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Graph Signal Processing
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=== Graph Signal Processing (GSP) studies spectral \ Grg;;dgc;;o;;fz

Processing

=== analysis tools for signals residing on graphs. 5 i S

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, challenges, and applications,” Proceedings of
the IEEE, vol. 106, no. 5, pp. 808-828, 2018.
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Graph Spectrum

degree matrix
_ _ _ _ .— adjacency matrix
Graph Fourier modes: eigenvectors of graph Laplacian matrix L =D - W.

eigenvectors v in columns  gjgenvalues 1, along diagonal W, 1 1 ® ®

7 T
L=VE — 2 Akvkvk%— sum of rank-1 matrices
Graph Fourier Transform (GFT) k *.\ 2nd gigenvector —o—wizt
GFT defaults to DCT for un-weighted connected line. e wiao0n
GFT defaults to DFT for un-weighted connected circle.

1. Eigenvectors are (global) aggregates of (local) edge weights. °

= More variations for larger eigenvalues. \E\\\

2. Eigenvalues (= 0) as graph frequencies [1].

[1] G. Cheung, E. Magli, Y. Tanaka, M. Ng, "Graph Spectral Image Processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, May 2018. .
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Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph co.nnecFions from Dela}Jnay Trigngulation*. _Hli _IjHZ
Edge weights |n\5ﬁ(_erse proportional to distance. W exp{ = 2

Edge weights
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*https://en.wikipedia.org/wiki/Delaunay triangulation




Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities.
Graph connections from Delaunay Triangulation*,
Edge weights inverse proportional to distance.
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Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph connections from Delaunay Triangulation*. ‘H' i Hz
W, | exp{ LY

Edge weights inverse proportional to distance. 2

Edge weights

V3: 2"d AC component
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Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph connections from Delaunay Triangulation*. _HI - Hz
Edge weights inverse proportional to distance. W, | eXp{ '02 :
50
1015 Edge weights
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What is a good graph?

« Graph captures pairwise relationships.
1. Domain knowledge.
2. Correlations.
3. Feature distance.

e Approaches:
1. Learn sparse inverse covariance matrix from
observations [1]. ‘ ~ O
= Graphical Lasso, CLIME. —r

"

- 1 Event 1

O--
\

| = » x1
[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and ol I Il I s
Projection,” IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).
[2] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," IEEE TPAMI, June 2021. C I S c o
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Sparse Precision Matrix Estimation: GLASSO

« Given empirical covariance matrix 2, Graphical Lasso
computes positive-definite (PD) precision matrix ©:

max logdet©® — Tr(X0) — p [|O]|1

e 1stand 2" terms are likelihood.
« 3" term promotes sparsity.

« Solved via block coordinate descent (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.




Graph Laplacian Estimation

* Assume precision matrix is:
* Generalized graph Laplacian (GGLS),
« Diagonally dominant generalized graph Laplacian (DDGLS), or

« Combinatorial graph Laplacian (CGLS). NOTE: Interpret precision

/ matrix as graph Laplacian

« Given empirical covariance matrix S, computes Laplacian ©:

mei‘n Tr(©K) — logdet © subject to © € L,(A)

« K =S+ H, H is regularization matrix.
* Ly(A) ensures O is GGL.
» Solved via block coordinate descent (BCD) algorithm.

[1] H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints," in IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017




Graph Laplacian Estimation w/ Eigen-Structure Constraint

.+ Key Assumption: graph Laplacian matrix L has 1. Side info to derive first K e-vectors.

: . 2. Fast computation of first K e-vectors.
ChOsen fIrSt K elqeﬂveCtOrS. 3 Desire eigen_structure.

- Define convex cone H. of PSD matrices with same first K eigenvectors.
. Design projection operator to Hy, inspired by Gram-Schmidt procedure.
- Given empirical covariance matrix C, computes graph Laplacian L:

min Tr(LC) — logdet L + p ||L||1
LeH

Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection,"” IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).
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Preliminaries: inner product, Hilbert Space

Define a vector space of real, symmetric matrices § = {L € RV*N|LT = L}.
Define inner product for A,B € S

(A.B)=tr(B'A) = Z Ai;iBij.

Hilbert space H is vector space S W|th iInner product.
Define subspace H*of positive semi-definite (PSD) matrices:

—{AcH|A >0} . convex cone

Define subspace Hf c H* PSD matrices sharing first K eigenvectors {u,}%_,

x' L

X

HE=LeH | up = arg min —
x|xlu;viji<k X ' X

, k€ IK} < convex cone




Projection to Convex Cone H{:i < K

Given empirical covariance matrix C,
« 1steigenvector u,of Laplacian L:
« Compute last eigenvalue uy for target C = L™ as

uy = (C,ugul) Thus, 18t eigen-pair (i,ul) for L

- Compute residual Ey = C — uyu;ul

« 20"d eigenvector u, of L:
« Compute second last eigenvalue uy_, for target C as

un_1 = min({Ey, uyul), uy) Thus, 2nd eigen-pair (L,uz) for L

UN-1

- Compute residual Ey_; = Ey — uy_1u,u;
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Projection to Convex Cone Hf :i > K

« Compute next eigenvector v; for L:
st. viu, =0, k={1,..,K}
rQ,ax(EN_i+2,vivf) vl-ij = 0, j={K+1,..,i—1}
lvill=1

* NP-hard. See [1] for fast approx.

« Compute eigenvalue uy_;+q:

UN—jr] = min((EN_HZ,vivlT), MN—i+z) Thus, it eigen-pair ( ,vl-) for L

UN—-i+1

- Compute residual: Ey_j+1 = En_jt2 — Un—it1ViVi

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection,"” IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).
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GLASSO + Projection

- Modify GLASSO to

min Tr(LC) — logdet L + p ||L||;
LeHy

 Dual of GLASSO is

min  —logdet C, s.t. [|C — Clloo <p
C—leHT

« Algorithm:
1. Iteratively updating one row / column of C.
2. Project L = C~! to convex cone H{ using projection operator.
3. Repeat till convergence.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.




Graph Laplacian Estimation: results

« Randomly located 20 nodes in 2D space. Use Erdos-Renyi model to determine connectivity with
probability 0.6. Compute edge weights using Gaussian kernel. Remove weights <0.75. Flip sign of
each edge with probability 0.5. K=1.

« (a) Ground Truth Laplacian L, (b) Proposed Proj-Lasso with K =1, (c) GLASSO, (d) DDGL and (e)
GL-SigRep .

(a) (b) (c) (d) (e)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection,"” IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).
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Application 1: Image Coding

Transform Coding is integral component in image compression.

* Problem: DCT is fixed transform and does not adapt locally.

« Existing Work 1: Asymmetric Discrete Sine Transform
(ADST) fits better prediction residuals [1].
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« Existing Work 2: Karhunen-Loeve transform (KLT) adapts
well iff 3 reliable empirical covariance matrix C [2].
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[1] J. Han, A. Saxena, V. Melkote, and K. Rose, “Jointly optimized spatial prediction and block transform for video and image coding,” in IEEE Transactions on
Image Processing, April 2012, vol. 21, no.4, pp. 1874-1884.

[2] lan Blanes and Joan Serra-Sagrista, “Pairwise orthogonal transform for spectral image coding,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49,
no.3, pp. 961-972, 2011.




Application 1: Image Coding

« Key Idea: derive first K e-vectors from model, compute N-K e-vectors from data.

« Advantages:
1. Reduce degree of freedom when empirical covariance C is unreliable.
2. Parameter K is tunable depending on covariance reliability.
3. Reduce computation cost for first K transform coefficients.

reference blocks
A

* Disadvantages:

1. Larger computation cost than DCT. target block

[1] Saghar Bagheri, Tam Thuc Do, Gene Cheung, Antonio Ortega, “Hybrid Model-based / Data-driven Graph Transform for Image Coding,” submitted to IEEE
Conference on Image Processing, 2022.




Image Coding: results 1 (energy compaction)

« Setting: WebP image codec [1]. DC4 intra-prediction mode. Improve prediction

residual coding of 4x4 block over default DCT.
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Image Coding: results 2 (error variance)

« Setting: WebP image codec [1]. DC4 intra-prediction mode. Improve prediction
residual coding of 4x4 block over default DCT.

smaller error variance

than KLT
K/////// ‘/////fynauesteworvaﬂance
Image Name DCT ELT Hybrid-4ADST
"Female" "3.053911" "0 .041706"™ "g.042182" "G, 0375954"
"Couple™ "3 .0553249" ", 0458432" ", 04475T™ "G, 041618"
"Deppers" "L 0E0291" " L.05ET22™ "o, 054068™ "L, 05174"
"Airplanse™ " .0565149" " .055206" "o, 048232m mOL04asz4m

[1] https://developers.google.com/speed/webp
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Application 2: Filter Training in GCN

« Graph convolutional nets (GCN) performs graph filtering and pointwise non-
linear operation (e.g., ReLU) in a sequence of neural layers.

* Problem: GCN starts to oversmooth as the number of layers grows [1].

« Analysis: GCN output approaches a subspace spanned by 15t eigenvector of
normalized graph Laplacian L with convergence rate « “eigen-gap” [2].

Existing Solution: randomly drop edges at layers for sparse graph [3].

[1] G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs go as deep as CNNs?” in Proceedings of the IEEE/CVF ICCV, 2019, pp. 9267-9276.
[2] K. Oono and T. Suzuki, “Graph neural networks exponentially lose expressive power for node classification,” in International Conf. on Learning Rep., 2020.

[3] Y. Rong et al., “DropEdge: Towards deep graph convolutional networks on node classification,” in International Conf. on Learning Rep., 2020.




Spectral Graph Learning for Filter Training in GCN

- Key Idea: learn Laplacian L from empirical covariance C w/ desired eigen-gap.

« Algorithm:
1.
. ) 1
“+——avg. signal Thus, 1% eigen-pair (E'X) for L
2.

3. Approximate 2" eigenvector v,
s.t. vix=0

max{(Ex v,vI
v, (Ew, v2v2 ) Iv,]1=1

4. Compute 2nd last eigenvalue uy_, for target C = L~1 as

Un-1 = maX(<ENrV2V2T>; UN —Jj_)\

[1] Jin Zeng, Saghar Bagheri, Yang Liu, Gene Cheung, Wei Hu, "Sparse Graph Learning with Eigen-gap for Spectral Filter Training in Graph Convolutional
Networks," submitted to EUSIPCO'22, Belgrade, Serbia, August 2022.

eigen-gap!




GCN Training: results 1

« Data: METR-LA contains traffic speed data in 4 months from 207 sensors in LA County.
« Task: predict current traffic speed using speed data from 50 to 5 minutes ago as input.

0.0135{ __

gap = 1.0

0.01301 gap = 3.0 AN
—&— gap = 5.0 ',,/ N\,
0.0125] —— gap =7.0 o~
—— gap = 8.0 g
0.0120{ —.— gap =8.5038 . :
° Smaller gap, larger optimal layer.

0.0115 « Smaller gap, small loss value.

0.0110/
0.0105 1

0.0100 -

0.0095 - ' W

num_layers
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GCN Training: results 2

« Compare Gap=1 to DropEdge [1] with drop rate =0, 0.3, 0.5.

—+— droprate = 0
0.020 droprate = 0.3

—e— droprate = 0.5
0.018 ——— gap = 1.0

« SGL has larger optimal layer.
e SGL has small loss value.

num_layers

[1] Y. Rong et al., “Dropedge: Towards deep graph convolutional networks on node classification,” in International Conf. on Learning Rep., 2020.
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Graph Signal Processing (GSP) studies signals on graphs.

Graph learning is crucial first step for GSP.

Spectral graph learning can optimize eigen-structures.
« Image coding.
 Filtering training in GCN.

Future work:
« Tighter integration between GSP and GCN/GNN.

26 Gene Cheung (genec@yorku.ca) fﬂ LASCSOQNGPEG YORKE i

Applications:

Image coding,
denoising, deblurring,
Interpolation, contrast
enhancement, light
field image denoising,
3D point cloud
denoising, sub-
sampling, super-
resolution, matrix
completion, semi-
supervised classifier
learning, video
summarization, crop
yield prediction




« Homepage:
https://www.eecs.yorku.ca/~genec/index.html

e E-mail:
genec@yorku.ca
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Compression, Coding and Protection of Images and Videos

Graph Spectral
Image Processing

Coordinated by
Gene Cheung and Enrico Magli

== WILEY

 New book:
G. Cheung, E. Magli, (edited) Graph Spectral
Image Processing, ISTE/Wiley, August 2021.
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