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» What is Graph Signal Processing?
» Graph spectrum
» Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
» Graph Learning
» Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
» Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
» Application: Semi-supervised classifier learning

» Graph Sampling
» Gershgorin Disc Alignment Sampling (GDAS)
» Application: Sampling for matrix completion, 3D point cloud sub-sampling

» Graph Filtering
» Signal-dependent GLR, GTV
» Application: Image denoising
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» What is Graph Signal Processing?
» Graph spectrum
» Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
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Digital Signal Processing

= Discrete signals on regular data kernels. f(x) T T > \' )
= Ex.1: audio on regularly sampled timeline.
= Ex.2: iImage on 2D grid.

» Harmonic analysis tools (transforms, wavelets):
= Compression, restoration, segmentation, etc.
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Graph Signal Processing

= Signals on irregular data kernels described by graphs.
» Graph: nodes and edges.
» Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.

2. Embed pairwise (dis)similarity info into edge weights. signal on graph kernel
= Eigenvectors provide global info aggregated from local info. ®

:

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, signal on graph kernel
challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image processing,” Proceedings of the IEEE, vol. 106, no.
5, pp. 907-930, 2018.
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Graph Signal Processing

= Signals on irregular data kernels described by graphs.
» Graph: nodes and edges.
» Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.

2. Embed pairwise (dis)similarity info into edge weights. signal on graph kernel
= Eigenvectors provide global info aggregated from local info. ®
Graph Signal Processing (GSP) provides spectral
analysis tools for signals residing on graphs. :
[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, signal on graph kernel

challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image processing,” Proceedings of the IEEE, vol. 106, no.
5, pp. 907-930, 2018.
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Graph Fourier Transform (GFT)

Graph Laplacian: undirected graph
* Adjacency Matrix W: entry W,; has non-negative edge weight w;; Wy, 1 1
connecting nodes i and j. @ —@
0wy, 0 0]
« Degree Matrix D: diagonal matrix w/ entry D;; being sum of column we|wz 0 10
entries in row i of W. 0 1 0 1
L 0 0 1 o0

D;; = Z Wi
i

Wi 2 0 00
« Combinatorial Graph LaplacianL: L =D -W D= 8 w1,20+ 1 (21 8
= L is related to 2" derivative. 0 0 -
L, X ==X, +2X;— X,
£7(x) = lim f(x+h)-2f(x)+ f(x=h) Wi, —wi, 0 0
B h—0 h2 L = —Wi2 Wip +1 -1 0
, : : 0 —1 2 -1
= L is a differential operator on graph. 0 0 o1

*https://en.wikipedia.org/wiki/Second_derivative
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Graph Fourier Transform (GFT)

Graph Laplacian: undirected graph
* Adjacency Matrix W: entry W,; has non-negative edge weight w;; Wy, 1 1
connecting nodes i and j. @ —@
0wy, 0 0]
« Degree Matrix D: diagonal matrix w/ entry D;; being sum of column we|wz 0 10
entries in row i of W. 0 1 0 1
L 0 0 1 o0

D;; = Z Wi
i

Wi 0 0 0
« Combinatorial Graph LaplacianL: L=D-W D= 8 Wiz ¥ 1 (2’ 8
= L is related to 2"? derivative. 0 0 0 1
L, X ==X, +2X;— X,
, _ f(x+h)=2f(x)+ f(x=h) ‘Wi, —wi, 00 0]
f"(x)=lim - _ _
. . . _1 2 —
» L is a differential operator on graph. L0 0 =1 1

*https://en.wikipedia.org/wiki/Second_derivative
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Graph Spectrum from GFT

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

Wio o 1 1
elgenvalues along diagonal ‘ ‘ ‘_‘ ‘
iy T
L= vz@ X =V'x
elgenvectors in columns \ *\I an' eigeﬁvecfor —e—wizr

GFT coefficients
wi12=0.1

—#k—w12=0.01

1. Eigenvectors aggregate info from edge weights.

= Constant 18t eigenvector is DC.
" # zero-crossings increases as A increases.

2. Eigenvalues (= 0) as graph frequencies.

GFT defaults to DCT for un-weighted connected line.
GFT defaults to DFT for un-weighted connected circle.




Graph Spectrum from GFT

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

Wio o 1 1
elgenvalues along diagonal ‘ ‘ ‘_‘ ‘
iy T
L= vz@ X =V'x
elgenvectors in columns \ *\I an' eigeﬁvecfor —e—wizr

GFT coefficients
wi12=0.1

—#k—w12=0.01

1. Eigenvectors aggregate info from edge weights.

= Constant 18t eigenvector is DC.
" # zero-crossings increases as A increases.

2. Eigenvalues (= 0) as graph frequencies.

GFT defaults to DCT for un-weighted connected line.
GFT defaults to DFT for un-weighted connected circle.




Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph co.nnecFions from Dela.unay Trigngulation*. _Hli _IjHZ
Edge weights |n\5ﬁ(_erse proportional to distance. W exp{ = 2

Edge weights
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*https://en.wikipedia.org/wiki/Delaunay triangulation




Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities.
Graph connections from Delaunay Triangulation*,
Edge weights inverse proportional to distance.
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Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph connections from Delaunay Triangulation*. ‘H' i Hz
W, | exp{ LY

Edge weights inverse proportional to distance. 2

Edge weights

V3: 2" AC component

25 ! I | ! | |
-130 -120 -110 -100 -90 -80 =70
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Graph Freqguency Examples (US Temperature)

Weather stations from 100 most populated cities. location diff.
Graph connections from Delaunay Triangulation*. _HI - Hz
Edge weights inverse proportional to distance. W | eXp{ '02 :
a0
1015 Edge weights
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GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.

Laplace equation, Ezﬂlr?;ﬁi' _
Diffusion operatcy” Computer Graphics
graphical model, . spectral Computer
_ manifold learning, Graph Slgnal clustering Visi
Machine classifier learning Processing* (GSP) ISion
Learning
DSP eigen-analysis of
Max cut, graph graph Laplacian,
transformati adjacency matrices
Combinatorial Spectral
Graph Theory Graph Theory

13 Gene Cheung (genec@yorku.ca) =.I LASERNGPEG YORKF l




>

>
>
» Graph Learning
» Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
» Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
» Application: Semi-supervised classifier learning

>
>
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What is a good graph?

f!x) .
* Graph Signal Processing (GSP) provides spectral analysis ! 1
tools for signals on fixed graphs. .

« Graph captures pairwise relationships. signal on line kernel
» Correlations.
« Feature distance. . .

« Goal:
1. Learn inverse covariance matrix from limited data.
2. Learn metric to determine feature distance.

signal on graph kernel

1] X. Dong et al., Learning graphs from data: A signal representation perspective," IEEE SPM, vol. 36, no. 3, pp. 44-63, 2019.




Sparse Precision Matrix Estimation: GLASSO

« Given empirical covariance matrix 2, Graphical Lasso
computes positive-definite (PD) precision matrix ©:

max logdet©® — Tr(X0) — p [|O]|1

e 1stand 2" terms are likelihood.
« 3" term promotes sparsity.

« Solved via block-coordinate descent (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.




Sparse Precision Matrix Estimation: GLASSO

« Given empirical covariance matrix 2, Graphical Lasso
computes positive-definite (PD) precision matrix ©:

max logdet©® — Tr(X0) — p [|O]|1

e 1stand 2" terms are likelihood.
« 3" term promotes sparsity.

a-incoherence

» Solved via block-coordinate descent (BCD) algorithm. condition

[1] Friedman J, Hastie T, Tibshirani R. “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics. 2008; 9(3): 432-441.




Graph Laplacian Estimation

« Assume precision matrix is:
* Generalized graph Laplacian (GGLS),
« Diagonally dominant generalized graph Laplacian (DDGLS), or
« Combinatorial graph Laplacian (CGLs).

« Given empirical covariance matrix S, computes Laplacian O:

mei‘n Tr(©K) — logdet © subject to © € L,(A)

- K=S + H, His regularization matrix.
* Ly(A) ensures O is GGL.
» Solved via block-coordinate descent (BCD) algorithm.

[1] H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints," in IEEE Journal of
Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017
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Graph Laplacian Estimation w/ Eigen-Structure Constraint

Assume graph Laplacian matrix L has:

Pre-determined first K eigenvectors.

Define convex cone H. of PSD matrices sharing same K eigenvectors.
Design projection operator to He iInspired by Gram-Schmidt procedure.
Given empirical covariance matrix S, computes Laplacian L:

min Tr(LC) — logdet L + p ||L||;
LeHT

Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.
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Graph Laplacian Estimation w/ Eigen-Structure Constraint

Assume graph Laplacian matrix L has: =
X.

1ste-vector is constant for image coding.

1.
Pre-determined first K eigenvectors 2. 1ste-vector is PWC for voting in Senate.
' 3. Sparse first K e-vectors for transform coding.

Define convex cone H. of PSD matrices sharing same K eigenvectors.
Design projection operator to He iInspired by Gram-Schmidt procedure.
Given empirical covariance matrix S, computes Laplacian L:

min Tr(LC) — logdet L + p ||L||;
LeHT

Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.
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Graph Laplacian Estimation: results

« Randomly located 20 nodes in 2D space. Use the Erdos-Renyi model [23] to determine connectivity
with probability 0.6. Compute edge weights using a Gaussian kernel. Remove weights <0.75. Flip
sign of each edge with probability 0.5. K=1.

« (a) Ground Truth Laplacian L, (b) Proposed Proj-Lasso with K =1, (c) GLASSO, (d) DDGL and (e)
GL-SigRep .

(a) (b) (c) (d) (e)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and
Projection," accepted to IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.
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Metric Learning for Graph Construction

« Construct graph when < 1 signal observation, but

Each node has K-dimension feature vector.

- Example: semi-supervised graph classifier
- Each node i has feature vector f; € RX

 Use PSD metric matrix M, establish Mahalanobis )

distance:
0jj = (fi — fj)TM(fi — fj)

« Compute positive edge weight using exp:

wjj = exp (—djj)

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Signal Reconstruction using GLR

_ sampling matrix 1 1 1
= Signal Model: observati’)\n //desired signal » @6 O
y =HX+V «<— noise
= Signal prior is graph Laplacian regularizer (GLR): 010 0

H =
x'Lx == zwl,](xl—x]) zﬂk 000t

= <—___signal contains
mostly low graph freq.

Sample set {2, 4}

S|gnal smooth w.r.t. graph
H™H =
= MAP Formulation:
fidelity term — — slgnalprior
min|ly — Hx||5 + u x"Lx
X

(HTH + uL)x* =
L)x* =y

oo oo
co oo
= o o O

S O = O

linear system of egn’s solved using conjugate gradient

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Yang, G. Cheung, V. Stankovic, "Alternating Binary Classifier and Graph Learning from Partial Labels," APSIPA ASC 2018, Hawaii, USA, November 2018.
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Metric Learning for Graph Construction

« Optimal metric matrix M:

min Q({0;;(M)}) s.t. { m(“:)ogof M>0

for convex, differentiable Q(M).

* For example, Graph Laplacian Regularizer (GLR):

QM) =x"L(M)x =  w;(x —x)°
(

ij)eE

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Metric Learning for Graph Construction

« Optimal metric matrix M:

_PSD cone constraint is hard!

min Q({0;;(M)}) s.t. (M) < ¢ — Naive Approach:
M M>0 or M2=0 - Gradientdescentvia —VQ(M)

: . * Projection to PSD cone.
for convex, differentiable Q(M). . Repeat.

: : Our Approach:
* For example, Graph Laplacian Regularizer (GLR): . Coﬁfert PSD cone to K adaptive
linear constraints via Gershgorin
Disc Alignment (GDA).
2
Q(M) — X Z WU ) « Min Q(M) w/ linear constraints.
(ij)EE * Repeat.

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.




Gershgorin Circle Theorem

Gershgorin Circle Theorem: - , -
= Row I of M maps to a Gershgorin disc w/ Mi wM-| 2 5 _o
and R, 1 _9 4
Ri B ZlMUl Ar_l.lin
JEI! AN
lel -;‘ i 11].111. b
" A, IS lower-bounded by smallest disc left-end: . L
5 4 (] >
L 25l M
mln(M) m1n M” — R < /1m1n . : < 1./'_;;.& :

= To ensure PSDness, apply linear constr’s

[1] R. S. Varga, Gershgorin and His Circles, Springer, Dec 2004.




Gershgorin Circle Theorem

Gershgorin Circle Theorem:

_ _ _ 2 -2 -1
= Row I of M maps to a Gershgorin disc w/ Mi M= | —2 5 _o
and R, -1 -2 4
J#l AN
[Pl -;‘ i Il].:lll.l b
= Amin IS lower-bounded by smallest disc left-end: ) |l
Vi i < ® >
_ i Zj;’#|"uf)f‘
mln(M) mln M” — R < Amln W - 1. -

= To ensure PSDness, apply linear constr’s

2 : e,
+ews,and His Circles

[1] R. S. Varga, Gershgorin and His Circles, Springer, Dec 2004.




Gershgorin Disc Perfect Alignment (GDPA)

« Consider similarity transform of M (same eigenvalues!): 2 92 _1
_ M=| -2 5 =2
B=SMS ! < similarity transform 1 _9 4
™ diagonal matrix w/ scale . -
factors s; SR e | ¥ [« o—p
- Different S’s induce different lower bounds A;,(B) ¥ | « " " 6ba )7, 5
Rl / !l
lygl < 1.1;-,;- | bl B ¥, < A [” IPI
11 3 5 7 9 -1 1 3 5 7 9
[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Gershgorin Disc Perfect Alignment (GDPA)

« Consider similarity transform of M (same eigenvalues!): 2 92 _1 ]

_ M= | -2 5 =2

B=SMS ! < similarity transform 1 _9 4
™ diagonal matrix w/ scale . -

factors s; p > [__ v o>

- Different S’s induce different lower bounds A,j,(B) ¥ | < YT GDA ) ¥, . YR
A / g
lygl < {{” | bl B lPs 1 1} [” >
| 1 3 5 7 9 -1 1 3 5 7 9

Theorem 1. Let M be a generalized graph Laplacian matrix corresponding to an irreducible,
positive graph G. Denote by v the first eigenvector of M corresponding to the smallest

eigenvalue Agiy- Then by computing scalars s; = vi Vi, all Gershgorin disc left-ends of

B=SMS ! S=diag(sq,..,sy), are aligned at A,

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Metric Optimization via GDPA

* Original diagonal opt w/ PSD cone constraint: : . tr(M) < C
™ Q({05(M)}) st { M>~0 or M>0
{111111} Q(M) original metric optimization
ﬂ-_{ii

s.t. M > 0: Zﬂfﬂ; <C: My >0.Vi

* Revised diagonal opt w/ linear constraints:

{%ﬁl}Q( )

toMi >y 5 i +p. Vi Y M <C

S.t. My = - 0, V1. My =< U
j | g 5 [ i

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Metric Optimization via GDPA

* Original diagonal opt w/ PSD cone constraint: - . tr(M) < C
™ Q({05(M)}) st { M>~0 or M>0
{111111} Q(M) original metric optimization
ﬂ-_{ii

s.t. M > 0: Zﬂfﬂ; <C: My >0.Vi

* Revised diagonal opt w/ linear constraints:

min Q) (M) scalars s; computed from 15t e-vector
{Mii} of last sol'n M

s.t. M;; > Z

jli#il

EAT. .
ISL ;\'[1__?
st

+ p, Vi; Z M, <C

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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Metric Learning Results (speed)

* Running time comparison against PD-cone and HBNB!, for different metrics,

using Madelon dataset.
90

80
70

running time (s)
[ b-J LIPS = hn [
e R e [ s Y s B s T s B
-
— ]
-
PD-cone  m——

I I_ II Il — II ] II | I-
u m — 3 m — u m — o m = m —]
s Z = o Z = o zZ = o zZ = Z. =
Y 2 O Y 2 O Y &4 O Y 4 O @ O
n L v o a £ »n Ao L4 »vn o o4 L 9w T @
o o = =
MCML DEML LSML LMNN GLR

M total time MPD-cone: eig
HENB/SGML: LOBPCG
[1] W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3D point cloud denoising," IEEE TSP, vol. 68, pp. 2841-2856, 2020.
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Metric Learning Results (accuracy)

« Using a GLR objective, SGML achieved the best classification results in 7 out
of 14 datasets and remained competitive for 12 out of 14 datasets.

RVML PLML  mmLMNN _ GMML _ DMLM] _ SCML DMLE  R2LML  LMLIR SGML (prop.)
[50] [51] 1] [33] 52] [53] [32] [54] [49] 3NN Mahalanobis  Graph
australian 83.0£1.6 805+11 825126 844110 839E13 823114 826415 847F13 851119 833112 8I8E13 853117

breastcancer 958411 964409 967410 973408 966408 970409 970411 97.0407 964421 97.6+1.0 98.04-0.6 97.64-0.7

Datasets

diabetes 71.0£2.6  68.5%2.0 72.2+1.9 742426 715431 71.5+£22 726+£20 738+14 759+19 71.6+18 70.5%2.5 70.3+1.4
fourclass 70514 724424 75.6+1.4 76119 76.1+£19 755+14 756+14 761£19 79.9+09 745+24 71.1£1.6 78.0%1.2
german 71.7£1.8  70.0£2.9 68.9+1.8 71l6£11 693£27 709427 720421 729+18 73716 71.6+£17 709+£1.3 70.0+0.0
haberman 66.7£2.3  67.1+£3.1 69.0+2.7 71.243.4 68.5+3.2 692+£25 708£35 711434 74.4+3.7  68.8£3.9 66.61+£6.3 73.610.3
heart 77.7£41  7514£3.2 79.413.7 81.24+2.7  80.6£2.8 79.0£3.2 779431  82.0L3.8 83.1£3.2 81.0L£34 83.21+3.6 83.613.5
ILPD 68.0£29  67.4£3.0 66.812.1 67.1£22  68.0L£1.6  68.0£29 68.8+£27 659+22 69.612.7 65.2+24 59.1+24 71.31+0.2
liverdisorders  64.6£3.9  62.2£25 62.0£3.5 63.8454 609+38 61.7+46 61.8+£27 66.8+37 66.7£3.6  69.5+3.3 68.845.9 72.143.0
monk1 89.24+2.7  96.6%2.7 90.3£2.6 75.0+26  877£38 975£09 999+03 892+15 950+72 84.6+51 66.313.0 71.143.7
pima 69.5£1.7 68.4+£22 72,5427 73.0+1.8 71.1+28 711426 721+24 723+15 746120 73.4+13 73.6+£2.0 69.21+15
planning 55.1£74  60.8£5.5 54.7+0.9 65.24+55 643£29 619450 60.14£55 6394134 675465 628441 48.8+4.8 71.310.7
voting 95.86£1.3 955%£1.0 95.410.9 952419 953%x1.1 950x13 931£19 963x12 93.2+£39 96.4t14 94.3+2.0 94.8£1.6
WDBC 96.6£1.3  96.4£0.9 97.411.0 96.7+£0.8 97.3x19 97.0x£09 967£05 969x17 96.6x£1.0 96.6£09 948+1.2 96.2£1.1
Average 76.7 76.9 77.3 77.9 77.9 784 78.6 79.2 80.8 784 75.1 78.9
# of best 0 0 1 0 0 0 1 0 5 1 1 5

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, June 2020.
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» Graph Sampling
» Gershgorin Disc Alignment Sampling (GDAS)
» Application: Sampling for matrix completion, 3D point cloud sub-sampling

>
>
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Graph Sampling (with and without noise)

Q: How to choose best samples for graph-based reconstruction?

 Existing graph sampling strategies extend
to graph data kernels:

« Assume bandlimited signal.

» Greedily select most “informative” samples by computing

extreme eigenvectors of sub-matrix.

« Computation-expensive.

[1] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” IEEE Transactions on Signal Processing,
vol. 64, no. 14, pp. 3775-3789, 2016.

[2] Y. Tanaka, Y. C. Eldar, A. Ortega, G. Cheung, "Sampling on Graphs: From Theory to Applications," IEEE Signal Processing Magazine, vol. 37, no.6, pp.14-30,
November 2020.
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Signal Reconstruction using GLR

sampling matrix [0 1 0 0]

observation

= Signal Model: . // desired signal

y =HX+V «<— noise
= Signal prior is graph Laplacian regularizer (GLR):
x'Lx = z WU (xl — x]) z Ak Sample set {2, 4}

= \ signal contains

mostly low graph freq.
S|gnal smooth w.r.t. graph y low grap q

11 1
O—2 ® @

= MAP Formulation:

fidelity term — , — signal prior
mxmlly — Hx||5 + u xTLx

(HHH 4+ uL)x* =y

linear system of egn’s solved using conjugate gradient

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.




Stability of Linear System

« Examine solution’s linear system:

(H'H + uL)x* =y 1 -1 0 0]

— L_|-1 2 -1 0

coefficient matrix B “lo -1 2 -1

0o 0 -1 1

 Stability depends on condition number (A ./ Aqin) Of B. 00 o0 o
* A, IS Upper-bounded by 1+u2*d..,. g |0 1 0 0
0 000

0 0 0 1l

Goal: select H to maximize A,,;,(B) (w/0 computing eigen-pairs)!

L. Sample set {2, 4
Also minimizes p {2, 4}

IL&x + 1)l + (7]l
2
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Gershgorin Circle Theorem

Gershgorin Circle Theorem:

= Row i of L maps to a Gershgorin disc w/ L 10 o
and R L_|-1 2 -1 0
1o -1 2 -1
Ro= L, o 0 A
Jj#i
" A\, IS lower-bounded by smallest left-ends of PN
Gershgorin discs: ® >
< >
_ <
min Li,i — Ri < Amin 1 2 3 4
l

Graph Laplacian L has all Gershgorin disc left-ends at O
— L is PSD.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix _ 11 _21 01 8 _
B=]| B
« Sample node — shift disc. 0 -1 2 -1
| 0 0O -1 1.
« Consider similarity transform of B (same eigenvalues!): ——>
< >
C =SBS™! «— similarity transform < >
\ “—>
diagonal matrix w/ scale 1 2 3 4
factors
« Scale row — expand disc radius. Sample set { }
— shrink neighbors’ disc radius. Scale factor {1,1,1,1}

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix __1 s 1 o
B =
- Sample node — shift disc. 0 -1 2 -1
| 0 0O -1 1.
« Consider similarity transform of B (same eigenvalues!): —>
< >

C =SBS™! «— similarity transform

N

diagonal matrix w/ scale
factors

Sample set {2}

» Scale row — expand disc radius.
Scale factor {1,1,1,1}

— shrink neighbors’ disc radius.

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.

68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix

B=
«  Sample node — shift disc. 0 -1 2 -1
0 0O -1 1
« Consider similarity transform of B (same eigenvalues!): «——>
< >
C =SBS™! «— similarity transform < >
\ +—>
diagonal matrix w/ scale 12 3 4 5
factors
» Scale row — expand disc radius. Sample set {2}
— shrink neighbors’ disc radius. Scale factor {1,s,,1,1}

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of
coefficient matrix B:

B=H"H+uL < coeff. matrix

-1 (3 }|—-1 O
ey B =
« Sample node — shift disc. 0 \-1] 2 -1
| 0 0/ -1 1.
« Consider similarity transform of B (same eigenvalues!): PIES
< -
C =SBS™! «— similarity transform < >
\ —>
diagonal matrix w/ scale 1 2 3 4 5

factors

» Scale row — expand disc radius. Sample set {2}

— shrink neighbors’ disc radius. Scale factor {1,s,,1,1}

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol.
68, pp. 2419-2434, IEEE Transactions on Signal Processing, March 2020.
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Solving Dual Sampling Problem: align discs @ T

Breadth First Iterative Sampling (BFIS):

= Given initial node set, threshold T.

1. Sample chosen node i (shift disc) ——— e ———
2. Scalerowi (expand discradiusito T) v . i = ‘wﬂ‘.w“
3. If disc left-end of connected node | >T, w.d P o w.d wes o e T>
Scale row j (expand disc radius jto T) i L b s e
Else, V
Add node j to node set. Y v vs|—o— |
4. Goto step 1 if node set not empty. v ‘—"—' v ‘—*'—' v *—*'—'
5. Output sample set and count K. . L * B ) " Al
Wi fe—fo—s | w1 fe—fo—s | w1 f—fo—
0 1 ; g 0 1 0 1

[1] Y. Bai, G. Cheung, F. Wang, X. Liu, W. Gao, "Reconstruction-Cognizant Graph Sampling Using Gershgorin Disc Alignment," IEEE
International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, May 2019.
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Disc-based Sampling (Intuition)

Analogy: throw pebbles into a pond.
Disc Shifting: throw pebble at sample node i.
Disc Scaling: ripple to neighbors of node 1.

Goal: Select min # of samples so ripple at each node is at least T.

35 Gene Cheung (genec@yorku.ca) jﬁ LASSONDEG YORKBEI
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Disc-based Sampling (Intuition)

Analogy: throw pebbles into a pond.
Disc Shifting: throw pebble at sample node i.
Disc Scaling: ripple to neighbors of node 1.

Goal: Select min # of samples so ripple at each node is at least T.

Takeaway Message: roughly linear time graph
sampling algorithm minimizing a global error obj.




Graph Sampling Results: speed

. . - - TABLE 11
* Running time comparisons on two different graphs. SPEEDUP FACTORS OF OUR ALGORITHM WITH RESPECT TO
(a) Random sSensor raph (b) Communlty graph OTHER SAMPLING ALGORITHMS FOR N = 3000
Sampling Algorithms ‘ Sensor Community
Random [27] 0.22 0.21
E-optimal [24] 2812.77 1360.76
SP [16] 174.09 466.18
MEN [22] 253291 1184.23
101 104 ¢ MIA [20] 1896.19 964.65
: Ed-free [9] 1.82 8.11
10°
10°
w @
GE_J _g 10’
o o
= c
| o = 1DU
= == Random = == Random
0 =& E-optimal o =&= E-optimal
SP 107 SP
== MFN : =e=MFN
== MIA 10-2 : == M| A
Ed-free Ed-free
—=BS-GDA == BS-GDA
10-3 L P S | ; H MR | T T rr—a—r—ril| _ID-S, H H | H ; Lol T T e e—r——rl |
102 10° 10* 10° 102 10° 10* 10°
Graph Size Graph Size
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Graph Sampling Results: community graph

« Visualization of selected nodes on the community graph (N = 500,K = 11). Black circles denote
sampled nodes. (a) Original graph. (b) Random [28].(c) E-optimal [25]. (d) SP [16]. (e) MFN [23].
(f) MIA [20]. (g) Ed-free [9]. (h) The proposed BS-GDA.
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Graph Sampling Results: matrix completion

« Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
« Challenge: select sampling set Q to maximize A, of Ao +al, ® L, + L. ® L,

 RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using
the double graph smoothness based method.

08 i
n '_I' L ”.n }:'L: d —&— rargom —S—rantam A
! i a1t E o |
ne “ —+—PEin g —+ -FRE ] 04 . P _ﬁ____a_ﬂ_,ﬂ-'
ol PaY e 085 ", e :
x e e — i - GWCendem R " — P
20 —& 00 T -
nEF — & -G o ¢ -8 4
d [G05 g - -
w wroposed IG5 Frapais 15k o€ -
sk — + —propased GCE w - #
- — ¥ — proposed GOS ] _---"E| -
50 2 1 = 0af o P ¥
= opaf, E G- {*’z —B—rancom
@ ) 4 T
I y g . PGI118)
0afF ¢ I W -
1 e R 0ar ¥ PG (8,11
' ¥ P oy -t - —% —EWCrandem
g0 % S . b N ¥
i \ . 02 ) 5100
1 -t -;'__}_ -+ | x -
- Rl e, - dat e — | 0k ‘ prepased J30S
et N . Bk T - et T F==¥ —# —picposed GCS
10 o L !-- t*‘:&-l—"nvitt*u*"""-uﬁ*-' E o6 \ L L L L 0 1 1 1 1 1
150 0 250 g 350 400 450 500 880 &l 180 200 250 300 350 400 451 0 005 01 045 02 02% 03 035 04 045 05
Sample size arple s.ze Mosse level -

(a) Noisy synthetic Netflix signal (b) RMSE on noiseless signal (c) RMSE on noisy signal with v+ = (d) RMSE on different noise level

0.6

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp.

1814-2829, IEEE Transactions on Signal Processing, April 2020.
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Graph Sampling Results: matrix completion

« Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
« Challenge: select sampling set Q to maximize A, of Aq + «al, ® L, ﬁ&@ I,

graph Laplacians for row / column graphs
 RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using
the double graph smoothness based method.

0, i
i ; I.I }:.'Ip ¢ —&— rargom —S—rantam A
L d ¥
ey lus 0tk e —+ -FR 11 0AF, P S S
w1 e e 03 P _
{4 ' e BN — i - GWCendem R i — -
a0 B — & -0 Ny -
0&f —& -0 , ¢ ,,B 4
1 prapaded (308 E _ -
40 : progosed 1GCS 6k L8 o ¥
sk — + —propased GCE w - #
W — 4 — peposed GOS E i o @ -
50 E‘ | = [T 1 = 0ar o —p-- 0 P ; ¥
. naf " = # < [—B—random
: ' aTs ety 1 04 PG 118
0ar T+ k% W I
\ : _“""‘-«x_s : ?[QH 0af # PG (9,11
nzk 4 el YT L 5  ; iy —% —GIWC-randcm
B | 1 e -4_-1%!— b 2 —o-10¢
1 o X ] . ¥ L
065 + *:b:-'?"":l-a-_-i. g . "
B0 nipov ) ool — 0k preposed IGCS
T I \ D A R A — ¥ ~proposed GCS
113 : o L il tt*‘:Hﬂ—Q i, . Al i i o6 L L L L EIT 1 1 1 1 1 P
B0 100 180 200 150 0 250 g 350 400 450 500 880 &l 180 al 250 300 350 400 451 0 005 01 045 02 02% 03 035 04 045 05
Sample size ariple sze

(a) Noisy synthetic Netflix signal

(b) RMSE on noiseless signal

(c) RMSE on noisy signal with ~

Moise level

(d) RMSE on different noise level -~y

0.6

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp.

1814-2829, IEEE Transactions on Signal Processing, April 2020.
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Graph Sampling Results: 3D point cloud sub-sampling

« Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.
* Challenge: select sampling matrix H to maximize A, of H'H + 1L

« SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.

—-0.18

(a) BGFS | (b) PDS | (c) FPS | '(d)- proposed

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment," submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence, January 2021.




Graph Sampling Results: 3D point cloud sub-sampling

« Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.
* Challenge: select sampling matrix H to maximize A, of H'H + 1L ~__

generalized graph Laplacian

« SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.

e e —0.18

(a) BGFS (b) PDS | () FPS (d) proposed

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment," submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence, January 2021.




» Graph Filtering
» Signal-dependent GLR, GTV
» Application: Image denoising
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GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) x'Lx is a smoothness measure.

« Denoising has simplest formation model y = x + z, thus formulation

min|ly — x||5 + u xTLx
X

(I+ uL)x* =

« To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
* Fix L and solve unconstrained QP each iteration.

minlly — x[1 + p X" L(x)x
X

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.




GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) x'Lx is a smoothness measure.

« Denoising has simplest formation model y = x + z, thus formulation

pixel intensity diff. pixel Iocation diff.
min|ly — x||5 + u xTLx
. x| B H

2
0,

(I+ul)x* =y Bildtertl filter eights

« To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
* Fix L and solve unconstrained QP each iteration.

minlly — x[1 + p X" L(x)x
X

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.




GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) x'Lx is a smoothness measure.

« Denoising has simplest formation model y = x + z, thus formulation

pixel intensity diff. pixel Iocation diff.
min|ly — x||5 + u xTLx
. x| B H

2
0,

(I+ul)x* =y Bildtertl filter eights

« To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
* Fix L and solve unconstrained QP each iteration.

mxinlly —x|I5 + u xTL(x)x Signal-dependent GLR

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.




OGLR Denoising Results: visual comparison

* Subjective comparisons (o, =40 )

"lu (!
/l/e,

////”m,,,«
BM3D, 27.99 dB PLOW 28.11 dB OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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OGLR Denoising Results: visual comparison

* Subjective comparisons (o, =30 )

Original

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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Deep GLR: motivation

* Recall MAP formulation of denoising w/ GLR:

min|y — tz + 1 X' LX
X

fidelity term ST smoothness prior
« Solution is system of linear equations:
Sparse PD - LP graph filter
I+ pL)x* =y x"=(I+puL)ly

 Interpretable filter.

1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.




Deep GLR: motivation

* Recall MAP formulation of denoising w/ GLR:

min|y — tz + 1 X' LX
X

fidelity term ST smoothness prior
« Solution is system of linear equations:
Sparse PD - LP graph filter
I+ pL)x* =y x"=(I+puL)ly

 Interpretable filter.

Q: what is the “most appropriate” graph?

1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.




Deep GLR: motivation

* Recall MAP formulation of denoising w/ GLR:

min|y — tz + 1 X' LX
X

fidelity term ST smoothness prior
« Solution is system of linear equations:
Sparse PD - LP graph filter
I+ pL)x* =y x"=(I+puL)ly

 Interpretable filter.
Bilateral weights:

2 2
el |
2 ex 2

Q: what is the “most appropriate” graph? Wi ; =€xp 7
1

1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.




Deep GLR: unrolling

* Deep GLR: S dist(7, 7)
1. Learn features f's using CNN. Wij = OXP 52 )¢

2. Compute distance from features.
! . . N
3. Compute edge weights using Gaussian kernel. L , 2
dist(i.j) = Y (£a(i) = £a(j))".
4. Construct graph, solve QP. "
features
Graph L:1[)]iil.'_!i_.'iil_]_I_'E_Egll_lig'_i:f.:-].fiﬂ11 layer
_fi : !f Graph ';
pre f||ter\_.. CNNp Fn fgf : ', Construction |
W A Patch ! lL |
Yy Splitting Yi | k.
Y —— CNNﬁ — — X Patch p
(Noisy image) . QP Solver | Aggregation M ‘
L | 4 ! (Denoised image)
_ -~ CNN, S————
weight para—"
Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian
regularization layer for image denoising.
[1] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. 27th Int. Conf. Machine Learning, 2010..
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Deep GLR: CNN implementation

Fig. 3. Network architectures of CNNg, CNNy; and CNN,, in the experiments. Data

produced by the decoder of CNNpg is colored in orange.
[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of Images,” NTIRE Workshop, CVPR 2019.
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Deep GLR: unrolling

Xy Xy Xp

Yy GLRNet; GLRNet; — -+ —— GLRNetr X1

(Noisy image) (Denoised image)
Fig. 2. Block diagram of the overall DeepGLR framework.

* Model guarantees numerical stability of solution:

(I+pL)x" =y

 Thm 1: condition number kK of matrix satisfies [1]:

maximum node degree

k<1+2pu dma(

» Observation: Restricting CNN search space — achieve robust learning.

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of Images,” NTIRE Workshop, CVPR 2019.
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Deep GLR: numerical comparison

« Trained on AWGN on 5 images, patches of size 26-by-26.
« Batch size is 4, model is trained for 200 epochs.
« Trained for both known and blind noise variance.

Table 3. Average PSNR (dB) and SSIM values for Gaussian noise

removal.
Method (PSNR/SSIM)
Noise . 1
CBM3D CDnCNN DeepGLR
15 33.49/ 0.9216 33.80/ 0.9268 33.65/0.9259
25 30.68/ 0.8675 31.13/0.8799 31.03/ 0.8797
50 27.35/ 0.7627 27.91/0.7886 27.86/0.7924

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.
[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.
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Deep GLR: numerical comparison

Cross-domain generalization.

Trained on Gaussian noise, tested on low-light images in (RENOIR).
Competing methods: DNnCNN [1], noise clinic [2].

Outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.

Table 4. Evaluation of cross-domain generalization for real image
denoising. The best results are highlighted in boldface.

Method
Metric - Noisy |\ ™Nqise Clinic | CDnCNN | DeepGLR
PSNR | 20.36 27.43 24.36 30.10
SSIM | 0.1823 0.6040 0.5206 0.8028

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.
[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.




Deep GLR: visual comparison

« Trained on Gaussian noise, tested on low-light images in (RENOIR).
« Competing methods: DnCNN [1], noise clinic [2].
* Outperformed DNnCNN by 5.74 dB, and noise clinic by 1.87 dB.

Noise Clinic | CDnCNN | DeepGLR

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.
[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.
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Deep GTV: motivation

 GTV promotes PWS faster than GLR.

minlly — xI13 + pllxll g7y ulixllry = ) wiglx =
Lj

w; Jj

* Solve as QP via L,-Laplacian: T, =

)

max{ |T; — T;

min|ly — x||5 + ¢ x"Lrx x* = (I+pLp)"y
X

« Still interpretable LP graph filter.

[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Graph-Based Blind Image Deblurring from a Single Photograph," IEEE TIP, vol. 28, no.3, pp.1404-1418, March 2019.

[2] H. Vu, G. Cheung, Y. C. Eldar, "Unrolling of Deep Graph Total Variation for Image Denoising," accepted to IEEE ICASSP, Toronto, Canada, June 2021.
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Deep GTV: algorithm

« Learn feature via CNN for graph construction.
* Obtain graph filter response:

= (I+pLp)ly

 Fast filter implementation via Lanczos approx.:

1. Compute tri-diagonal matrix H,; € RM*xM o1 Bo .
2. Compute approx. filter: By as B
gLy = |lyll,Vug(Hy)e, VgLV = Hpy = B3 as

where (L) := Ug(ﬂ)[f* .. Bu

! By o

 Interpretable graph filter — fast implementation.

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of Images,” NTIRE Workshop, CVPR 20109.
[2] A. Susnjara, N. Perraudin, D. Kressnerl, and P. Vandergheynst, “Accelerated filtering on graphs using Lanczos method,” in unpublished, arXiv:1509.04537, 2015.




Deep GTV: experimental comparison

Train on Gaussian (0=50) and test on captured noise

(a) ground-truth (b) noisy (PSNR: 23.56) (c) CDNCNN-S (PSNR: 26.83) (d) DeepGTV (PSNR: 28.82)

DnCNN-S  DeepAGF  DeepGTV
# Parameters  0.55M 0.32M 0.12m save 2 80% parameters!

Table 3: Number of trainable parameters
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« Graph is flexible abstraction to convey pairwise similarities.
« Similarity defined as correlation or feature distance.
« Graph frequencies contains global notions.
« Graph is an expression of domain knowledge.

« GSP leverages on mature understanding in SP and linear
algebra.

« GSP tools are excellent for building hybrid model-based /
data-driven systems.

Applications:

Image coding,
denoising, deblurring,
Interpolation, contrast
enhancement, light
field image coding, 3D
point cloud denoising,
enhancement, sub-
sampling, super-
resolution, inpainting,
matrix completion,
semi-supervised
classifier learning,
video summarization

[1] X. Dong*, D. Thanou*, L. Toni, M. Bronstein, P. Frossard, “Graph signal processing for machine learning: A review and new perspectives,” IEEE Signal Processing

Magazine, vol.37, no.6, pp.117-127, Nov., 2020.
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« Homepage:
https://www.eecs.yorku.ca/~genec/index.html

e E-mail:

genec@yorku.ca
 Forthcoming book: ,ﬂ " gEY B
G. Cheung, E. Magli, (edited) Graph Spectral o

Image Processing, ISTE/Wiley, June 2021.
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