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Frequency analysis

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, challenges, and applications,” Proceedings of 

the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

signal on graph kernel
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Graph Signal Processing

Gene Cheung (genec@yorku.ca)

Graph kernels

Graph Signal Processing (GSP) studies spectral 

analysis tools for signals residing on graphs.

Graph Signal Processing=+



2nd eigenvector

1 2 3 4 8…2,1w 1 1

TVVL =

eigenvalues along diagonal

eigenvectors in columns

Graph Fourier Transform (GFT)

Graph Fourier modes: eigenvectors of graph Laplacian matrix L = D - W.

GFT defaults to DCT for un-weighted connected line.

GFT defaults to DFT for un-weighted connected circle.

1. Eigenvectors are (global) aggregates of (local) edge weights.

▪ More variations for larger eigenvalues.

2. Eigenvalues (≥ 0) as graph frequencies.
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Graph Spectrum

Gene Cheung (genec@yorku.ca)

[1] G. Cheung, E. Magli, Y. Tanaka, M. Ng, "Graph Spectral Image Processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, May 2018. .
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*https://en.wikipedia.org/wiki/Delaunay triangulation

Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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V2: 1st AC component

location diff.
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Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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V3: 2nd AC component

location diff.
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Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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V4: 9th AC component

location diff.
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Edge weights

Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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GSP:  SP framework that unifies concepts from multiple fields.

Graph Signal

Processing* (GSP)

Combinatorial 

Graph Theory
Spectral 

Graph Theory

Computer 

Vision

Computer Graphics

Machine 

Learning

spectral

clustering

eigen-analysis of 

graph Laplacian, 

adjacency matrices

graphical model, 

manifold learning, 

classifier learning

Laplace-

Beltrami 

operator

Laplace equation,

Diffusion
Partial Differential 

Eq’ns

Max cut, graph 

transformation

DSP
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GSP and Graph-related Research 
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What is a good graph?
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• Graph captures pairwise relationships.

1. Domain knowledge.

2. Correlations.

3. Feature distance. 

• Graph Learning from Data:

1. Learn sparse inverse covariance matrix from 

observations [1].

▪ Graphical Lasso, CLIME.

2. Learn metric to determine feature distance [2].

Gene Cheung (genec@yorku.ca)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).

[2] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," IEEE TPAMI, 2022.



• Previous works designed for positive graphs.

• Voting records in a Parliament              anti-correlation represented as negative edges [1].
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Temperature sensor network 3D geometry 2D image pixels

Signed Graphs

[1] Chinthaka Dinesh, Saghar Bagheri, Gene Cheung, Ivan V. Bajic, "Linear-time Sampling on Signed Graphs via Gershgorin Disc Perfect Alignment," ICASSP’22, Singapore, May 2022.

Signed graph

“No”

“Yes”
“Yes”

“No”

Gene Cheung (genec@yorku.ca)14



Directed Graphs

Gene Cheung (genec@yorku.ca)15

(a) Following Network in Twitter (b) Paper Citation Network

[1] Yuejiang Li, H. Vicky Zhao, Gene Cheung, "Eigen-Decomposition-Free Directed Graph Sampling via Gershgorin Disc Alignment," ICASSP’23, Rhodes, Greece, June 2023.



Sparse Precision Matrix Estimation: GLASSO

• Given empirical covariance matrix Σ, Graphical Lasso 

computes positive-definite (PD) precision matrix Θ:

• 1st and 2nd terms are likelihood.

• 3rd term promotes sparsity.

• Solved via block coordinate descent (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.

Gene Cheung (genec@yorku.ca)16



Graph Laplacian Estimation

• Assume precision matrix is:

• Generalized graph Laplacian (GGLs), 

• Diagonally dominant generalized graph Laplacian (DDGLs), or 

• Combinatorial graph Laplacian (CGLs).

• Given empirical covariance matrix S, computes Laplacian Θ:

• K = S + H, H is regularization matrix.

• Lg(A) ensures Θ is GGL.

• Solved via block coordinate descent (BCD) algorithm.

[1] H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints," in IEEE 

Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017

Gene Cheung (genec@yorku.ca)17

NOTE: Interpret precision 

matrix as graph Laplacian 



Graph Laplacian Estimation w/ Eigen-Structure Constraint

• Key Assumption: graph Laplacian matrix L has 

chosen first K eigenvectors.

Gene Cheung (genec@yorku.ca)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).
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1. Side info to derive first K e-vectors.

2. Fast computation of first K e-vectors.

3. Desire eigen-structure.

• Define convex cone         of PSD matrices with same first K eigenvectors.

• Design projection operator to        inspired by Gram-Schmidt procedure.

• Given empirical covariance matrix ത𝐂, computes graph Laplacian 𝐋:

• Solve via alternating BCD and projection algorithm.



Graph Laplacian Estimation for Complex Graph Signals

Gene Cheung (genec@yorku.ca)

[1] Chinthaka Dinesh, Junfei Wang, Gene Cheung, Pirathayini Srikantha, "Complex Graph Laplacian Regularizer for Inferencing Grid States," submitted to 

IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Glasgow, Scotland, October 2023.
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• Complex graph signal: each node i has complex value 𝑥𝑖 ∈ ℂ.

• Hermitian Graph: directed graph with complex conjugate weights on opposite 

directed edges between each node-pair.

• Hermitian adjacency, graph Laplacian matrices, w/ REAL eigenvalues (frequencies).

• Complex graph Laplacian 

Learning (generalize CLIME):

• Linear program to solve:

• Define auxiliary var. to account for 

real-/imaginary-parts.

[2] T. Cai, W. Liu, and X. Luo, “A constrained L1 minimization approach to sparse precision matrix estimation,” Journal of the American Statistical

Association, vol. 106, no. 494, pp. 594–607, 2011.



Application: Image Coding

• Transform Coding is integral component in image compression.

• Problem:  DCT is fixed transform and does not adapt locally.

• Existing Work 1: Asymmetric Discrete Sine Transform 

(ADST) fits better prediction residuals [1]. 

• Existing Work 2:  Karhunen-Loeve transform (KLT) adapts 

well iff ∃ reliable empirical covariance matrix ത𝐂 [2].

Gene Cheung (genec@yorku.ca)

[2] Ian Blanes and Joan Serra-Sagrista, “Pairwise orthogonal transform for spectral image coding,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, 

no.3, pp. 961–972, 2011.

[1] J. Han, A. Saxena, V. Melkote, and K. Rose, “Jointly optimized spatial prediction and block transform for video and image coding,” in IEEE Transactions on 

Image Processing, April 2012, vol. 21, no.4, pp. 1874–1884.
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Application: Image Coding

• Key Idea: derive first K e-vectors from model, compute N-K e-vectors from data.

• Advantages: 

1. Reduce degree of freedom when empirical covariance ത𝐂 is unreliable. 

2. Parameter K is tunable depending on covariance reliability.

3. Reduce computation cost for first K transform coefficients.

• Disadvantage:

1. Larger computation cost than DCT.

Gene Cheung (genec@yorku.ca)

[1] Saghar Bagheri, Tam Thuc Do, Gene Cheung, Antonio Ortega, “Hybrid Model-based / Data-driven Graph Transform for Image Coding,” IEEE Conference on Image 

Processing, 2022.

21

reference blocks

target block



Image Coding: results (energy compaction)

• Setting: WebP image codec [1]. DC4 intra-prediction mode. Improve prediction 

residual coding of 4x4 block over default DCT. 

Gene Cheung (genec@yorku.ca)

[1] https://developers.google.com/speed/webp

22

Hybrid has medium 

energy compaction
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Spectral Graph Filter for Image Denoising

24

• Graph Laplacian Regularizer (GLR) 𝐱𝑇𝐋𝐱 is a smoothness measure.

• Denoising has simplest formation model 𝐲 = 𝐱 + 𝐳, thus formulation

min
𝐱

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋𝐱

𝐈 + 𝜇𝐋 𝐱∗ = 𝐲

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.

Gene Cheung (genec@yorku.ca)

𝐱𝑇𝐋𝐱 = ෍

(𝑖,𝑗)∈𝐸

𝑤𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2

= ෍

𝑘

𝜆𝑘 ෤𝑥𝑘
2

smooth signal low-pass signal
𝐱∗ = 𝐈 + 𝜇𝐋 −1𝐲

𝐱∗ = 𝐕diag 1 + 𝜇𝜆1, 1 + 𝜇𝜆2, … −1𝐕𝑇𝐲

low-pass filter!



Spectral Graph Filter for Image Denoising
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• Graph Laplacian Regularizer (GLR) 𝐱𝑇𝐋𝐱 is a smoothness measure.

• Denoising has simplest formation model 𝐲 = 𝐱 + 𝐳, thus formulation

• To promote Piecewise Smoothness (PWS), 𝐋 𝐱  is signal-dependent:

• Fix L and solve unconstrained QP each iteration.

min
𝐱

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋𝐱
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Bilateral filter weights𝐈 + 𝜇𝐋 𝐱∗ = 𝐲

min
𝐱

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋 𝐱 𝐱

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, April 2017.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.

Signal-dependent GLR

Gene Cheung (genec@yorku.ca)



OGLR Denoising Results:  visual comparison

26

• Subjective comparisons (             )40 =I

Original Noisy, 16.48 dB K-SVD, 26.84 dB

BM3D, 27.99 dB PLOW, 28.11 dB OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

Gene Cheung (genec@yorku.ca)



OGLR Denoising Results:  visual comparison
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[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

• Subjective comparisons (             )30 =I

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB

Gene Cheung (genec@yorku.ca)
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Point Cloud Denoising: Graph filter design

[1] C. Dinesh, G. Cheung, I. Bajic, "Point Cloud Denoising via Feature Graph Laplacian Regularization," vol. 29, pp. 4143-4158, IEEE TIP, January 2020..

Gene Cheung (genec@yorku.ca)

Method: 

• Construct similarity graph 

based on surface normals.

• Optimize graph filter 

based on noise statistics.



• Problem: Acquired point cloud 

video has low point density.

• Solution: 

• Find similar 3D patches in 

consecutive frames.

• Super-resolve patches in 

consecutive frames via GLR.

29

Point Cloud Video Super-Resolution

[1] Chinthaka Dinesh, Gene Cheung, Ivan V. Bajic, "Point Cloud Video Super-Resolution via Partial Point Coupling and Graph Smoothness," IEEE TIP, June 2022.

Gene Cheung (genec@yorku.ca)
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Point Cloud Video Super-Resolution

[1] Chinthaka Dinesh, Gene Cheung, Ivan V. Bajic, "Point Cloud Video Super-Resolution via Partial Point Coupling and Graph Smoothness," IEEE Transactions 

on Image Processing, vol. 31, pp.4117-4132, June 2022.

Gene Cheung (genec@yorku.ca)
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Point Cloud Video Super-Resolution

[1] Chinthaka Dinesh, Gene Cheung, Ivan V. Bajic, "Point Cloud Video Super-Resolution via Partial Point Coupling and Graph Smoothness," IEEE Transactions 

on Image Processing, vol. 31, pp.4117-4132, June 2022.

Gene Cheung (genec@yorku.ca)
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graph signal

nodes

edges

Graph sampling [1]: Choose a node subset, so that the 

entire signal can be reconstructed. 

• Graph sampling strategies extend Nyquist sampling 

to graph data kernel.

• Bandlimited or smooth signal assumption. 

Motivation:  graph sampling 

[1] Y. Tanaka et al., “Sampling signals on graphs: From theory to applications,” IEEE Signal Process. Mag., vol. 37, no. 6, pp. 14–30, 2020.

Gene Cheung (genec@yorku.ca)33



Existing Work:  graph frequencies

Gene Cheung (genec@yorku.ca)34

• Mainly focus on undirected graph.

• Symmetric Graph Laplacian 𝐋 = 𝐔𝚲𝐔⊤

• Categories

• Bandlimited prior[1-3]: 𝐱 = σ𝑖=1
𝑀 ෥𝑥𝑖𝐮𝑖

• Smoothness prior[4-5]: smaller 𝐱⊤𝐋𝐱

Not obvious for directed graphs!

• Directed graph → Asymmetric 𝐋

• Complex graph frequency

• Meaningless quadratic form 𝐱⊤𝐋𝐱

Re

Im
Frequency - 1

Frequency - 2

Different Frequencies

with same magnitude!

[1] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal processing on graphs: Sampling theory,” TSP, vol. 63, no. 24, pp. 6510– 6523, 2015.

[2] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” TSP, vol. 64, no. 14, pp. 3775–3789, 2016.

[3] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Eigendecomposition-free sampling set selection for graph signals,” TSP, vol. 67, no. 10, pp. 2679–2692, 2019.

[4] Y. Tanaka and Y. C. Eldar, “Generalized sampling on graphs with subspace and smoothness priors,” TSP, vol. 68, pp. 2272–2286, 2020.

[5] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, “Fast graph sampling set selection using Gershgorin disc alignment,” TSP, vol. 68, pp. 2419–2434, 2020.



Existing graph sampling methods

Eigen-decomposition-based methods [1,2] eigen-decomposition-free methods

Computational expensive Spectral proxies (SP) [3]

Neumann series (NS) [4]

Localization operator (LO) [5]

Gershgorin disc alignment (GDA) [6]

Existing Work:  computation 

[1] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncertainty principle and sampling,” IEEE TSP, vol. 64, no. 18, pp. 4845–4860, 2016.

[2] S. Chen, R. Varma, A. Sandryhaila, and J. Kovavcevic, “Discrete signal processing on graphs: Sampling theory,” IEEE TSP, vol. 63, no. 24, pp. 6510–6523, 2015.

[3] A. Anis et al., “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” IEEE TSP, vol. 64, no. 14, pp.3775–3789, 2016.

[4] F. Wang et al., “Low-complexity graph sampling with noise and signal reconstruction via Neumann series,” IEEE TSP, vol. 67, no. 21, pp. 5511–5526, 2019.

[5] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Eigendecomposition-free sampling set selection for graph signals,” IEEE TSP, vol. 67, no. 10, pp. 2679–2692, 2019.

[6] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, Fast graph sampling set selection using Gershgorin disc alignment,” IEEE TSP, vol. 68, pp. 2419–2434, 2020.

Gene Cheung (genec@yorku.ca)35

Fast method for graph sampling!



Signal Reconstruction from Samples

▪ Signal Model:

▪ Signal prior is graph Laplacian regularizer (GLR):

▪ MAP Formulation:

36

𝐱𝑇Lx = ෍

𝑖,𝑗

𝑤𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2

= ෍

𝑘

𝜆𝑘 ෤𝑥𝑘
2

noise

desired signal
observation

𝐲 = 𝐇𝐱 + 𝐯

min
𝐱

𝐲 − 𝐇𝐱 2
2 + 𝜇 𝐱𝑇𝐋𝐱

signal prior
fidelity term

signal smooth w.r.t. graph 

signal contains

mostly low graph freq.

𝐇𝑇𝐇 + 𝜇𝐋 𝐱∗ = 𝐲
linear system of eqn’s solved using conjugate gradient

sampling matrix
1 2 3 4

1 11

𝐇 =
0 1 0 0
0 0 0 1

Sample set {2, 4}

Gene Cheung (genec@yorku.ca)

𝐇T𝐇 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," 

vol. 68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.



Stability of Linear System

• Examine solution’s linear system:

• Stability depends on condition number (λmax/ λmin) of B.

• λmax  is upper-bounded by 1+μ2*dmax.

Goal: select H to maximize 𝜆min 𝐁 (E-optimality criterion) 

Also minimizes worst-case MSE:

37

𝐇𝑇𝐇 + 𝜇𝐋 𝐱∗ = 𝐲

coefficient matrix B

1 2 3 4
1 11

𝐋 =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

Sample set {2, 4}

𝐇T𝐇 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

ො𝐱 − 𝐱 2 ≤ 𝜇
1

𝜆𝑚𝑖𝑛 𝐁
2

𝐋 𝐱 + ෥𝐧 2 + ෥𝐧 2

Gene Cheung (genec@yorku.ca)

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," 

vol. 68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.



Gershgorin Circle Theorem

• GCT relates matrix entries to bounds of eigenvalues.

 

is lower-bounded by the smallest left-end of Gershgorin discs:

[1] R. S. Varga, Gershgorin and his circles, Springer, 2004.

Gene Cheung (genec@yorku.ca)38



• We focus on maximizing 𝜆min
− 𝐁  :

max
𝐇,𝐒 | Tr 𝐇T𝐇 ≤𝐾

𝜆min
− 𝐒𝐁𝐒−1

• Given Gershgorin disc left-ends of     is at the same exact value, 

GDA graph sampling [1]: Select samples to max smallest disc left-

end 𝜆min
− 𝐁 of coefficient matrix B via:

• Disc shifting (choosing sample i).

• Disc scaling (estimating influence on neighbors given sample i).

GDA Sampling for Positive Graphs

[1]  Y. Bai, F.Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, “Fast graph sampling set selection using gershgorin disc alignment," IEEE TSP, 2020.

Gene Cheung (genec@yorku.ca)39

diagonal scaling matrix



• Running time comparisons on two different graphs. 
(a) Random sensor raph. (b) Community graph.

40

Results: positive graph sampling (speed)

Gene Cheung (genec@yorku.ca)



• Visualization of selected nodes on the community graph (N = 500,K = 11). Black circles denote 

sampled nodes. (a) Original graph. (b) Random [28].(c) E-optimal [25]. (d) SP [16]. (e) MFN [23]. 

(f) MIA [20]. (g) Ed-free [9]. (h) The proposed BS-GDA.
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Results:  community graph sampling

Gene Cheung (genec@yorku.ca)



For the Canadian dataset, our scheme reduced the lowest MSE among competitor schemes by 

22.2%, 18.2%, 13.5%, 10.4%, for sampling budget 10, 20, 30, 40.

Results:  signed graph sampling

Gene Cheung (genec@yorku.ca)42

[1] Chinthaka Dinesh, Saghar Bagheri, Gene Cheung, Ivan V. Bajic, "Linear-time Sampling on Signed Graphs via Gershgorin Disc Perfect Alignment," ICASSP, 2022.



Results:  directed graph sampling

[1] Yuejiang Li, H. Vicky Zhao, Gene Cheung, "Eigen-Decomposition-Free Directed Graph Sampling via Gershgorin Disc Alignment," ICASSP’23, Rhodes, Greece, June 2023.

Gene Cheung (genec@yorku.ca)43

(a) Reconstruction MSE on Erdös-Rényi

Random Graph. GS = Diffusion Signal (b) Running Time on Erdös-Rényi Random Graph

• GDA-Direct achieves lowest Recon. MSE

• Decreases MSE by 11.9%

• GDA-Direct is the fastest method

• Speeds up by 1.4 times.



• Problem: Select Keyframes to summarize short video.

• Solution: Construct path graph from GoogLeNet features, choose graph samples.
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Graph Sampling Application 1:  video summarization

[1] S. Sahami, G. Cheung, C.-W. Lin, "Fast Graph Sampling for Short Video Summarization using Gershgorin Disc Alignment," IEEE ICASSP, May 2022.

Gene Cheung (genec@yorku.ca)



• Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.

• Challenge: select sampling set Ω to maximize λmin of

• RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using 

the double graph smoothness based method. 
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Graph Sampling Application 2:  matrix completion

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 

68, pp. 1814-2829, IEEE Transactions on Signal Processing, April 2020.

graph Laplacians for row / column graphs

Gene Cheung (genec@yorku.ca)



• Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.

• Challenge: select sampling matrix H to maximize λmin of

• SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.
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Graph Sampling Application 3:  3D point cloud sub-sampling

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment," IEEE 

Transactions on Pattern Analysis and Machine Intelligence, January 2023.

generalized graph Laplacian

Gene Cheung (genec@yorku.ca)



Outline

• GSP overview
• Graph frequencies from eigen-pairs

• Graph Learning
• Positive, signed, directed, Hermitian graphs

• Graph Filtering

• Graph Sampling

• GSP Analysis for GCNs

• Conclusion
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Crop Yield Prediction:

• Reduce price fluctuation.

• Stabilize food supply.

• Minimize uncertainty for farmers.

SOTA methods use GCNs:

• Dense underlying graph kernel can be used.

• Requires long training and execution time.

Motivation: graph sparsification

[1] Saghar Bagheri, Gene Cheung, Timothy Eadie, "Graph Sparsification for GCN towards Optimal Crop Yield Prediction," International Geoscience and Remote 

Sensing Symposium (IGARSS), Pasadena, CA, July 2023.

Gene Cheung (genec@yorku.ca)48

Signal samples
Nodes

Edges



Fiedler number:

• Second smallest eigenvalue 𝜆2 of the Laplacian matrix L.

• Known to quantify “connectedness” of underlying graph.

Fast method:

• In each iteration, remove edge that induces min change in 𝜆2.

• Modified Laplacian ሚ𝐋 = 𝐋 + 𝐄𝑚,𝑛 with edge (m, n) removed.

• Choose edge such that

Graph Sparsification:  Fiedler number 

[1] Saghar Bagheri, Gene Cheung, Timothy Eadie, "Graph Sparsification for GCN towards Optimal Crop Yield Prediction," International Geoscience and Remote 

Sensing Symposium (IGARSS), Pasadena, CA, July 2023.
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Stacking more GCN layers → node representations become indistinguishable [1] 

Q:  How to alleviate over-smoothing?

Motivation: graph learning with spectrum prior

Gene Cheung (genec@yorku.ca)50

Layer 1 Layer 2 Layer 5 Layer 7 Layer 15

t-SNE visualization of output features from GCNs[2] w/ different layers for Cora dataset

[1] Qimai Li, Zhichao Han, and Xiao-Ming Wu, “Deeper insights into graph convolutional networks for semi-supervised learning,” AAAI, 2018. 

[2] Thomas N. Kipf and Max Welling, “Semi-supervised lassification with graph convolutional networks,” ICLR, 2017.

[3] Jin Zeng, Yang Liu, Gene Cheung, Wei Hu, "Sparse Graph Learning with Spectrum Prior for Deep Graph Convolutional Networks," ICASSP, June 2023.



Oversmoothing in GCNs  

Gene Cheung (genec@yorku.ca)51

Multilayer GCN
• 𝒢: Undirected graph with 𝑁 nodes
• Output from GCN associated with 𝒢 with 𝐿 layers: 𝑓 = 𝑓𝐿 ∘ ⋯ ∘ 𝑓1

• 𝑙-th layer output with input 𝐗:

Over-smoothing in GCN
• ℳ: subspace spanned by 1st eigenvectors of normalized graph Laplacian 
• More GCN layers → 𝑓 𝐗 converges to ℳ[1]

𝑓𝑙 𝐗 ≜ 𝜎( 𝐏 𝐗 𝚯 𝑙 )

Graph 

operator

Filter

weight

Activation

operator

Uninformative signals

dℳ 𝑓𝑙 𝐗 ≤ 𝑟 ∗ dℳ 𝐗

Convergence rate

characterized by graph spectrumL2 distance to ℳ

ሚ𝐋 = 𝐈 − 𝐏

[1] Kenta Oono and Taiji Suzuki, “Graph neural networks exponentially lose expressive power for node classification,” ICLR, 2020.



Sparse Graph Learning with Spectrum Prior  

Gene Cheung (genec@yorku.ca)52

SGL-GCN: Sparse Graph Learning with Spectrum Prior for GCN

Weight σ: 

min Tr 𝐋𝐂 − logdet 𝐋 + ρ||𝐋||1 + σTr(𝐋)

Spectrum prior

𝐋 ≥ 𝟎

GLASSO
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…

• Solve via block 
coordinate 
descent (BCD)

• Use output L for 
GCN

σ

σ = ln
1+𝑀 S

1−𝑀 S
where 𝑀 S is smoothness, S is given data

large σ



Results: robust graph learning  

Gene Cheung (genec@yorku.ca)53

Proposed SGL-GCN
• Validated weight 𝜎
• Higher acc w/ deeper GCN

Validation of weight computation

9. 51e-3@Layer7

✔ Over-smoothing

✗Acc

9.33e-3@Layer4

✔ Over-smoothing

✔Acc

9.43e-3@Layer2

✗Over-smoothing

✗Acc 
METR-LA Dataset
• Task: predict traffic speed given 

past 50 mins data (sampled 
every 5 mins)

• C: observations in training data

[2] 

[1] 

[1] Yu Rong, Wenbing Huang, et al.,“Dropedge: Towards deep graph convolutional networks on node classification,” ICLR, 2020.

[2] Kenta Oono and Taiji Suzuki, “Graph neural networks exponentially lose expressive power for node classification,” ICLR, 2020.
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Conclusion

• GSP analyzes and processes discrete signals on graphs.

• Graphs captures pairwise relationships:

• Positive, signed, directed, Hermitian graphs.

• Graph Learning
• Statistical sparse graph learning, metric learning

• Graph Filtering
• Spectral filters in graph spectrum

• Graph Sampling
• Fast algorithms based on Gershgorin circle theorem

• GSP analysis for GCNs
• Graph spectrum affects performance, oversmoothing

Gene Cheung (genec@yorku.ca)55

Applications:

Image coding, 

denoising, deblurring, 

interpolation, contrast 

enhancement, light 

field image denoising, 

3D point cloud 

denoising, sub-

sampling, super-

resolution, matrix 

completion, semi-

supervised classifier 

learning, video 

summarization, crop 

yield prediction



Contact Info

• Homepage:
https://www.eecs.yorku.ca/~genec/index.html

• E-mail:
genec@yorku.ca

• New book:

G. Cheung, E. Magli, (edited) Graph Spectral 

Image Processing, ISTE/Wiley, August 2021.

Gene Cheung (genec@yorku.ca)56
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