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➢ What is Graph Signal Processing?

➢Graph spectrum

➢Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)

➢ Graph Learning

➢Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint) 

➢Feature Graph Learning:  Gershgorin Disc Perfect Alignment (GDPA)

➢Application:  Semi-supervised classifier learning

➢ Graph Sampling

➢Gershgorin Disc Alignment Sampling (GDAS)

➢Application:  Sampling for matrix completion, 3D point cloud sub-sampling

➢ Graph Filtering

➢Signal-dependent GLR, GTV

➢Application:  Image denoising
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▪ Discrete signals on regular data kernels.

▪ Ex.1:  audio on regularly sampled timeline.

▪ Ex.2: image on 2D grid.

▪ Harmonic analysis tools (transforms, wavelets): 

▪ Compression, restoration, segmentation, etc.

xa = desired 

signal

DCT transformsparse

transform coeff.

2D DCT basis
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Digital Signal Processing
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▪ Signals on irregular data kernels described by graphs.

▪ Graph: nodes and edges.

▪ Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.

2. Embed pairwise (dis)similarity info into edge weights.

▪ Eigenvectors provide global info aggregated from local info.  

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, 

challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

signal on graph kernel

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image processing,” Proceedings of the IEEE, vol. 106, no.

5, pp. 907–930, 2018.

signal on graph kernel
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▪ Graph: nodes and edges.

▪ Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.

2. Embed pairwise (dis)similarity info into edge weights.

▪ Eigenvectors provide global info aggregated from local info.  

Graph Signal Processing (GSP) provides spectral 

analysis tools for signals residing on graphs.

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, 

challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.
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Graph Laplacian:
• Adjacency Matrix W:  entry Wi,j has non-negative edge weight wi,j

connecting nodes i and j.

• Degree Matrix D:  diagonal matrix w/ entry Di,i being sum of column 
entries in row i of W.

𝐷𝑖,𝑖 =෍

𝑖

𝑊𝑖,𝑗

• Combinatorial Graph Laplacian L:   L = D - W
▪ L is related to 2nd derivative.

▪ L is a differential operator on graph.

1 2 3 4
2,1w

𝐖 =

0 𝑤1,2 0 0

𝑤1,2 0 1 0

0 1 0 1
0 0 1 0

𝐃 =

𝑤1,2 0 0 0

0 𝑤1,2 + 1 0 0

0 0 2 0
0 0 0 1

1 1

𝐋 =

𝑤1,2 −𝑤1,2 0 0

−𝑤1,2 𝑤1,2 + 1 −1 0

0 −1 2 −1
0 0 −1 1

*https://en.wikipedia.org/wiki/Second_derivative
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Graph Fourier Transform (GFT)
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Graph Fourier Transform (GFT)
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2nd eigenvector

1 2 3 4 8…2,1w 1 1

TVVL =

eigenvalues along diagonal

eigenvectors in columns

GFT xVx~ T=

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

1. Eigenvectors aggregate info from edge weights.

▪ Constant 1st eigenvector is DC.

▪ # zero-crossings increases as λ increases.

2. Eigenvalues (≥ 0) as graph frequencies.

GFT defaults to DCT for un-weighted connected line.

GFT defaults to DFT for un-weighted connected circle.

GFT coefficients
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V1: DC component

location diff.
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Edge weights

*https://en.wikipedia.org/wiki/Delaunay triangulation

Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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V2: 1st AC component
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V4: 9th AC component
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GSP:  SP framework that unifies concepts from multiple fields.

Graph Signal

Processing* (GSP)

Combinatorial 

Graph Theory
Spectral 

Graph Theory

Computer 

Vision

Computer Graphics

Machine 

Learning

spectral

clustering

eigen-analysis of 

graph Laplacian, 

adjacency matrices

graphical model, 

manifold learning, 

classifier learning

Laplace-

Beltrami 

operator

Laplace equation,

Diffusion
Partial Differential 

Eq’ns

Max cut, graph 

transformation

DSP
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GSP and Graph-related Research 
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What is a good graph?
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• Graph Signal Processing (GSP) provides spectral analysis 

tools for signals on fixed graphs.

• Graph captures pairwise relationships.

1. Domain knowledge.

2. Correlations.

3. Feature distance. 

• Goal:

1. Learn inverse covariance matrix from limited data.

2. Learn metric to determine feature distance.
signal on graph kernel

[1] X. Dong et al., Learning graphs from data: A signal representation perspective," IEEE SPM, vol. 36, no. 3, pp. 44-63, 2019.

Gene Cheung (genec@yorku.ca)

signal on line kernel



Sparse Precision Matrix Estimation: GLASSO

16

• Given empirical covariance matrix Σ, Graphical Lasso

computes positive-definite (PD) precision matrix Θ:

• 1st and 2nd terms are likelihood.

• 3rd term promotes sparsity.

• Solved via block-coordinate descent (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.

Gene Cheung (genec@yorku.ca)
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• Given empirical covariance matrix Σ, Graphical Lasso

computes positive-definite (PD) precision matrix Θ:

• 1st and 2nd terms are likelihood.

• 3rd term promotes sparsity.

• Solved via block-coordinate descent (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.

α-incoherence 

condition

Gene Cheung (genec@yorku.ca)



Graph Laplacian Estimation
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• Assume precision matrix is:

• Generalized graph Laplacian (GGLs), 

• Diagonally dominant generalized graph Laplacian (DDGLs), or 

• Combinatorial graph Laplacian (CGLs).

• Given empirical covariance matrix S, computes Laplacian Θ:

• K = S + H, H is regularization matrix.

• Lg(A) ensures Θ is GGL.

• Solved via block-coordinate descent (BCD) algorithm.

[1] H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints," in IEEE Journal of 

Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017

Gene Cheung (genec@yorku.ca)



Graph Laplacian Estimation w/ Eigen-Structure Constraint
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• Assume graph Laplacian matrix L has:

Pre-determined first K eigenvectors.

• Define convex cone         of PSD matrices with same first K eigenvectors.

• Design projection operator to        inspired by Gram-Schmidt procedure.

• Given empirical covariance matrix S, computes Laplacian L:

• Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.

Gene Cheung (genec@yorku.ca)
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• Assume graph Laplacian matrix L has:

Pre-determined first K eigenvectors.

• Define convex cone         of PSD matrices with same first K eigenvectors.

• Design projection operator to        inspired by Gram-Schmidt procedure.

• Given empirical covariance matrix S, computes Laplacian L:

• Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.

Ex:

1. 1st e-vector is constant for image coding.

2. 1st e-vector is PWC for voting in Senate.

3. Sparse first K e-vectors for transform coding.

Gene Cheung (genec@yorku.ca)



Graph Laplacian Estimation: results

19

• Randomly located 20 nodes in 2D space. Use the Erdos-Renyi model to determine connectivity 

with probability 0.6. Compute edge weights using a Gaussian kernel. Remove weights <0.75. Flip 

sign of each edge with probability 0.5. K=1.

• (a) Ground Truth Laplacian L , (b) Proposed Proj-Lasso with K = 1, (c) GLASSO, (d) DDGL and (e) 

GL-SigRep .

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.

Gene Cheung (genec@yorku.ca)



Metric Learning for Graph Construction
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• Construct graph when ≤ 1 signal observation, but

Each node has K-dimension feature vector.

• Example:  semi-supervised graph classifier

• Each node i has feature vector 

• Use PSD metric matrix M, establish Mahalanobis

distance:

• Compute positive edge weight using exp:

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

signal on graph kernel

Gene Cheung (genec@yorku.ca)



Signal Reconstruction using GLR

▪ Signal Model:

▪ Signal prior is graph Laplacian regularizer (GLR):

▪ MAP Formulation:

21

𝐱𝑇Lx =෍

𝑖,𝑗

𝑤𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2
=෍

𝑘

𝜆𝑘 ෤𝑥𝑘
2

noise

desired signal
observation

𝐲 =𝐇𝐱+𝐯

min
𝐱

𝐲 − 𝐇𝐱 2
2 + 𝜇 𝐱𝑇𝐋𝐱

signal prior
fidelity term

signal smooth w.r.t. graph 

signal contains

mostly low graph freq.

𝐇𝑇𝐇+ 𝜇𝐋 𝐱∗ = 𝐲
linear system of eqn’s solved using conjugate gradient

sampling matrix
1 2 3 4

1 11

𝐇 =
0 1 0 0
0 0 0 1

Sample set {2, 4}

[2] C. Yang, G. Cheung, V. Stankovic, "Alternating Binary Classifier and Graph Learning from Partial Labels," APSIPA ASC 2018, Hawaii, USA, November 2018.

Gene Cheung (genec@yorku.ca)

𝐇T𝐇 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.



Metric Learning for Graph Construction
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• Optimal metric matrix M:

for convex, differentiable Q(M).

• For example, Graph Laplacian Regularizer (GLR):

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

Gene Cheung (genec@yorku.ca)
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• Optimal metric matrix M:

for convex, differentiable Q(M).

• For example, Graph Laplacian Regularizer (GLR):

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

PSD cone constraint is hard!

Naïve Approach:

• Gradient descent via 

• Projection to PSD cone.

• Repeat.

Our Approach:

• Convert PSD cone to K adaptive 

linear constraints via Gershgorin 

Disc Alignment (GDA).

• Min Q(M) w/ linear constraints.

• Repeat.

Gene Cheung (genec@yorku.ca)

upper bound on distance



Gershgorin Circle Theorem

Gershgorin Circle Theorem:

▪ Row i of M maps to a Gershgorin disc w/ centre Mii

and radius Ri

▪ λmin is lower-bounded by smallest disc left-end:

▪ To ensure PSDness, apply linear constr’s

23

𝜆min
− 𝐌 ≜ min

𝑖
𝑀𝑖,𝑖 − 𝑅𝑖 ≤ 𝜆min

𝑅𝑖 =෍

𝑗≠𝑖

𝑀𝑖𝑗 𝜆min
−

[1] R. S. Varga, Gershgorin and His Circles, Springer, Dec 2004.

Gene Cheung (genec@yorku.ca)
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𝑗≠𝑖

𝑀𝑖𝑗 ≥ 0, ∀𝑖
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Gershgorin Disc Perfect Alignment (GDPA)

• Consider similarity transform of M (same eigenvalues!):

• Different S’s induce different lower bounds !

• Which S do we to use??

24

similarity transform

diagonal matrix w/ scale 

factors 𝑠𝑖

𝐁 =𝐒𝐌𝐒−1

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

𝜆min
− 𝐁
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similarity transform

diagonal matrix w/ scale 

factors 𝑠𝑖

𝐁 =𝐒𝐌𝐒−1

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

𝜆min
− 𝐁

Theorem 1:  Let M be a generalized graph Laplacian matrix corresponding to an irreducible, 

positive graph G. Denote by v the first eigenvector of M corresponding to the smallest 

eigenvalue 𝜆min. Then by computing scalars 𝑠𝑖 =
1

𝑣𝑖
, ∀𝑖, all Gershgorin disc left-ends of 

𝐁 =𝐒𝐌𝐒−1, 𝐒 = 𝑑𝑖𝑎𝑔 𝑠1, … , 𝑠𝑁 , are aligned at  𝜆min.

Gene Cheung (genec@yorku.ca)



Metric Optimization via GDPA

• Original diagonal opt w/ PSD cone constraint:

• Revised diagonal opt w/ linear constraints:

25

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

original metric optimization 
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25

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

scalars si computed from 1st e-vector 

of last sol’n M

original metric optimization 

Gene Cheung (genec@yorku.ca)



Metric Learning Results (speed)

26

• Running time comparison against PD-cone and HBNB1, for different metrics, 

using Madelon dataset.

[1] W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3D point cloud denoising," IEEE TSP, vol. 68, pp. 2841-2856, 2020.

Gene Cheung (genec@yorku.ca)



Metric Learning Results (accuracy)

27

• Using a GLR objective, SGML achieved the best classification results in 7 out 

of 14 datasets and remained competitive for 12 out of 14 datasets.

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on 

Pattern Analysis and Machine Intelligence, June 2020.

Gene Cheung (genec@yorku.ca)
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➢ What is Graph Signal Processing?
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Graph Sampling (with and without noise)

Q: How to choose best samples for graph-based reconstruction?

29

[1] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” IEEE Transactions on Signal Processing, 

vol. 64, no. 14, pp. 3775–3789, 2016.

• Existing graph sampling strategies extend Nyquist sampling 

to graph data kernels:

• Assume bandlimited signal.

• Greedily select most “informative” samples by computing 

extreme eigenvectors of sub-matrix. 

• Computation-expensive. 

[2] Y. Tanaka, Y. C. Eldar, A. Ortega, G. Cheung, "Sampling on Graphs: From Theory to Applications," IEEE Signal Processing Magazine, vol. 37,  no.6,  pp.14-30, 

November 2020.

Gene Cheung (genec@yorku.ca)



Signal Reconstruction using GLR

▪ Signal Model:

▪ Signal prior is graph Laplacian regularizer (GLR):

▪ MAP Formulation:

30
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signal prior
fidelity term

signal smooth w.r.t. graph 

signal contains

mostly low graph freq.

𝐇𝑇𝐇+ 𝜇𝐋 𝐱∗ = 𝐲
linear system of eqn’s solved using conjugate gradient

sampling matrix

1 2 3 4
1 11

𝐇 =
0 1 0 0
0 0 0 1

Sample set {2, 4}

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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Stability of Linear System

• Examine solution’s linear system:

• Stability depends on condition number (λmax/ λmin) of B.

• λmax  is upper-bounded by 1+μ2*dmax.

Goal: select H to maximize 𝜆min 𝐁 (w/o computing eigen-pairs)!

Also minimizes worst-case MSE:

31

𝐇𝑇𝐇+ 𝜇𝐋 𝐱∗ = 𝐲

coefficient matrix B

1 2 3 4
1 11

𝐋 =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

Sample set {2, 4}

𝐇T𝐇 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

ො𝐱 − 𝐱 2 ≤ 𝜇
1

𝜆𝑚𝑖𝑛 𝐁
2

𝐋 𝐱 + ෥𝐧 2 + ෥𝐧 2

Gene Cheung (genec@yorku.ca)

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol. 

68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.



Gershgorin Circle Theorem

Gershgorin Circle Theorem:

▪ Row i of L maps to a Gershgorin disc w/ centre Lii

and radius Ri

▪ λmin is lower-bounded by smallest left-ends of 

Gershgorin discs:

Graph Laplacian L has all Gershgorin disc left-ends at 0 

→ L is PSD.
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min
𝑖

𝐿𝑖,𝑖− 𝑅𝑖 ≤ 𝜆min

1 2 3 4
1 11

𝐋 =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

1 2 3 4

𝑅𝑖 =෍

𝑗≠𝑖

𝐿𝑖𝑗
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea:  Select samples to max smallest disc left-end of 

coefficient matrix B:

• Sample node → shift disc. 

• Consider similarity transform of B (same eigenvalues!):

• Scale row → expand disc radius. 

→ shrink neighbors’ disc radius.

33

1 2 3 4
1 11

coeff. matrix

similarity transform

𝐁 =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

1 2 3 4

Sample set { }

Scale factor {1,1,1,1}

diagonal matrix w/ scale 

factors

𝐁 =𝐇𝑇 𝐇+𝜇 𝐋

𝐂 =𝐒𝐁𝐒−1

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol. 

68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Solving Dual Sampling Problem: align discs @ T

Breadth First Iterative Sampling (BFIS):

▪ Given initial node set, threshold T.

1. Sample chosen node i (shift disc)

2. Scale row i (expand disc radius i to T )

3. If disc left-end of connected node j >T, 

Scale row j (expand disc radius j to T )

Else,

Add node j to node set.

4. Goto step 1 if node set not empty.

5. Output sample set and count K.

34 Gene Cheung (genec@yorku.ca)

[1] Y. Bai, G. Cheung, F. Wang, X. Liu, W. Gao, "Reconstruction-Cognizant Graph Sampling Using Gershgorin Disc Alignment," IEEE 

International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, May 2019.



Analogy: throw pebbles into a pond.

Disc Shifting: throw pebble at sample node i.

Disc Scaling: ripple to neighbors of node i. 

Goal: Select min # of samples so ripple at each node is at least T.  

35

Disc-based Sampling (Intuition)
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Disc-based Sampling (Intuition)

Takeaway Message: roughly linear time graph 

sampling algorithm minimizing a global error obj.

Gene Cheung (genec@yorku.ca)



• Running time comparisons on two different graphs. 
(a) Random sensor raph. (b) Community graph.

36

Graph Sampling Results: speed
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• Visualization of selected nodes on the community graph (N = 500,K = 11). Black circles denote 

sampled nodes. (a) Original graph. (b) Random [28].(c) E-optimal [25]. (d) SP [16]. (e) MFN [23]. 

(f) MIA [20]. (g) Ed-free [9]. (h) The proposed BS-GDA.

37

Graph Sampling Results:  community graph
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• Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.

• Challenge: select sampling set Ω to maximize λmin of

• RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using 

the double graph smoothness based method. 

38

Graph Sampling Results:  matrix completion

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp. 

1814-2829, IEEE Transactions on Signal Processing, April 2020.
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Graph Sampling Results:  matrix completion

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp. 

1814-2829, IEEE Transactions on Signal Processing, April 2020.

graph Laplacians for row / column graphs
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• Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.

• Challenge: select sampling matrix H to maximize λmin of

• SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.

39

Graph Sampling Results:  3D point cloud sub-sampling

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment," submitted to IEEE 

Transactions on Pattern Analysis and Machine Intelligence, January 2021.
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Graph Sampling Results:  3D point cloud sub-sampling

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment," submitted to IEEE 

Transactions on Pattern Analysis and Machine Intelligence, January 2021.

generalized graph Laplacian

Gene Cheung (genec@yorku.ca)



Outline 

40

➢ What is Graph Signal Processing?

➢Graph spectrum

➢Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)

➢ Graph Learning

➢Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint) 

➢Feature Graph Learning:  Gershgorin Disc Perfect Alignment (GDPA)

➢Application:  Semi-supervised classifier learning

➢ Graph Sampling

➢Gershgorin Disc Alignment Sampling (GDAS)

➢Application:  Sampling for matrix completion, 3D point cloud sub-sampling

➢ Graph Filtering

➢Signal-dependent GLR, GTV

➢Application:  Image denoising

Gene Cheung (genec@yorku.ca)



GLR for Image Denoising: motivation

41

• Graph Laplacian Regularizer (GLR) 𝐱𝑇𝐋𝐱 is a smoothness measure.

• Denoising has simplest formation model 𝐲 = 𝐱 + 𝐳, thus formulation

• To promote Piecewise Smoothness (PWS), 𝐋 𝐱 is signal-dependent:

• Fix L and solve unconstrained QP each iteration.

min
𝐱

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋𝐱

𝐈+𝜇𝐋 𝐱∗ = 𝐲

min
𝐱

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋 𝐱 𝐱

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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𝐱

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋 𝐱 𝐱

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.

Signal-dependent GLR
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OGLR Denoising Results:  visual comparison

42

• Subjective comparisons (             )40 =I

Original Noisy, 16.48 dB K-SVD, 26.84 dB

BM3D, 27.99 dB PLOW, 28.11 dB OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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OGLR Denoising Results:  visual comparison
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[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

• Subjective comparisons (             )30 =I

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB
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Deep GLR: motivation

44

• Recall MAP formulation of denoising w/ GLR:

• Solution is system of linear equations:

• Interpretable filter.

xLxxymin
2

2

T

x
+−

smoothness priorfidelity term

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.

𝐈 + μ𝐋 𝐱∗ = 𝐲 𝐱∗ = 𝐈 + μ𝐋 −𝟏𝐲

Sparse PD LP graph filter
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Bilateral weights:

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.

𝐈 + μ𝐋 𝐱∗ = 𝐲 𝐱∗ = 𝐈 + μ𝐋 −𝟏𝐲

Sparse PD LP graph filter
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Deep GLR: unrolling

45

• Deep GLR:

1. Learn features f’s using CNN.

2. Compute distance from features.

3. Compute edge weights using Gaussian kernel.

4. Construct graph, solve QP. 

features

pre-filter

weight para

[1] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. 27th Int. Conf. Machine Learning, 2010..
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Deep GLR: CNN implementation

46

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of  Images,” NTIRE Workshop, CVPR 2019.
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Deep GLR: unrolling

47

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of  Images,” NTIRE Workshop, CVPR 2019.

• Model guarantees numerical stability of solution:

• Thm 1: condition number κ of matrix satisfies [1]:

• Observation: Restricting CNN search space → achieve robust learning.

( ) yxLI * =+ 

maximum node degree

Gene Cheung (genec@yorku.ca)



Deep GLR: numerical comparison
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• Trained on AWGN on 5 images, patches of size 26-by-26. 

• Batch size is 4, model is trained for 200 epochs.

• Trained for both known and blind noise variance.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.

Gene Cheung (genec@yorku.ca)



Deep GLR: numerical comparison

49

• Cross-domain generalization.

• Trained on Gaussian noise, tested on low-light images in (RENOIR).

• Competing methods: DnCNN [1], noise clinic [2].

• Outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.
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Deep GLR: visual comparison

50

• Trained on Gaussian noise, tested on low-light images in (RENOIR).

• Competing methods: DnCNN [1], noise clinic [2].

• Outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.

CDnCNNNoise Clinic DeepGLR
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Deep GTV: motivation

51

• GTV promotes PWS faster than GLR.

• Solve as QP via L1-Laplacian:

• Still interpretable LP graph filter.

[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Graph-Based Blind Image Deblurring from a Single Photograph," IEEE TIP, vol. 28, no.3, pp.1404-1418, March 2019.

min
𝑥

𝐲 − 𝐱 2
2 + 𝜇 𝐱 𝐺𝑇𝑉 𝐱 𝐺𝑇𝑉 =෍

𝑖,𝑗

𝑤𝑖,𝑗 𝑥𝑖 − 𝑥𝑗

min
𝑥

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋Г𝐱

[2] H. Vu, G. Cheung, Y. C. Eldar, "Unrolling of Deep Graph Total Variation for Image Denoising," accepted to IEEE ICASSP, Toronto, Canada, June 2021.
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Deep GTV: algorithm

52

• Learn feature via CNN for graph construction. 

• Obtain graph filter response:

• Fast filter implementation via Lanczos approx.:

1. Compute tri-diagonal matrix 

2. Compute approx. filter:

where

• Interpretable graph filter → fast implementation.

[2] A. Susnjara, N. Perraudin, D. Kressner1, and P. Vandergheynst, “Accelerated filtering on graphs using Lanczos method,” in unpublished, arXiv:1509.04537, 2015.

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of  Images,” NTIRE Workshop, CVPR 2019.

𝑔 𝐋 𝐲 ≈ 𝐲 2𝐕𝑀𝑔 𝐇𝑀 𝐞1

Gene Cheung (genec@yorku.ca)

𝐱∗ = 𝐈 + 𝜇𝐋Γ
−1𝐲 = 𝐔diag(1 + 𝜇𝜆1, … , 1 + 𝜇𝜆𝑁)

−1𝐔𝑇𝐲



Deep GTV: experimental comparison
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• Train on Gaussian (𝜎=50) and test on captured noise 

save ≥ 80% parameters!

Gene Cheung (genec@yorku.ca)
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Conclusion

• Graph is flexible abstraction to convey pairwise similarities.
• Similarity defined as correlation or feature distance.

• Graph frequencies contains global notions.

• Graph is an expression of domain knowledge.

• GSP leverages on mature understanding in SP and linear 

algebra. 

• GSP tools are excellent for building hybrid model-based / 

data-driven systems.

[1] X. Dong*, D. Thanou*, L. Toni, M. Bronstein, P. Frossard, “Graph signal processing for machine learning: A review and new perspectives,” IEEE Signal Processing 

Magazine, vol.37, no.6, pp.117-127, Nov., 2020.
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Applications:

Image coding, 

denoising, deblurring, 

interpolation, contrast 

enhancement, light 

field image coding, 3D 

point cloud denoising, 

enhancement, sub-

sampling, super-

resolution, inpainting, 

matrix completion, 

semi-supervised 

classifier learning, 

video summarization
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Contact Info

• Homepage:
https://www.eecs.yorku.ca/~genec/index.html

• E-mail:
genec@yorku.ca

• Forthcoming book:

G. Cheung, E. Magli, (edited) Graph Spectral 

Image Processing, ISTE/Wiley, June 2021.
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