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Frequency analysis

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, challenges, and applications,” Proceedings of 

the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

signal on graph kernel
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Graph Signal Processing
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Graph kernels

Graph Signal Processing (GSP) studies spectral 

analysis tools for signals residing on graphs.

Graph Signal Processing=+



2nd eigenvector

1 2 3 4 8…2,1w 1 1eigenvalues 𝜆𝑘 along diagonaleigenvectors 𝐯𝑘 in columns

sum of rank-1 matrices

Graph Fourier modes: eigenvectors of graph Laplacian matrix L = D - W.

GFT defaults to DCT for un-weighted connected line.

GFT defaults to DFT for un-weighted connected circle.

1. Eigenvectors are (global) aggregates of (local) edge weights.

▪ More variations for larger eigenvalues.

2. Eigenvalues (≥ 0) as graph frequencies [1].
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Graph Spectrum
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[1] G. Cheung, E. Magli, Y. Tanaka, M. Ng, "Graph Spectral Image Processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, May 2018. .
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Graph Fourier Transform (GFT)



V1: DC component
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*https://en.wikipedia.org/wiki/Delaunay triangulation

Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)

Gene Cheung (genec@yorku.ca)



V2: 1st AC component

location diff.
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Edge weights

Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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V3: 2nd AC component

location diff.
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Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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V4: 9th AC component

location diff.
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Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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What is a good graph?
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• Graph captures pairwise relationships.

1. Domain knowledge.

2. Correlations.

3. Feature distance. 

• Approaches:

1. Learn sparse inverse covariance matrix from 

observations [1].

▪ Graphical Lasso, CLIME.

2. Learn metric to determine feature distance [2].

Gene Cheung (genec@yorku.ca)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).

[2] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," IEEE TPAMI, June 2021.



Sparse Precision Matrix Estimation: GLASSO

• Given empirical covariance matrix Σ, Graphical Lasso

computes positive-definite (PD) precision matrix Θ:

• 1st and 2nd terms are likelihood.

• 3rd term promotes sparsity.

• Solved via block coordinate descent (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.
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Graph Laplacian Estimation

• Assume precision matrix is:

• Generalized graph Laplacian (GGLs), 

• Diagonally dominant generalized graph Laplacian (DDGLs), or 

• Combinatorial graph Laplacian (CGLs).

• Given empirical covariance matrix S, computes Laplacian Θ:

• K = S + H, H is regularization matrix.

• Lg(A) ensures Θ is GGL.

• Solved via block coordinate descent (BCD) algorithm.

[1] H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints," in IEEE 

Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017

Gene Cheung (genec@yorku.ca)11

NOTE: Interpret precision 

matrix as graph Laplacian 



Graph Laplacian Estimation w/ Eigen-Structure Constraint

• Key Assumption: graph Laplacian matrix L has

chosen first K eigenvectors.

Gene Cheung (genec@yorku.ca)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).
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1. Side info to derive first K e-vectors.

2. Fast computation of first K e-vectors.

3. Desire eigen-structure.

• Define convex cone         of PSD matrices with same first K eigenvectors.

• Design projection operator to        inspired by Gram-Schmidt procedure.

• Given empirical covariance matrix ത𝐂, computes graph Laplacian 𝐋:

• Solve via alternating BCD and projection algorithm.



Preliminaries: inner product, Hilbert Space

• Define a vector space of real, symmetric matrices 𝑺 = 𝐋 ∈ R𝑁×𝑁|𝐋𝑇 = 𝐋 .

• Define inner product for 𝐀,𝐁 ∈ 𝑺:

• Hilbert space 𝑯 is vector space 𝑺 with inner product.

• Define subspace 𝑯+of positive semi-definite (PSD) matrices: 

• Define subspace 𝑯𝐮
+ ⊂ 𝑯+ PSD matrices sharing first K eigenvectors 𝐮𝑘 𝑘=1

𝐾 .

Gene Cheung (genec@yorku.ca)

convex cone

convex cone
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Projection to Convex Cone 𝑯𝐮
+: 𝒊 ≤ 𝑲

Gene Cheung (genec@yorku.ca)

𝜇𝑁 = ത𝐂, 𝐮1𝐮1
𝑇 Thus, 1st eigen-pair 

1

𝜇𝑁
, 𝐮1 for L

• 2nd eigenvector 𝐮2 of 𝐋:

• Compute second last eigenvalue 𝜇𝑁−1 for target 𝐂 as

• Compute residual 𝐄𝑁−1 = 𝐄𝑁 − 𝜇𝑁−1𝐮2𝐮2
𝑇

𝜇𝑁−1 = min 𝐄𝑁, 𝐮2𝐮2
𝑇 , 𝜇𝑁

Given empirical covariance matrix ഥ𝐂,

• 1st eigenvector 𝐮1of Laplacian 𝐋:

• Compute last eigenvalue 𝜇𝑁 for target 𝐂 = 𝐋−𝟏 as

• Compute residual 𝐄𝑁 = ത𝐂 − 𝜇𝑁𝐮1𝐮1
𝑇

Thus, 2nd eigen-pair 
1

𝜇𝑁−1
, 𝐮2 for L
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Projection to Convex Cone 𝑯𝐮
+ : 𝒊 > 𝑲

Gene Cheung (genec@yorku.ca)

max
𝐯𝑖

𝐄𝑁−𝑖+2, 𝐯𝑖𝐯𝑖
𝑇

Thus, ith eigen-pair 
1

𝜇𝑁−𝑖+1
, 𝐯𝑖 for L

• Compute next eigenvector 𝐯𝑖 for 𝐋:

• NP-hard. See [1] for fast approx.

• Compute eigenvalue 𝜇𝑁−𝑖+1:

• Compute residual: 𝐄𝑁−𝑖+1 = 𝐄𝑁−𝑖+2 − 𝜇𝑁−𝑖+1𝐯𝑖𝐯𝑖
𝑇

s.t.   𝐯𝑖
𝑇𝐮𝑘 = 0, 𝑘 = 1,… , 𝐾

𝐯𝑖 = 1

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).

𝜇𝑁−𝑖+1 = min 𝐄𝑁−𝑖+2, 𝐯𝑖𝐯𝑖
𝑇 , 𝜇𝑁−𝑖+2
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𝐯𝑖
𝑇𝐯𝑗 = 0, 𝑗 = 𝐾 + 1,… , 𝑖 − 1



GLASSO + Projection

Gene Cheung (genec@yorku.ca)

• Modify GLASSO to

• Dual of GLASSO is

• Algorithm:

1. Iteratively updating one row / column of 𝑪. 

2. Project 𝐋 = 𝐂−1 to convex cone 𝑯𝐮
+using projection operator.

3. Repeat till convergence.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.
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Graph Laplacian Estimation: results

• Randomly located 20 nodes in 2D space. Use Erdos-Renyi model to determine connectivity with 

probability 0.6. Compute edge weights using Gaussian kernel. Remove weights <0.75. Flip sign of 

each edge with probability 0.5. K=1.

• (a) Ground Truth Laplacian L , (b) Proposed Proj-Lasso with K = 1, (c) GLASSO, (d) DDGL and (e) 

GL-SigRep .

Gene Cheung (genec@yorku.ca)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).
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Application 1: Image Coding

• Transform Coding is integral component in image compression.

• Problem:  DCT is fixed transform and does not adapt locally.

• Existing Work 1: Asymmetric Discrete Sine Transform 

(ADST) fits better prediction residuals [1]. 

• Existing Work 2:  Karhunen-Loeve transform (KLT) adapts 

well iff ∃ reliable empirical covariance matrix ത𝐂 [2].

Gene Cheung (genec@yorku.ca)

[2] Ian Blanes and Joan Serra-Sagrista, “Pairwise orthogonal transform for spectral image coding,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, 

no.3, pp. 961–972, 2011.

[1] J. Han, A. Saxena, V. Melkote, and K. Rose, “Jointly optimized spatial prediction and block transform for video and image coding,” in IEEE Transactions on 

Image Processing, April 2012, vol. 21, no.4, pp. 1874–1884.
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Application 1: Image Coding

• Key Idea: derive first K e-vectors from model, compute N-K e-vectors from data.

• Advantages: 

1. Reduce degree of freedom when empirical covariance ത𝐂 is unreliable. 

2. Parameter K is tunable depending on covariance reliability.

3. Reduce computation cost for first K transform coefficients.

• Disadvantages:

1. Larger computation cost than DCT.

Gene Cheung (genec@yorku.ca)

[1] Saghar Bagheri, Tam Thuc Do, Gene Cheung, Antonio Ortega, “Hybrid Model-based / Data-driven Graph Transform for Image Coding,” submitted to IEEE 

Conference on Image Processing, 2022.

19

reference blocks

target block



Image Coding: results 1 (energy compaction)

• Setting: WebP image codec [1]. DC4 intra-prediction mode. Improve prediction 

residual coding of 4x4 block over default DCT. 

Gene Cheung (genec@yorku.ca)

[1] https://developers.google.com/speed/webp
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Hybrid has medium 

energy compaction



Image Coding: results 2 (error variance)

• Setting: WebP image codec [1]. DC4 intra-prediction mode. Improve prediction 

residual coding of 4x4 block over default DCT. 

Gene Cheung (genec@yorku.ca)

[1] https://developers.google.com/speed/webp
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Application 2: Filter Training in GCN

• Graph convolutional nets (GCN) performs graph filtering and pointwise non-

linear operation (e.g., ReLU) in a sequence of neural layers.

• Problem:  GCN starts to oversmooth as the number of layers grows [1].

• Analysis:  GCN output approaches a subspace spanned by 1st eigenvector of 

normalized graph Laplacian ሚ𝐋 with convergence rate ∝ “eigen-gap” [2].

Gene Cheung (genec@yorku.ca)

[2] K. Oono and T. Suzuki, “Graph neural networks exponentially lose expressive power for node classification,” in International Conf. on Learning Rep., 2020.

[1] G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs go as deep as CNNs?” in Proceedings of the IEEE/CVF ICCV, 2019, pp. 9267–9276.

[3] Y. Rong et al., “DropEdge: Towards deep graph convolutional networks on node classification,” in International Conf. on Learning Rep., 2020.

• Existing Solution: randomly drop edges at layers for sparse graph [3]. 
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Spectral Graph Learning for Filter Training in GCN

• Key Idea:  learn Laplacian 𝐋 from empirical covariance ത𝐂 w/ desired eigen-gap.

• Algorithm:  

1. Compute last eigenvalue 𝜇𝑁 for target 𝐂 = 𝐋−𝟏 as

2. Compute residual 𝐄𝑁 = ത𝐂 − 𝜇𝑁𝐱1𝐱1
𝑇

3. Approximate 2nd eigenvector 𝐯2

4. Compute 2nd last eigenvalue 𝜇𝑁−1 for target 𝐂 = 𝐋−𝟏 as

Gene Cheung (genec@yorku.ca)

[1] Jin Zeng, Saghar Bagheri, Yang Liu, Gene Cheung, Wei Hu, "Sparse Graph Learning with Eigen-gap for Spectral Filter Training in Graph Convolutional 

Networks," submitted to EUSIPCO'22, Belgrade, Serbia, August 2022.

𝜇𝑁 = ത𝐂, 𝐱𝐱𝑇

max
𝐯2

𝐄𝑁 , 𝐯2𝐯2
𝑇 s.t.   𝐯2

𝑇𝐱 = 0

𝐯2 =1

𝜇𝑁−1 = max 𝐄𝑁 , 𝐯2𝐯2
𝑇 , 𝜇𝑁 − 𝜅

avg. signal Thus, 1st eigen-pair 
1

𝜇𝑁
, 𝐱 for L

eigen-gap!
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GCN Training: results 1

• Data: METR-LA contains traffic speed data in 4 months from 207 sensors in LA County.

• Task: predict current traffic speed using speed data from 50 to 5 minutes ago as input.

Gene Cheung (genec@yorku.ca)

• Smaller gap, larger optimal layer.

• Smaller gap, small loss value.
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GCN Training: results 2

• Compare Gap=1 to DropEdge [1] with drop rate = 0, 0.3, 0.5.  

Gene Cheung (genec@yorku.ca)

• SGL has larger optimal layer.

• SGL has small loss value.

[1] Y. Rong et al., “Dropedge: Towards deep graph convolutional networks on node classification,” in International Conf. on Learning Rep., 2020.

25



Conclusion

• Graph Signal Processing (GSP) studies signals on graphs.

• Graph learning is crucial first step for GSP. 

• Spectral graph learning can optimize eigen-structures.

• Image coding.

• Filtering training in GCN. 

• Future work:

• Tighter integration between GSP and GCN/GNN.

Gene Cheung (genec@yorku.ca)

Applications:

Image coding, 

denoising, deblurring, 

interpolation, contrast 

enhancement, light 

field image denoising, 

3D point cloud 

denoising, sub-

sampling, super-

resolution, matrix 

completion, semi-

supervised classifier 

learning, video 

summarization, crop 

yield prediction
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Contact Info

• Homepage:
https://www.eecs.yorku.ca/~genec/index.html

• E-mail:
genec@yorku.ca

• New book:

G. Cheung, E. Magli, (edited) Graph Spectral 

Image Processing, ISTE/Wiley, August 2021.
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