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» What is Graph Signal Processing?
» Graph spectrum
» Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
» Graph Learning
» Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
» Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
» Application: Semi-supervised classifier learning

» Graph Sampling
» Gershgorin Disc Alignment Sampling (GDAS)
» Application: Sampling for matrix completion, 3D point cloud sub-sampling

» Graph Filtering
» Signal-dependent GLR, GTV
» Application: Image denoising
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» What is Graph Signal Processing?
» Graph spectrum
» Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
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Digital Signal Processing

= Discrete signals on regular data kernels.  f(x) ] » T .
» Ex.1: audio on regularly sampled timeline.
= Ex.2: iImage on 2D grid.

» Harmonic analysis tools (transforms, wavelets):
= Compression, restoration, segmentation, etc.
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Graph Signal Processing

= Signals on irregular data kernels described by graphs.
» Graph: nodes and edges.
» Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.

2. Embed pairwise (dis)similarity info into edge weights. signal on graph kernel
» Eigenvectors provide global info aggregated from local info. ®

:

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, signal on graph kernel
challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image processing,” Proceedings of the IEEE, vol. 106, no.
5, pp. 907-930, 2018.
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Graph Signal Processing

= Signals on irregular data kernels described by graphs.
» Graph: nodes and edges.
» Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.

2. Embed pairwise (dis)similarity info into edge weights. signal on graph kernel
» Eigenvectors provide global info aggregated from local info. ®
Graph Signal Processing (GSP) provides spectral
analysis tools for signals residing on graphs. :
[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, signal on graph kernel

challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image processing,” Proceedings of the IEEE, vol. 106, no.
5, pp. 907-930, 2018.
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Graph Fourier Transform (GFT)

Graph Laplacian: undirected graph

* Adjacency Matrix W: entry W;; has non-negative edge weight w;; W, 1 1
connecting nodes i and |. @ —@
T 0 W1,2 0 0]
- Degree Matrix D: diagonal matrix w/ entry D;; being sum of column wel|wz 0 10
entries in row i of W. o 1 o0 1
L 0 0 1 ol
D;; = Z Wi ;
[ W1,2 0 0 O
« Combinatorial Graph LaplacianL: L=D -W p=|0 wiztl 00
. . 0 0 2 0
= L is related to 2" derivative. 0 0 0 1
L, X ==X, +2X,— X,
£7(x) = lim f(x+h)-2f(x)+ f(x—h) ‘wi,  —wi, 00
 ho0 h? L=|"w2 wiz+t1 -1 0
. . . 0 -1 2 -1
» L is a differential operator on graph. 0 0 1 1.

*https://en.wikipedia.org/wiki/Second_derivative
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Graph Fourier Transform (GFT)

Graph Laplacian: undirected graph

* Adjacency Matrix W: entry W;; has non-negative edge weight w;; W, 1 1
connecting nodes i and |. @ —@
T 0 W1,2 0 0]
- Degree Matrix D: diagonal matrix w/ entry D;; being sum of column wel|wz 0 10
entries in row i of W. o 1 o0 1
L 0 0 1 ol
D;; = Z Wi j
[ W1,2 0 0 O
« Combinatorial Graph LaplacianL: L=D -W p=|0 wiztl 00
. . 0 0 2 0
= L is related to 2" derivative. 0 0 0 1
L, X ==X, +2X,— X,
: = - [ — 0 07
£7(x) = lim f(x+h)-2f(x)+ f(x=h) Wi,  —Wwi,
h—0 h2 L= —w
: : : -1 2 —
» L is a differential operator on graph. 0 0 —1 1.

*https://en.wikipedia.org/wiki/Second_derivative
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Graph Spectrum from GFT

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

Wy, 1 1
elgenvalues along diagonal . ‘ ‘_. ‘
iy T
L= vz@ X =V'x
elgenvectors in columns ‘\ *'\.. an' eigelnvecfor —e—wizr

GFT coefficients

w12=0.1
—#—w12=0.01

1. Eigenvectors aggregate info from edge weights.

= Constant 15t eigenvector is DC.
= # zero-crossings increases as A increases.

2. Eigenvalues (= 0) as graph frequencies.

GFT defaults to DCT for un-weighted connected line.
GFT defaults to DFT for un-weighted connected circle.
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Graph Spectrum from GFT

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.
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Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph connections from Delaunay Triangulation®. H' | Hz
Edge weights inverse proportional to distance. W —exp[ iaz 12

Edge weights
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*https://en.wikipedia.org/wiki/Delaunay triangulation
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Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities.
Graph connections from Delaunay Triangulation*,
Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph connections from Delaunay Triangulation*. _HI i Hz
Edge weights inverse proportional to distance. W, | =expl ————=

50 — (o)

Edge weights

V3: 2"d AC component

25 | | | | | |
-130 -120 -110 —-100 -90 -80 =70
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Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph connections from Delaunay Triangulation*. _HI i Hz
Edge weights inverse proportional to distance. W, | —eXp[ '62 2

1015 Edge weights
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GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.

Laplace equation, Iézﬁlrzcmei' _
Diffusion operaicy” Computer Graphics
graphical model, . spectral Computer
. manifold Iearning, Graph Slgnal C|ustering V .
Machine classifier learning Processing* (GSP) ISIon
Learning
DSP eigen-analysis of
Max cut, graph graph Laplacian,
transformati adjacency matrices
Combinatorial Spectral
Graph Theory Graph Theory
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>

>
>
» Graph Learning
» Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
» Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
» Application: Semi-supervised classifier learning

>
>
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What Is a good graph?

: : . : i
« Graph Signal Processing (GSP) provides spectral analysis ~(x).

tools for signals on fixed graphs.

* Graph captures pairwise relationships.
1. Domain knowledge.
2. Correlations.
3. Feature distance.

e Goal:
1. Learn inverse covariance matrix from limited data.
2. Learn metric to determine feature distance.

signal on graph kernel

[1] X. Dong et al., Learning graphs from data: A signal representation perspective," IEEE SPM, vol. 36, no. 3, pp. 44-63, 2019.
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Sparse Precision Matrix Estimation: GLASSO

« Given empirical covariance matrix 2, Graphical Lasso
computes positive-definite (PD) precision matrix ©:

max logdet® — Tr(X0) — p [|O]|1

e 1stand 2" terms are likelihood.
« 3'dterm promotes sparsity.

« Solved via block-coordinate descent (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.

JLASSONDE | YORK | §




Sparse Precision Matrix Estimation: GLASSO

« Given empirical covariance matrix 2, Graphical Lasso
computes positive-definite (PD) precision matrix ©:

max logdet® — Tr(X0) — p [|O]|1

e 1stand 2" terms are likelihood.
« 3'dterm promotes sparsity.

a-incoherence

« Solved via block-coordinate descent (BCD) algorithm. condition

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.
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Graph Laplacian Estimation

« Assume precision matrix is:
* Generalized graph Laplacian (GGLS),
« Diagonally dominant generalized graph Laplacian (DDGLS), or
« Combinatorial graph Laplacian (CGLs).

« Given empirical covariance matrix S, computes Laplacian ©:

m@in Tr(©K) — logdet © subject to © € L,(A)

« K=S + H, His regularization matrix.
* Ly(A) ensures O is GGL.
« Solved via block-coordinate descent (BCD) algorithm.

[1] H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints," in IEEE Journal of
Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017
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Graph Laplacian Estimation w/ Eigen-Structure Constraint

Assume graph Laplacian matrix L has:

Pre-determined first K eigenvectors.

Define convex cone H. of PSD matrices with same first K eigenvectors.
Design projection operator to He iInspired by Gram-Schmidt procedure.
Given empirical covariance matrix S, computes Laplacian L:

min Tr(LC) — logdet L + p ||L||
LeH

Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.
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Graph Laplacian Estimation w/ Eigen-Structure Constraint

Assume graph Laplacian matrix L has: .
X.

1ste-vector is constant for image coding.

1.
Pre-determined first K eigenvectors 2. 1ste-vector is PWC for voting in Senate.
' 3. Sparse first K e-vectors for transform coding.

Define convex cone H. of PSD matrices with same first K eigenvectors.
Design projection operator to He iInspired by Gram-Schmidt procedure.
Given empirical covariance matrix S, computes Laplacian L:

min Tr(LC) — logdet L + p ||L||
LeH

Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.

18 Gene Cheung (genec@yorku.ca) ) J[LASSONDE YC)RKE |




Graph Laplacian Estimation: results

« Randomly located 20 nodes in 2D space. Use the Erdos-Renyi model to determine connectivity
with probability 0.6. Compute edge weights using a Gaussian kernel. Remove weights <0.75. Flip
sign of each edge with probability 0.5. K=1.

« (a) Ground Truth Laplacian L, (b) Proposed Proj-Lasso with K =1, (c) GLASSO, (d) DDGL and (e)
GL-SigRep .

(a) (b) (c) (d) (e)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.
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Metric Learning for Graph Construction

« Construct graph when < 1 signal observation, but

Each node has K-dimension feature vector.

- Example: semi-supervised graph classifier
- Each node i has feature vector f; € RX

 Use PSD metric matrix M, establish Mahalanobis )
distance:

0jj = (fi _fj) M(f; — fj)

« Compute positive edge weight using exp:

wij = exp (—djj)

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Signal Reconstruction using GLR

observation sampling matrix 1 1 1
= Signal Model: - // desired signal L @6 @

y =HX+V «<— noise

Sample set {2, 4}
= Signal prior is graph Laplacian regularizer (GLR):

_[0o 1 0 0
0 0 0 1
\ S|gna}l c,iontalns .
mostly low graph freq. ' T
Slgnalsmoothwrt graph y 1w graph freq 8 2 8 8
HH=10 0 0 o
= MAP Formulation: HEr

fidelity term — ] — slgnalprior
mXinIIy — Hx||5 + u x'Lx

(H'H + uL)x* =
Il\ y

linear system of egn’s solved using conjugate gradient

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Yang, G. Cheung, V. Stankovic, "Alternating Binary Classifier and Graph Learning from Partial Labels,” APSIPA ASC 2018, Hawaii, USA, November 2018.
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Metric Learning for Graph Construction

« Optimal metric matrix M:

/
min Q({0;;(M)}) s.t. { J|c\;|(l\>il)0§o(r: M>0

for convex, differentiable Q(M).

* For example, Graph Laplacian Reqgularizer (GLR):

QM) =x"L(M)x = » " w;i(xi — x)°
(

ij)e€

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Metric Learning for Graph Construction

« Optimal metric matrix M:

/
tr(M)y<Cc  _—

min Q({0;;(M)}) s.t. { M>0 or M>0

for convex, differentiable Q(M).

* For example, Graph Laplacian Reqgularizer (GLR):

QM) =x"L(M)x = » " w;i(xi — x)°
(

ij)e€

_PSD cone constraint is hard!

Naive Approach:

Gradient descentvia —V Q(M)
Projection to PSD cone.
Repeat.

Our Approach:

Convert PSD cone to K adaptive
linear constraints via Gershgorin
Disc Alignment (GDA).

Min Q(M) w/ linear constraints.
Repeat.

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on

Pattern Analysis and Machine Intelligence, June 2020.
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Gershgorin Circle Theorem

Gershgorin Circle Theorem: ) _

| o 2 -2 -1
= Row I of M maps to a Gershgorin disc w/ Mi  vM=1| 9 5 _9
and R, -1 -2 4
R. = 2 M _ ) )
= .I i Anin
J#1 i ﬂi }\n];in

" A\, IS lower-bounded by smallest disc left-end:

3l I

L i i
mln(M) mlnMu_R < Amin R E ?.:( —

3 = 1V

= To ensure PSDness, apply linear constr's

[1] R. S. Varga, Gershgorin and His Circles, Springer, Dec 2004.

Gene Cheung (genec@yorku.ca)
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Gershgorin Circle Theorem

Gershgorin Circle Theorem:
= Row I of M maps to a Gershgorin disc w/

and

R =) M,

J#I

" A\, IS lower-bounded by smallest disc left-end:

Amin (M) £ mln Ml i — R < Anin

= To ensure PSDness, apply linear constr's

[1] R. S. Varga, Gershgorin and His Circles, Springer, Dec 2004.

Gene Cheung (genec@yorku.ca)
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Gershgorin Disc Perfect Alignment (GDPA)

« Consider similarity transform of M (same eigenvalues!): 2 92 1
_ M=| -2 5 =2
B=SMS ! <— similarity transform 1 _9 4
N diagonal matrix w/ scale N ) N :
factors s; p < o> | ¥ o>
- Different S’s induce different lower bounds Apin(B)1 #, | «——e o GDA ) ¥4 o«
i / Ty
. lP; ) H ,‘ L 1.1:',5 ) }, lP; :‘ L 1,:[;',11' g
 Which S do we to use?? 1 1 3 5 7 9 1 1 3 5 7 9

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on

Pattern Analysis and Machine Intelligence, June 2020.
ﬁ' LASSONDE | YORK I
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Gershgorin Disc Perfect Alignment (GDPA)

« Consider similarity transform of M (same eigenvalues!): 2 9 _1 |
_ M=| -2 5 =2
B=SMS ! <— similarity transform 1 _9 4
™ diagonal matrix w/ scale \ ) :
factors s; P e | P [«e—>
- Different S’s induce different lower bounds Agin(B)! ¥, || « ST GDA ) 7,4 ST TR
L / il
. AN R A N S
 Which S do we to use?? 1 1 3 5 7 9 1 1 3 5 7 9

Theorem 1. Let M be a generalized graph Laplacian matrix corresponding to an irreducible,
positive graph G. Denote by v the first eigenvector of M corresponding to the smallest

eigenvalue Ayiy- Then by computing scalars s; = vi Vi, all Gershgorin disc left-ends of

B=SMS ! S=diag(sy,..,sy), are aligned at A,.

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Metric Optimization via GDPA

« Original diagonal opt w/ PSD cone constraint: - . tr(M) < C
mN|1n Q({6;;(M)}) s.t. { M0 or M0
{min} Q(M) original metric optimization
M;;

s.t. M > 0: Zﬂfﬁ <C: M;>0.VYi

« Revised diagonal opt w/ linear constraints:

fain, Q (M)
toM; >y s Mg +p.Vi Y M <C
S.t. My = - 0, V1. My < U
| i ¥ ! '
gl it ~ U

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Metric Optimization via GDPA

« Original diagonal opt w/ PSD cone constraint: min Q({0;;(M)}) s.t. { tr(M) < C

iy @OV

s.t. M > 0: Z M;; < C-

M>~0 or M>0

original metric optimization

ﬂf-_g;g > 0. Vi

« Revised diagonal opt w/ linear constraints:

i@ M)

scalars s; computed from 15t e-vector
of last sol'n M

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on

Pattern Analysis and Machine Intelligence, June 2020.
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Metric Learning Results (speed)

* Running time comparison against PD-cone and HBNB?, for different metrics,
using Madelon dataset.

running time (s)

90
80
70
60

Ly
PD-cone p——

HBNB =

MCML

SGML

1

B = II |
v /m — L aal — L aal
) pd = o Z, = G Z,
7 2 O ? 2 O 7 2
-] L v ) - ] ) -
=l (a By
DEML LSML LMNN

M total time  MPD-cone: eig
HBNB/SGML: LOBPCG

SGML

PD-cone p——

HBNB
SGML o=

GLR

[1] W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3D point cloud denoising," IEEE TSP, vol. 68, pp. 2841-2856, 2020.

ﬁ LASSONDE
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Metric Learning Results (accuracy)

« Using a GLR objective, SGML achieved the best classification results in 7 out
of 14 datasets and remained competitive for 12 out of 14 datasets.

RVML PLML  mmLMNN _ GMML _ DMLM]  SCML DMLE RZIML  LMLIR SGML (prop.)
[50] [51] ] [33] [52] [53] [32] [54] [49] 3NN Mahalanobis _ Graph
australian 83.0L£1.6 805111 825126 844110 839L13 823L114 826+15 847113 851119 833L12 818115 853117
breastcancer ~ 958411 964409  967+1.0 973408 966408 970409 970411 97.0407 964421  97.6+1.0 98.040.6 97.640.7

Datasets

diabetes 71.0£2.6  68.5%2.0 722419 742426 715431 71.5£22 726£20 738+14 759+19 71.6+18 70.5%2.5 70.3%1.4
fourclass 70.5+1.4 724424 75.6+1.4 76.1+19 76.1£19 755+£14 756+14 761+£19 79.9+09 745+24 71.141.6 78.041.2
german 71.7£1.8  70.0£29 68.9+1.8 71l6£11  693£27 709427 720421 729+18 73716 71.6+£17 70.9+£1.3 70.0£0.0
haberman 66.7£2.3  67.1+£3.1 69.0+2.7 71.243.4 68.5+£3.2 692+£25 70.8£35 711434 74.4+3.7  68.8£3.9 66.61+£6.3 73.6£0.3
heart 77741  751£3.2 79.443.7 812427  80.6£28 79.043.2 779431  82.0%3:¢ 83.1£3.2 81.0£34 83.21+3.6 83.61£3.5
ILPD 68.0£2.9  67.4£3.0 66.812.1 67.1£22  68.0L£1.6  68.0£29 68.8+27 659+22 69.612.7 65.2+24 59.1+£24 71.31£0.2
liverdisorders  64.6£3.9  62.2£25 62.0£3.5 63.8454 609+38 61.7+46 61.8+£27 66.8+37 66.7£3.6  69.5+3.3 68.845.9 72.143.0
monk1 89.242.7  96.6%2.7 90.3£2.6 75.0+26  877£38 975£09 999+03 892+15 950+7.2 84.6+51 66.343.0 71.143.7
pima 69.5+1.7  68.442.2 725427 73.0+£18 71.1+£28 71.1+£26 721+£24 723+£15 7461420 734413 73.642.0 69.241.5
planning 55.1+£7.4  60.8£5.5 54.7+0.9 652455 643£29 619450 60.14£55 639434 675465 628441 48.8+4.8 71.3+£0.7
voting 95.8+£1.3  955%£1.0 95.410.9 952419 953#x1.1 950x13 931£19 963x12 93.2+39 96.4t14 94.3+2.0 94.8£1.6
WDBC 96.6£1.3  96.4£09 97.411.0 96.7+£0.8  97.3x19 97009 967£05 969x17 96.6x£1.0 96.6£09 94.8+1.2 96.2£1.1
Average 76.7 76.9 77.3 77.9 779 784 78.6 79.2 80.8 784 75.1 78.9
# of best 0 0 1 0 0 0 1 0 5 1 1 5

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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» Graph Sampling
» Gershgorin Disc Alignment Sampling (GDAS)
» Application: Sampling for matrix completion, 3D point cloud sub-sampling

>
>
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Graph Sampling (with and without noise)

Q: How to choose best samples for graph-based reconstruction?

« Existing graph sampling strategies extend
to graph data kernels:

« Assume bandlimited signal.

» Greedily select most “informative” samples by computing

extreme eigenvectors of sub-matrix.

« Computation-expensive.

[1] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” IEEE Transactions on Signal Processing,
vol. 64, no. 14, pp. 3775-3789, 2016.

[2] Y. Tanaka, Y. C. Eldar, A. Ortega, G. Cheung, "Sampling on Graphs: From Theory to Applications," IEEE Signal Processing Magazine, vol. 37, no.6, pp.14-30,
November 2020.
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Signal Reconstruction using GLR

sampling matrix 1 0 0]

0
| . o -]
= Signal Model: observat\lon // desired signal 0 0 0 1
11 _ 1
O -6 ©

y =HX+V «<— noise

= Signal prior is graph Laplacian regularizer (GLR):

xTLx = z Wl](xl x]) z A X2 Sample set {2, 4}

= \ signal contains

mostly low graph freq.
S|gnal smoothwrt graph y low graph freq

= MAP Formulation:

fidelity term —_ , — sSignalprior
mxinIIy — Hx||5 + u x"Lx

H'H + ulL)x* =
( HL)X" =y

linear system of egn’s solved using conjugate gradient

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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Stability of Linear System

« Examine solution’s linear system:

(H'H+ pl)x* =y ‘1 -1 0 0]
— L_|-1 2 -1 0
coefficient matrix B “lo -1 2 -1
0 0 -1 1

» Stability depends on condition number (A ./ Amin) Of B.
* Ayax IS Upper-bounded by 1+p2*d.,.

max HTH =

cooc oo
oo oo
—_ o oo

Goal: select H to maximize A,,;,(B) (w/0 computing eigen-pairs)!

.. Sample set {2, 4
Also minimizes p {2, 4}

IL(x + 1)l + [l
2

X — x|, < H—
? H Amin(B)

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Gershgorin Circle Theorem

Gershgorin Circle Theorem:

= Row I of L maps to a Gershgorin disc w/ L, 0 o
and R |-t 2 -1 0
10 -1 2 -1
R, = ElLUl 0 0 -1 1]
Jj#i
" A\, IS lower-bounded by smallest left-ends of PN
Gershgorin discs: » >
< >
_ e
min L;; — R; < Anin 1 2 3 4
l

Graph Laplacian L has all Gershgorin disc left-ends at O
— L is PSD.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix

« Sample node — shift disc. 0o -1 2 -1

« Consider similarity transform of B (same eigenvalues!): «——>
< >
C =SBS™! «— similarity transform < >

\ >
diagonal matrix w/ scale 1 2 3 4

factors
« Scale row — expand disc radius. Sample set { }
— shrink neighbors’ disc radius. Scale factor {1,1,1,1}

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix

B =
« Sample node — shift disc. 0 -1 2 -1
0 0O -1 1
« Consider similarity transform of B (same eigenvalues!): —>
< >
C =SBS™! «— similarity transform < >
\ >
diagonal matrix w/ scale 12 3 4 5
factors
« Scale row — expand disc radius. Sample set {2}
— shrink neighbors’ disc radius. Scale factor {1,1,1,1}

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix

B=
« Sample node — shift disc. 0 -1 2 -1
0 o -1 1
« Consider similarity transform of B (same eigenvalues!): «—>
< >
C =SBS™! «— similarity transform B >
\ +—>
diagonal matrix w/ scale 12 3 4 5
factors
« Scale row — expand disc radius. Sample set {2}
— shrink neighbors’ disc radius. Scale factor {1,s,,1,1}

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix

p=]=L |3 [ =1 0
« Sample node — shift disc. 0 \-1] 2 -1
| 0 0/ -1 11
« Consider similarity transform of B (same eigenvalues!): <>
< >
C =SBS™! «— similarity transform < >
\ +—>
diagonal matrix w/ scale 12 3 4 5
factors
« Scale row — expand disc radius. Sample set {2}
— shrink neighbors’ disc radius. Scale factor {1,s,,1,1}

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Solving Dual Sampling Problem: align discs @ T

@ — @ —

Breadth First Iterative Sampling (BFIS):

— @ — @

= Given initial node set, threshold T.

1. Sample chosen node i (shift disc) i : — d v: _ : :« .WJ
2. Scalerowi (expand discradiusito T) wo [l ol 1> <[ .wﬂqw“
3. If disc left-end of connected node | >T, ot e o i o] e e e ol
Scale row j (expand disc radius jto T ) i o L s B

Else, \/

Add node j to node set. I I vs | —fo—s | vsf—jo— |

4. Goto step 1 if node set not empty. v ‘—"—’ v "—"—" v “"—“

5. Output sample set and count K. . , ' . . 5 '

— e e

[1] Y. Bai, G. Cheung, F. Wang, X. Liu, W. Gao, "Reconstruction-Cognizant Graph Sampling Using Gershgorin Disc Alignment,” IEEE
International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, May 2019.

JJLASSONDE | YORK I I

IIIIIIIII E
SCHOOL OF ENGINEERING | I — - — = 1 v

34 Gene Cheung (genec@yorku.ca)




Disc-based Sampling (Intuition)

Analogy: throw pebbles into a pond.
Disc Shifting: throw pebble at sample node |.
Disc Scaling: ripple to neighbors of node 1.

Goal: Select min # of samples so ripple at each node is at least T.

ILASSONDE




Disc-based Sampling (Intuition)

Analogy: throw pebbles into a pond.
Disc Shifting: throw pebble at sample node |.
Disc Scaling: ripple to neighbors of node 1.

Goal: Select min # of samples so ripple at each node is at least T.

éTakeaway Message: roughly linear time graph
‘sampling algorithm minimizing a global error obj.
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Graph Sampling Results: speed

. - : - TABLE I
* Running time comparisons on two different graphs. SPEEDUP FACTORS OF OUR ALGORITHM WITH RESPECT TO
(a) RandOm sensor raph_ (b) Communlty graph. OTHER SAMPLING ALGORITHMS FOR N = 3000
Sampling Algorithms | Sensor Community
Random [27] 0.22 0.21
E-optimal [24] 2812.777 1360.76
SP [16] 174.09 466.18
MEFN [22] 253291 1184.23
10% ¢ 104 ¢ MIA [20] 1896.19 964.65
i Ed-free [9] 1.82 8.11
10% ¢
10
w D
©
E _g 10
= > |
i = c
c ‘c 10%¢
5 ——Random = : —&- Random
o =& E-optimal am - =&— E-optimal
SP 107 £ SP
== FN : ==MFN
== MIA 102 == M| A
Ed-free Ed-free
—=BS-GDA =§=BS-GDA
10-3 1 1 1 _ID_S I I 1
10° 10° 10* 10° 102 10° 104 10°
Graph Size Graph Size
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Graph Sampling Results: community graph

« Visualization of selected nodes on the community graph (N = 500,K = 11). Black circles denote
sampled nodes. (a) Original graph. (b) Random [28].(c) E-optimal [25]. (d) SP [16]. (e) MFN [23].
(f) MIA [20]. (g) Ed-free [9]. (h) The proposed BS-GDA.

ﬁ?} 3 . s - e ? ° ’
Wi » » e
& _ i @ AP : oo ‘ : o / : ' e
vh . ¥ : , ° . ° . °
&:‘ ~ qi,’) A s & ° : »
55 ¥ 9‘ p ° ° ) .
(a) (b) (c) (d)
?
& ° ‘O o .. O. 2 ) ] 3
° =2 0 °
° °
° \ ° % °
o 3 L] o r o ° o ,
° ® °
° ° o ° o ° o

(e) (f) (g)
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Graph Sampling Results: matrix completion

« Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
+ Challenge: select sampling set Q to maximize A, of Aq +aol,, @ L, + L. ® 1,

«  RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using
the double graph smoothness based method.

¥ 3 T G 3 1.8 T T T T T T T T 1 T T T L L i T T T T T T T T T
' - e LY i I.l }:llll: ) —&—rangom 1“' S randam .
v ¥ s ! - 1 Y - b
co TR . 145 e —-PaY | [EE] —+-Ra (1M 0A%, I s I
1y R iy I ] e S PG 8 Y b ﬂ__;.-E"”ﬁ
o o ol mom | o T R =
K S L W 44 X — i - W randon 0s — ¥ —EWlaendem g - _E_D__—-E" - -
wH ' "u ) 1: \ H,- III' Ri- ek 3 P ] RN —g - - (1Nl ,,E" !
" b I'I. -“I. A he I.I:H I':. J. 18 " S—— 0Es \\ propsied 305 06k _,'B__'ef * L ]
i ‘ ; ws . ask \\ B | — # —proposed GC5 w - L
- AN X o ] u | i, — 4 — oposed GOS ﬁ I L & P
5 | f T |" ". 3 = f " 5 D = 05- B {:I__,.-U ) #* 1
e ': ; p : ) L -'I N ] i . = ’ B==8- {*, —a—rancom
. i . TS 07s ey 04 PG (11,8
Laf - 1 4 Yy v .
e em, A nar Fy MG (8,11)
' b 13 7 \x\;t'- -1 #* —* —GWCrandom
B gep T g 02k A
z e . oi0x
89 Ll 1 o8 T HEd g, By - ir o priposed [305
] . e I T X . =t —% - &
o - [ g b g ) N L [Hpedas
&l 100 150 20 151} Fansl 250 ann 350 400 450 500 BED &00 1580 Faii 250 300 350 400 451} i 008 01 045 02 025 03 035 04 045 05
Sample sice Sarple size
Noisa level -
(a) Noisy synthetic Netflix signal (b) RMSE on noiseless signal (c) RMSE on noisy signal with v+ = (d) RMSE on different noise level
0.6

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp.
1814-2829, IEEE Transactions on Signal Processing, April 2020.
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Graph Sampling Results: matrix completion

« Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
« Challenge: select sampling set Q to maximize A, of Aq +al,, ® L, J;&@ L.

graph Laplacians for row / column graphs
«  RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using
the double graph smoothness based method.

¥ 3 T G 3 1.8 T T T T T T T T 1 T T T L L i T T T T T T T T T
' - e LY i I.l }:llll: ) —&—rangom 1“' S randam .
v ¥ s ! - 1 Y - b
co TR . 145 e —-PaY | [EE] —+-Ra (1M 0A%, I s I
1y R iy I ] e S PG 8 Y b ﬂ__;.-E"”ﬁ
o o ol mom | o T R =
K S L W 44 X — i - W randon 0s — ¥ —EWlaendem g - _E_D__—-E" - -
wH ' "u ) 1: \ H,- III' Ri- ek 3 P ] RN —g - - (1Nl ,,E" !
" b I'I. -“I. A he I.I:H I':. J. 18 " S—— 0Es \\ propsied 305 06k _,'B__'ef * L ]
i ‘ ; ws . ask \\ B | — # —proposed GC5 w - L
- AN X o ] u | i, — 4 — oposed GOS ﬁ I L & P
5 | f T |" ". 3 = f " 5 D = 05- B {:I__,.-U ) #* 1
e ': ; p : ) L -'I N ] i . = ’ B==8- {*, —a—rancom
. i . TS 07s ey 04 PG (11,8
Laf - 1 4 Yy v .
e em, A nar Fy MG (8,11)
' b 13 7 \x\;t'- -1 #* —* —GWCrandom
B gep T g 02k A
z e . oi0x
89 Ll 1 o8 T HEd g, By - ir o priposed [305
] . e I T X . =t —% - &
o - [ g b g ) N L [Hpedas
&l 100 150 20 151} Fansl 250 ann 350 400 450 500 BED &00 1580 Faii 250 300 350 400 451} i 008 01 045 02 025 03 035 04 045 05
Sample sice Sarple size
Noisa level -
(a) Noisy synthetic Netflix signal (b) RMSE on noiseless signal (c) RMSE on noisy signal with v+ = (d) RMSE on different noise level
0.6

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp.
1814-2829, IEEE Transactions on Signal Processing, April 2020.
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Graph Sampling Results: 3D point cloud sub-sampling

« Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.
» Challenge: select sampling matrix H to maximize A, of H'H + 1Ll

« SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.

L P —0.18

(a) BGFS | (b) PDS | () FPS (d) proposed

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment,” submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence, January 2021.
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Graph Sampling Results: 3D point cloud sub-sampling

« Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.
» Challenge: select sampling matrix H to maximize A, of H'H + 1Ll ~__

generalized graph Laplacian

« SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.

—0.18

(a) BGFS (b) PDS | (0 FPS (d) proposed

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment,” submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence, January 2021.
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» Graph Filtering
» Signal-dependent GLR, GTV
» Application: Image denoising

40 Gene Cheung (genec@yorku.ca) =%S§DQNGPEG YORK l




GLR for Image Denoising: motivation

« Graph Laplacian Regularizer (GLR) x"Lx is a smoothness measure.

* Denoising has simplest formation model y = x 4+ z, thus formulation

min|ly — x||5 + u xTLx
X

(I+ ul)x* =

« To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
* Fix L and solve unconstrained QP each iteration.

minly — |13 + u x"L(0)x
X

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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GLR for Image Denoising: motivation

« Graph Laplacian Regularizer (GLR) x"Lx is a smoothness measure.

* Denoising has simplest formation model y = x 4+ z, thus formulation
pixel intensity diff. pixel Iocation diff.

min|ly — x||5 + u xTLx
* | ‘XjH H' -, H

2
0,

(I -|-,LlL)X>I< =Yy Bilater Ifllter eights

« To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
* Fix L and solve unconstrained QP each iteration.

minly — |13 + u x"L(0)x
X

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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GLR for Image Denoising: motivation

« Graph Laplacian Regularizer (GLR) x"Lx is a smoothness measure.

* Denoising has simplest formation model y = x 4+ z, thus formulation
pixel intensity diff. pixel Iocation diff.

min|ly — x||5 + u xTLx
* | ‘XjH H' -, H

2
0,

(I -|-,LlL)X>I< =Yy Bilater Ifllter eights

« To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
* Fix L and solve unconstrained QP each iteration.

mxinlly —x||5 + u xTL(x)x Signal-dependent GLR

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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OGLR Denoising Results: visual comparison

|
“‘”'v."‘

Wi

PLOW, 28.11 dB OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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OGLR Denoising Results: visual comparison

* Subjective comparisons (o, =30)

7=

5 B

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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Deep GLR: motivation

* Recall MAP formulation of denoising w/ GLR:

min|y — tz + 1 X' LX
X

fidelity term T smoothness prior
« Solution is system of linear equations:
Sparse PD P LP graph filter
I+ ul)x* =y x* = (I1+ pL) 1y

 Interpretable filter.

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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Deep GLR: motivation

* Recall MAP formulation of denoising w/ GLR:

min|y — tz + 1 X' LX
X

fidelity term T smoothness prior
« Solution is system of linear equations:
Sparse PD P LP graph filter
I+ ul)x* =y x* = (I1+ pL) 1y

 Interpretable filter.

Q: what is the “most appropriate” graph?

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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Deep GLR: motivation

* Recall MAP formulation of denoising w/ GLR:

min|y — tz + 1 X' LX
X

fidelity term T smoothness prior
« Solution is system of linear equations:
Sparse PD P LP graph filter
I+ ul)x* =y x* = (I1+ pL) 1y

 Interpretable filter.
Bilateral weights:

Q: what is the “most appropriate” graph? Wi ; =€xp 7 |exp T

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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Deep GLR: unrolling

* Deep GLR: o dist(z,g)
1. Learn features f's using CNN. Wij =P\ =752 |-

2. Compute distance from features.
: . . N
3. Compute edge weights using Gaussian kernel. list(i. j) = Z (£.(i) — £..(7))2
4, Construct graph, solve QP st(, 1) = »(1) = 1))
. . n=1
features
\ Graph L:11)]%(_!1_}1]_]_I_'E_E%ll_lilf‘_i?.!-lﬁﬂll layer
_fi : !J Graph |
pre fllter\_' CNNp Fn fgq : , Construction |
W A Patch : iL i
8% Splitting Yi | ko
Y — ONNj; —— —r Xi,  Patch o
(Noisy image) . QP Solver — Aggregation R \
L | s ! (Denoised image)
_ — CNN .
weight para—" #
Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian
regularization layer for image denoising.
[1] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. 27th Int. Conf. Machine Learning, 2010..
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Deep GLR: CNN implementation

Fig. 3. Network architectures of CNNg, CNNg; and CNN,, in the experiments. Data

produced by the decoder of CNNpg is colored in orange.
[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of Images,” NTIRE Workshop, CVPR 2019.
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Deep GLR: unrolling

Xl XE XT—l

y GLRNet, GLRNety —— -+ —— GLRNetp XT

(Noisy image) (Denoised image)
Fig. 2. Block diagram of the overall DeepGLR framework.

* Model guarantees numerical stability of solution:

(I+pL)x =y

 Thm 1: condition number k of matrix satisfies [1]:

maximum node degree

K<1+2pu dmax./

* Observation: Restricting CNN search space — achieve robust learning.

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of Images,” NTIRE Workshop, CVPR 2019.

47 Gene Cheung (genec@yorku.ca) 3%29”:?% YORK l

uuuuuuu




Deep GLR: numerical comparison

« Trained on AWGN on 5 images, patches of size 26-by-26.

- Batch size is 4, model is trained for 200 epochs.
 Trained for both known and blind noise variance.

Table 3. Average PSNR (dB) and SSIM values for Gaussian noise

removal.
Method (PSNR/SSIM)
Noise CBM3D CDnCNN DeepGLR
15 33.49/ 0.9216 33.80/ 0.9268 33.65/ 0.9259
25 30.68/ 0.8675 31.13/ 0.8799 31.03/ 0.8797
50 27.35/ 0.7627

27.91/0.7886

27.86/0.7924

Kal Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.
] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.

Gene Cheung (genec@yorku.ca)

|LASSONDE YORK

EEEEEEEE
nnnnnnnnnn




Deep GLR: numerical comparison

Cross-domain generalization.

Trained on Gaussian noise, tested on low-light images in (RENOIR).
Competing methods: DNCNN [1], noise clinic [2].

Outperformed DNnCNN by 5.74 dB, and noise clinic by 1.87 dB.

Table 4. Evaluation of cross-domain generalization for real image
denoising. The best results are highlighted in boldface.

Method
Metric 1 Noisy "\ ice Clinic | CDnCNN | DeepGLR
PSNR | 20.36 27.43 24.36 30.10
SSIM | 0.1823 0.6040 0.5206 0.8028

Kal Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.
] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.
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Deep GLR: visual comparison

« Trained on Gaussian noise, tested on low-light images in (RENOIR).
« Competing methods: DNCNN [1], noise clinic [2].
* Qutperformed DNnCNN by 5.74 dB, and noise clinic by 1.87 dB.

Noise Clinic | CDnCNN

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.
[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.
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Deep GTV: motivation

 GTV promotes PWS faster than GLR.

mxinlly —x|I5 + pllxllgry IX[lgrv = 2 wy j|x; — x|
L,j

w; Jj

* Solve as QP via L,-Laplacian: T, =

max{|zr; — x;

)

min|ly — x||5 + ¢ x"Lrx x" = I+pu Ll‘)_l}'
X

« Sltill interpretable LP graph filter.

[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Graph-Based Blind Image Deblurring from a Single Photograph," IEEE TIP, vol. 28, no.3, pp.1404-1418, March 2019.
[2] H. Vu, G. Cheung, Y. C. Eldar, "Unrolling of Deep Graph Total Variation for Image Denoising," accepted to IEEE ICASSP, Toronto, Canada, June 2021.
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Deep GTV: algorithm

« Learn feature via CNN for graph construction.
* Obtain graph filter response:

"= (1+uLp)y = Udiag(L + pdy, ., 1+ uAy) 70Ty

 Fast filter implementation via Lanczos approx.:
1. Compute tri-diagonal matrix H,; € RM*xM
2. Compute approx. filter:

gLy = |lyll,Vyg(Hy)eq Vit LV = Hpyp =

where (L) := Ug(A)U*

* Interpretable graph filter — fast implementation.

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of Images,” NTIRE Workshop, CVPR 2019.
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[2] A. Susnjara, N. Perraudin, D. Kressnerl, and P. Vandergheynst, “Accelerated filtering on graphs using Lanczos method,” in unpublished, arXiv:1509.04537, 2015.
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Deep GTV: experimental comparison

Train on Gaussian (0=50) and test on captured noise

(a) ground-truth {(b) noisy (PSNR: 23.56) (c) CDnCNN-S (PSNR: 26.83) (d) DeepGTV (PSNR: 28.82)

DnCNN-S  DeepAGF  DeepGTV
# Parameters  0.55M 0.32M 0.12m save 2 80% parameters!

Table 3: Number of trainable parameters

Gene Cheung (genec@yorku.ca) EPASSON D% YOR e '

SCHOOL OF ENGIMEER

51T Y



« Graph is flexible abstraction to convey pairwise similarities.
« Similarity defined as correlation or feature distance.
« Graph frequencies contains global notions.
« Graphis an expression of domain knowledge.

 GSP leverages on mature understanding in SP and linear
algebra.

* GSP tools are excellent for building hybrid model-based /
data-driven systems.

Applications:

Image coding,
denoising, deblurring,
Interpolation, contrast
enhancement, light
field image coding, 3D
point cloud denoising,
enhancement, sub-
sampling, super-
resolution, inpainting,
matrix completion,
semi-supervised
classifier learning,
video summarization

[1] X. Dong*, D. Thanou*, L. Toni, M. Bronstein, P. Frossard, “Graph signal processing for machine learning: A review and new perspectives,” IEEE Signal Processing

Magazine, vol.37, no.6, pp.117-127, Nov., 2020.

54 Gene Cheung (genec@yorku.ca) ) J[LASSONDE YC)RKE |




* Homepage:
https://www.eecs.yorku.ca/~genec/index.html

e E-mail:
genec@yorku.ca

* Forthcoming book:
G. Cheung, E. Magli, (edited) Graph Spectral
Image Processing, ISTE/Wiley, June 2021.
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