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Introducing math tools

Students in EECS4452: “This is math, not engineering!”

engineering math
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Introducing math tools

Students in EECS4452: “This is math, not engineering!”

math

engineering

Me: “Math is the heart of engineering!”
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Outline

• Defining Graph frequencies

• Inverse Imaging
• Image denoising

• Image contrast enhancement

• 3D point cloud denoising / super-resolution

• Deep GLR

• Semi-Supervised Learning

• Graph Sampling
• Matrix completion
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Signal Decomposition

• Decompose signal into basic components:

• Newton decomposed white light into color components (1730).
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• “Basic” components can be complex exponentials:

• Complex exponentials are eigenfunctions of 2nd derivative operator.
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Digital Signal Processing

• Discrete signals on regular data kernels.
• Ex.1:  audio on regularly sampled timeline.

• Ex.2: image on 2D grid.

• Harmonic analysis tools (transforms, wavelets): 

• Compression, restoration, segmentation, etc.

xa =
desired signal

transform
sparse

transform coeff.

2D DCT basis 10



Graph Signal Processing

• Signals on irregular data kernels described by graphs.
• Graph: nodes and edges.

• Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.

2. Embed pairwise similarity info into graph.
• Eigenvectors provide global info aggregated from local info.  

Graph Signal Processing (GSP) provides spectral 

analysis tools for signals residing on graphs.

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, challenges,

and applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

signal on graph kernel

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image processing,” Proceedings of the IEEE, vol. 106, no.

5, pp. 907–930, 2018.

signal on graph kernel
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GSP and Graph-related Research

GSP:  SP framework that unifies concepts from multiple fields.

Graph Signal

Processing* (GSP)

Combinatorial

Graph Theory

Spectral

Graph Theory

Computer 

Vision

Computer Graphics

Machine 

Learning

spectral

clustering

eigen-analysis of 

graph Laplacian, 

adjacency matrices

graphical model, 

manifold learning, 

classifier learning

Laplace-

Beltrami 

operator

Laplace 

equation
Partial Differential 

Eq’ns

Max cut, graph 

transformation

DSP
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Graph Fourier Transform (GFT)

Graph Laplacian:

• Adjacency Matrix A:  entry Ai,j has non-negative
edge weight wi,j connecting nodes i and j.

• Degree Matrix D:  diagonal matrix w/ entry Di,i

being sum of column entries in row i of A.

• Combinatorial Graph Laplacian L:   L = D-A
• L is related to 2nd derivative.

• L is a differential operator on graph.
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Graph Spectrum from GFT

1st AC eigenvector

1 2 3 4 8…2,1w 1 1

TVVL =

eigenvalues along diagonal

eigenvectors in columns

GFT xVx~ T=

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

1. Eigenvectors aggregates info from weights.

• Constant eigenvector is DC.

• # zero-crossings increases as λ increases.

2. Eigenvalues (≥ 0) as graph frequencies.

• GFT defaults to DCT for un-weighted connected line.

• GFT defaults to DFT for un-weighted connected circle.

GFT coefficients
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V1: DC component

Graph Frequency Examples (US Temperature) 
location diff.
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Edge weights

*https://en.wikipedia.org/wiki/Delaunay triangulation

• Weather stations from 100 most populated cities.

• Graph connections from Delaunay Triangulation*.

• Edge weights inverse proportion to distance.
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Graph Frequency Examples (US Temperature) 
location diff.
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• Weather stations from 100 most populated cities.
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• Edge weights inverse proportion to distance.

V4: 9th AC component
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Outline

• Defining Graph frequencies

• Inverse Imaging
• Image denoising

• Image contrast enhancement

• 3D point cloud denoising / super-resolution

• Deep GLR

• Semi-Supervised Learning

• Graph Sampling
• Matrix completion
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Graph Laplacian Regularizer

• (graph Laplacian regularizer) [1]) is one smoothness measure.

• Signal Denoising:

• MAP Formulation:
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signal smooth in 
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signal contains

mostly low graph freq.

[1] P. Milanfar, “A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical,” IEEE Signal 

Processing Magazine, vol.30, no.1, pp.106-128, January 2013.

( ) yxLI * =+ 
linear system of eqn’s w/ sparse, symmetric PD matrix

update edge

weights
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Results: natural image denoising

• Subjective comparisons (             )40 =I

Original Noisy, 16.48 dB K-SVD, 26.84 dB

BM3D, 27.99 dB PLOW, 28.11 dB OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE 

Transactions on Image Processing, vol. 26, no.4, pp.1770-1785, April 2017.
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• Subjective comparisons (             )30 =I

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB

Results: depth image denoising

[1] W. Hu et al., "Depth Map Denoising using Graph-based Transform and Group Sparsity," IEEE International Workshop on 

Multimedia Signal Processing, Pula (Sardinia), Italy, October, 2013.
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GLR for Joint Dequantization / Contrast Enhancement

• Retinex decomposition model:

• Objective: general smoothness for luminance, smoothness 
w/ negative edges for reflectance.

• Constraints:  quantization bin constraints 

• Solution: Alternating accelerated proximal gradient alg [1].

[1] X. Liu, G. Cheung, X. Ji, D. Zhao, W. Gao, "Graph-based Joint Dequantization and Contrast Enhancement of 

Poorly Lit JPEG Images," IEEE Transactions on Image Processing, vol. 28, no.3, pp.1205-1219, March 2019.

illumination

reflectance

scalar

noise

generalized smooth
piecewise smooth
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Results: Contrast Enhancement
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Results: 
Contrast 
Enhancement
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Results: Contrast Enhancement
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GTV for Point Cloud Denoising

• Acquisition of point cloud introduces noise.

• Point cloud is irregularly sampled 2D manifold in 3D space.

• Not appropriate to apply GTV directly on 3D coordinates [1]. 
• only a singular 3D point has zero GTV value.

• Proposal: Apply GTV is to the surface normals of 3D point 
cloud—a generalization of TV to 3D geometry.

[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, “Graph-based denoising for time-varying point clouds,” in 

IEEE 3DTV-Conference, 2015, pp. 1–4
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PC Denoising Algorithm

• Use GTV of surface normals over the K-NN graph:

• Denoising problem as l2-norm fidelity plus GTV of surface normals:

• Surface normal estimation of n𝒊 is a nonlinear function of p𝒊 and neighbors.          

Proposal:

1. Partition point cloud into two independent classes (say red and blue). 

2. When computing surface normal for a red node, use only neighboring blue points. 

3. Solve convex optimization for red (blue) nodes alternately.

𝑖 𝑗

n𝒊 n𝒋

[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, “Fast 3D Point Cloud Denoising via Bipartite Graph Approximation 

& Total Variation,” IEEE 20th International Workshop on Multimedia Signal Processing, Vancouver, Canada, August 2018.


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−+−
Eji

jijiw
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nnpqmin 

smoothness on surface normals
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Results: Point Cloud Denoising
Anchor model (𝜎=0.3)

33



Results: Point Cloud Denoising

Daratech model (𝜎=0.3)
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PC Super-Res Algorithm

• Add new interior points to low-res point cloud. 
1. Construct triangular mesh using Delaunay triangulation using known points q.

2. Insert new points at the centroids of triangles.

• Partition point cloud into two independent classes (say red and blue).

• When computing normal for a red node, use only neighboring blue points.

• Use graph total variation (GTV) of surface normals over the K-NN graph:

• Solved via augmented Lagrangian + ADMM.

[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, “3D Point Cloud Super-Resolution via Graph Total Variation on 

Surface Normals,” IEEE International Conference on Image Processing, Taiwan, October 2019.




−
Eji

jijiw
,

1,
n,p

nnmin

smoothness on surface normals









=















 −

q

v

p

m

C0

BI

jiji nnm , −=

35



Results: Point Cloud Super-Resolution
• APSS and RIMLS schemes generate overly smooth models. 

• Existing methods result in distorted surfaces with some 
details lost.

[1] C. Dinesh, G. Cheung, I. V. Bajic, “3D Point Cloud Super-Resolution via Graph Total Variation on Surface 

Normals,” IEEE International Conference on Image Processing, October 2019.
36



Results: Point Cloud Super-Resolution
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Outline

• Defining Graph frequencies

• Inverse Imaging
• Image denoising

• Image contrast enhancement

• 3D point cloud denoising / super-resolution

• Deep GLR

• Semi-Supervised Learning

• Graph Sampling
• Matrix completion
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Unrolling Graph Laplacian Regularizer

• Recall MAP formulation of denoising problem with quadratic 
graph Laplacian regularizer:

• Solution is system of linear equations:

xLxxymin
2

2

T

x
+−

smoothness priorfidelity term

( ) yxLI * =+ 

linear system of eqn’s w/ sparse, symmetric PD matrix

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain," IEEE 

Transactions on Image Processing, vol. 26, no.4, pp.1770-1785, April 2017.
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Unrolling Graph Laplacian Regularizer

• Recall MAP formulation of denoising problem with quadratic 
graph Laplacian regularizer:

• Solution is system of linear equations:

xLxxymin
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x
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smoothness priorfidelity term

( ) yxLI * =+ 

linear system of eqn’s w/ sparse, symmetric PD matrix

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain," IEEE 

Transactions on Image Processing, vol. 26, no.4, pp.1770-1785, April 2017.

Q: what is the “most appropriate” graph?
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Unrolling Graph Laplacian Regularizer

• Deep Graph Laplacian Regularization:
1. Learn features f’s using CNN.

2. Compute distance from features.

3. Compute edge weights using Gaussian kernel.

4. Construct graph, solve QP. 

[2] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. 27th Int. Conf. Machine Learning, 2010..

features

pre-filter

weight para

[1] M. McCann et al., “Convolutional Neural Networks for Inverse Problems in Imaging,“ IEEE SPM, Nov. 2017.
42



Unrolling Graph Laplacian Regularizer

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of  Images,” NTIRE Workshop, CVPR 2019.
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Unrolling Graph Laplacian Regularizer

• Graph Model guarantees numerical stability of solution:

• Thm 1: condition number κ of matrix satisfies [1]:

• Observation: By restricting search space of CNN to degree-bounded graphs, 
we achieve robust learning.

( ) yxLI * =+ 

maximum node degree

[1] J. Zeng et al., “Deep Graph Laplacian Regularization for Robust Denoising of  Images,” NTIRE Workshop, CVPR 2019.
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Experimental Results – Numerical Comparison
• Trained on AWGN on 5 images, patches of size 26-by-26. 

• Batch size is 4, model is trained for 200 epochs.

• Trained for both known and blind noise variance.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.
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Experimental Results – Numerical Comparison
• Cross-domain generalization.

• trained on Gaussian noise, tested on low-light images in (RENOIR).

• Competing methods: DnCNN [1], noise clinic [2].

• outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.
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Experimental Results – Visual Comparison
• trained on Gaussian noise, tested on low-light images in (RENOIR).

• Competing methods: DnCNN [1], noise clinic [2].

• outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.

CDnCNNNoise Clinic DeepGLR
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Outline

• Defining Graph frequencies

• Inverse Imaging
• Image denoising
• Image contrast enhancement
• 3D point cloud denoising / super-resolution

• Deep GLR

• Semi-Supervised Learning

• Graph Sampling
• Matrix completion
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Semi-Supervised Graph Classifier Learning

• Binary Classifier: given feature vector xi of 
dimension K, compute f(xi) ∊ {0,1}.

• Classifier Learning: given partial, noisy labels (xi, 
yi), train classifier f(xi).

• GSP Approach [1]:

1. Construct signed similarity graph with +/- edges.

2. Pose MAP graph-signal restoration problem.

3. Perturb graph Laplacian to ensure PSD.

4. Solve num. stable MAP as sparse lin. system.

[1] Yu Mao, Gene Cheung, Chia-Wen Lin, Yusheng Ji, “Image Classifier Learning from Noisy Labels via Generalized Graph 

Smoothness Priors,” IEEE IVMSP Workshop, Bordeaux, France, July 2016. (Best student paper award)

example graph-based classifier

[2] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," IEEE 

Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.
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example graph-based classifier

[2] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," IEEE 

Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.

-1
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Graph-Signal Smoothness Prior
for signed graphs

• Graph Laplacian Regularizer [1]:

• Promote large / small inter-node differences depending on edge 
signs.

• Sensible, but numerically unstable.

[1] J. Pang and G. Cheung, “Graph Laplacian regularization for image denoising: Analysis inn the continuous domain,” in IEEE 

Transactions on Image Processing, vol. 26, no.4, April 2017, pp. 1770–1785.

w=1

eigenvalues / graph freqs

GFT coeff

Promote large difference
Promote small difference
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Semi-Supervised Learning Formulation

• MAP formulation:

• One sol’n is △=λmin I, i.e. shift all eigenvalues up by η=λmin.

• Intuition:  signal variations + signal energies

l0 fidelity term smoothness prior for 

signed graph

perturbation matrix 

to ensure PSD!

[1] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," IEEE 

Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.
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Results: Semi-Supervised Learning

• Comparisons w/ other classifiers:
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Results: Semi-Supervised Learning

• Comparisons w/ other classifiers:
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Results: Semi-Supervised Learning

• Comparisons w/ other classifiers:
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Results: Semi-Supervised Learning

• Comparisons w/ other classifiers:
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Outline

• Defining Graph frequencies

• Inverse Imaging
• Image denoising
• Image contrast enhancement
• 3D point cloud denoising / super-resolution

• Deep GLR

• Semi-Supervised Learning

• Graph Sampling
• Matrix completion
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Graph Sampling (with and without noise)

• Q: How to choose best samples for graph-based reconstruction?

[1] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” 

IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3775–3789, 2016.

• Existing graph sampling strategies extend 

Nyquist sampling to graph data kernels:

• Assume bandlimited signal.

• Greedily select most “informative” samples by 

computing extreme eigenvectors of sub-matrix. 

• Computation-expensive. 
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Related Works

60

Graph sampling

Selection sampling

Random selection [3] 

Deterministic

Local measurement [2]

Aggressive sampling [1]

Bandlimitedness

Smoothness: 

A-optimal
(M. Tsitsvero.TSP2016; F. Wang. SPL2018)

E-optimal 
(S. Chen. TSP2015)

Spectral proxies
(A. Anis. TSP2016; A. Anis. TIT2018)

Localized coverage
(A. Sakiyama. TSP2019)

GMRF model
(P. Chen. ICASSP2018; Y. Bai. ICASSP 2019)

Eigen-decomposition Free

[1] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with successive local aggregations.” IEEE 

Transactions on Signal Processing, vol. 64, no. 7, pp. 1832–1843, 2016.

[2] X. Wang, J. Chen, and Y. Gu, “Local measurement and reconstruction for noisy bandlimited graph signals,” Signal Processing, vol. 

129, pp. 119–129, 2016.

[3] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of bandlimited signals on graphs,” Applied and 

Computational Harmonic Analysis, vol. 44, no. 2, pp. 446–475, 2018.



Signal Reconstruction using GLR

• Signal Model:

• Signal prior is graph Laplacian regularizer (GLR) [1]:

• MAP Formulation:
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𝐱𝑇Lx =
1

2
෍

𝑖,𝑗

𝑤𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2
=෍

𝑘

𝜆𝑘 ෤𝑥𝑘
2

noise

desired signalobservation

𝐲 =𝐇𝐱+𝐯

min
𝐱

𝐲 − 𝐇𝐱 2
2 + 𝜇 𝐱𝑇𝐋𝐱

signal prior
fidelity term

signal smooth w.r.t. graph 

signal contains

mostly low graph freq.

𝐇𝑇𝐇 + 𝜇𝐋 𝐱∗ = 𝐲
linear system of eqn’s solved using conjugate gradient

sampling matrix

1 2 3 4
1 11

𝐇 =
0 1 0 0
0 0 0 1

Sample set {2, 4}



Stability of Linear System

• Examine system of linear equations :

• Stability depends on the condition number 
(λmax/ λmin) of coeff. matrix B.

• λmax  is upper-bounded by 1+μ2*dmax.

• Goal: select samples to maximize λmin

(without computing eigen-pairs)!

• Also minimizes worst-case MSE:
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𝐇𝑇𝐇 + 𝜇𝐋 𝐱∗ = 𝐲

coefficient matrix B

1 2 3 4
1 11

𝐋 =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

Sample set {2, 4}

𝐇T𝐇 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

ො𝐱 − 𝐱 2 ≤ 𝜇
1

𝜆𝑚𝑖𝑛 𝐁
2

𝐋 𝐱 + ෥𝐧 2 + ෥𝐧 2



Gershgorin Circle Theorem

• Gershgorin Circle Theorem:

• Row i of L maps to a Gershgorin 

disc w/ centre Lii and radius Ri

• λmin is lower-bounded by smallest 

left-ends of Gershgorin discs:

• Graph Laplacian L has all Gershgorin disc 
left-ends at 0 → L is psd.

min
𝑖

𝐿𝑖,𝑖− 𝑅𝑖 ≤ 𝜆min

1 2 3 4
1 11

𝐋 =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

1 2 3 4

𝑅𝑖 =෍

𝑗≠𝑖

𝐿𝑖𝑗
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Gershgorin Disc Alignment

• Main Idea:  Select samples to max smallest 
disc left-end of coefficient matrix B:

• Sample node → shift disc. 

• Consider similar transform of B:

• Scale row → expand disc radius. 

→ shrink neighbors’ disc radius.

1 2 3 4
1 11

coeff. matrix

similarity transform

𝐁 =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

1 2 3 4

Sample set { }

Scale factor {1,1,1,1}
diagonal matrix w/ scale factors

𝐁 =

1 −1 0 0
−1 3 −1 0
0 −1 2 −1
0 0 −1 1

1 2 3 4

Sample set {2}

Scale factor {1,1,1,1}

5

𝐁 =

1 −1 0 0
−1 3 −1 0
0 −1 2 −1
0 0 −1 1

1 2 3 4

Sample set {2}

Scale factor {1,s2,1,1}

5

𝐁 =

1 −1 0 0
−1 3 −1 0
0 −1 2 −1
0 0 −1 1

1 2 3 4

Sample set {2}

Scale factor {1,s2,1,1}

5

𝐁 =𝐇𝑇 𝐇+𝜇 𝐋

𝐂 =𝐒𝐁𝐒−1
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Aligning discs at threshold T

• Breadth First Iterative Sampling (BFIS):
• Given initial node set, threshold T.

1. Sample chosen node i

(shift disc)

2. Scale row i

(expand disc radius i to T )

3. If disc left-end of connected node j >T, 
Scale row j
(expand disc radius j to T )

Else,

Add node j to node set.

4. Goto 1 if node set not empty.

5. Output sample set and count K.

65
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Gershgorin Disc Alignment (math)

• Binary Search with BFIS:
• Sample count K  inverse proportional to threshold T.

• Binary search on T to drive count K to budget.

• Example: line graph with equal edge weight.
• Uniform sampling.
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Disc-based Sampling (intuition)

• Analogy: throw pebbles into a pond.

• Disc Shifting: throw pebble at sample node i.

• Disc Scaling: ripple to neighbors of node i. 

• Goal: Select min # of samples so ripple at 
each node is at least T.  
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Results: Graph Sampling

• GDA is 100x to 1000x faster than state-of-art methods computing e-vectors.

• GDA is “comparable” in complexity to Random [23] and Ed-free [8]. 

68[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc 

Alignment," submitted to IEEE Transactions on Signal Processing, July 2019.



Results: Graph Sampling
• Small graphs: GDA has roughly the same reconstruction MSE.

• Random sensor graph of size 500 for two signal types.

69[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc 

Alignment," submitted to IEEE Transactions on Signal Processing, July 2019.



Results: Graph Sampling
• Large graphs: GDA has smallest reconstruction MSE.

• Minnesota road graph of size 2642 and for two signal types.

70[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc 

Alignment," submitted to IEEE Transactions on Signal Processing, July 2019.



Matrix Completion

• Fill in missing entries in a matrix:
(Low-rank matrix recovery problem)

• Examples of applications:

• Recommendation system—making rating prediction.

• Remote sensing—infer full covariance matrix from partial correlations.

• Structure-from-motion in computer vision.

1 2

4

3

2

3

( )

SjiMXts jiji

R NM

=



,,..

Xrankmin

,,

X

[1] E. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE, vol. 98, no.6, April 2010, pp. 925–936.
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Matrix Completion

• Convex relaxation to nuclear norm:

• Proximal Gradient:  SVD plus singular value soft-thresholding.

• Use dual graph-signal smoothness prior to promote low rank [1]: 

• Unconstrained convex objective solvable via ADMM, conjugate gradient.

SjiMXts jiji

R NM

=



,,..

Xmin

,,

*X

( ) ( ) 2

X
XSMSXLXtrXLXtrmin

F

T

cr

T

R NM
 −++




Synthetic Netflix matrix

Graph Fourier transform on rL Graph Fourier transform on cL

[1] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, “Matrix completion on graphs,”arXiv preprint arXiv:1408.1717, 2014.
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Noiseless synthetic rating matrix

Noisy synthetic rating matrix
Comparison methods: PG [1]; GWC-random [2]; LOC [3]

• [1] Guillermo Ortiz-Jiménez, Mario Coutino, Sundeep Prabhakar Chepuri, and Geert Leus. “Sampling and 

reconstruction of signals on product graphs”. arXiv preprint arXiv:1807.00145, 2018. 

• [2] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of bandlimited signals on graphs,” 

Applied and Computational Harmonic Analysis, vol. 44, no. 2, pp. 446–475, 2018. 

• [3] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Eigendecomposition-free sampling set selection for graph 

signals,”IEEE Transactions on Signal Processing, 2019.

Figure: Reconstruction MSE of different sampling methods on synthetic dataset. The 
reconstruction method for matrix completion is dual graph smoothness based method. 

(1) Noiseless (2) Noisy 

Results: Sampling for matrix completion

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," 

submitted to IEEE Transactions on Signal Processing, October 2019.
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SVT [1] GRALS [2] GMC [3] NMC [4]

G1 1.021 | 1.031 0.947 | 0.931 1.036 | 1.037 0.890 | 0.888

G2 1.021 | 0.983 0.945 | 0.893 1.118 | 1.054 0.890 | 0.858

Table: RMSE of different matrix completion methods on Mocielens_100k dataset with
different sampling strategies on Feature-based graph (G1) and Content-based graph
(G2). In each grid, the value on left side belongs to random sampling; the right side value
is of our proposed IGCS sampling. The best performance in each row is marked in bold
and red. In our experiments, the sampling budget is 80k out of 100k available ratings; We
first use random 60k samples as given, and then proceed to sample the next 20k samples
base on random sampling or the proposed IGCS sampling.

• [1] J. Cai, E. J. Candes, and Z. Shen. “A singular value thresholding algorithm for matrix completion”. preprint, 2008.

• [2] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. “Collaborative filtering with graph information: Consistency 

and scalable methods”. In Proc. NIPS, 2015.

• [3] V. Kalofolias, X. Bresson, M. M. Bronstein, and P. Vandergheynst.” Matrix completion on graphs. ”2014.

• [4] D. M. Nguyen, E. Tsiligianni, and N. Deligiannis, “Extendable neural matrix completion,” in Proc. IEEE Int. Conf. 

Acoust., Speech Signal Process., 2018, pp. 1–5.

Results: Sampling for matrix completion

[1] [1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," 

submitted to IEEE Transactions on Signal Processing, October 2019.
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Summary

• Graph Spectral Analyis Tools
• Similarity graph, graph frequencies. 

GSP

Image Processing
Denoising, contrast 
enhancement, PC 

denoising / SR

Maching Learning
Semi-supervised graph 

classifier learning

Data Mining
Fast sampling for matrix 

completion
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Q&A

• Email:  genec@yorku.ca
• Homepage: https://www.eecs.yorku.ca/~genec/index.html

76



Primal Sample Selection Problem

• Optimization:  Select sample vector a and scalars s:

77

smallest disc left-end of C

C is similar transform of coeff. matrix

sample vector a is binary 

and within budget K

scalars s are positive

• Difficulty:  max-min objective is hard to optimize.



Dual Sample Selection Problem

• Dual Formulation:  Select sample vector a and scalars s:

78

total number of samples

• Proposition:  If there exists threshold T s.t. optimal sol’n (a,s) to dual 
satisfies ∑ai = K, one dual sol’n is also optimal to primal.

all disc left-ends are at least T


