraints,”

accepted toInfocom 99.
[13] G.Cheung, S.McCanne, C.Papadimitriou, same title to be submitted as Technical Report, Department of EECS,

University of California, Berkeley, 1999.
[14] ftp://isdl.ee.washington.edu/pub/VQ/code/

10

