Gene Cheung Associate Professor, York University 16<sup>th</sup> October, 2019



# Graph Signal Analysis: Imaging, Learning, Sampling

# Acknowledgement

#### Collaborators:

- X. Liu (HIT, China)
- W. Hu, W. Gao (Peking U., China)
- L. Fang (Tsinghua, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)
- A. Ortega (USC, USA)
- D. Florencio (MSR, USA)
- J. Liang, I. Bajic (SFU, Canada)
- X. Wu (McMaster U, Canada)
- P. Frossard (EPFL, Switzerland)
- V. Stankovic (U of Strathclyde, UK)
- Y. Nakatsukasa (Oxford, UK)
- P. Le Callet (U of Nantes, France)



### Introducing math tools

Students in EECS4452: "This is math, not engineering!"



### Introducing math tools

Students in EECS4452: "This is math, not engineering!" Me: "Math is the heart of engineering!"



### Outline

- Defining Graph frequencies
- Inverse Imaging
  - Image denoising
  - Image contrast enhancement
  - 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
  - Matrix completion

### Outline

- Defining Graph frequencies
- Inverse Imaging
  - Image denoising
  - Image contrast enhancement
  - 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
  - Matrix completion

# Signal Decomposition

• Decompose signal into basic components:

$$\mathbf{x} = \sum_{k \in \mathbb{Z}} X_k \varphi_k$$



• Newton decomposed white light into color components (1730).

# Signal Decomposition

• Decompose signal into basic components:

$$\mathbf{x} = \sum_{k \in \mathbb{Z}} X_k \varphi_k$$



- Newton decomposed white light into color components (1730).
- "Basic" components can be complex exponentials:

$$x = \sum_{k \in \mathbb{Z}} X_k e^{j2\pi kt}$$
$$X_k = \int x(t) e^{-j2\pi kt} dt$$



# Signal Decomposition

• Decompose signal into basic components:

$$\mathbf{x} = \sum_{k \in \mathbb{Z}} X_k \varphi_k$$

- Newton decomposed white light into color components (1730).
- "Basic" components can be complex exponentials:

$$x = \sum_{k \in \mathbb{Z}} X_k e^{j2\pi kt}$$
$$X_k = \int x(t) e^{-j2\pi kt} dt$$



• Complex exponentials are eigenfunctions of 2<sup>nd</sup> derivative operator.



# Digital Signal Processing

- Discrete signals on *regular* data kernels.
  - Ex.1: audio on regularly sampled timeline.
  - Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms, wavelets):

DCT basis

• Compression, restoration, segmentation, etc.









# Graph Signal Processing

- Signals on *irregular* data kernels described by graphs.
  - Graph: nodes and edges.
  - Edges reveals *node-to-node relationships*.
  - 1. Harmonic Analysis of graph signals.
- 2. Embed pairwise similarity info into graph.
  - Eigenvectors provide global info aggregated from local info.

Graph Signal Processing (GSP) provides spectral analysis tools for signals residing on graphs.

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, "Graph signal processing: Overview, challenges, and applications," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 808–828, 2018.

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "**Graph spectral image processing**," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 907–930, 2018.



signal on graph kernel



signal on graph kernel

# GSP and Graph-related Research

**GSP:** SP framework that unifies concepts from multiple fields.



### Graph Fourier Transform (GFT)

#### **Graph Laplacian**:

 Adjacency Matrix A: entry A<sub>i.i</sub> has non-negative edge weight  $w_{i,i}$  connecting nodes *i* and *j*.

 Degree Matrix D: diagonal matrix w/ entry D<sub>ii</sub> being sum of column entries in row *i* of **A**.

$$D_{i,i} = \sum_{i} A_{i,.}$$

Combinatorial Graph Laplacian L: L = D-A
L is related to 2<sup>nd</sup> derivative. L<sub>3.</sub>: x = -x<sub>2</sub> + 2x<sub>3</sub> - x<sub>4</sub>

• L is a differential operator on graph.

$$\mathbf{L} = \begin{bmatrix} w_{1,2} & 1 & 1 & 1 \\ 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$\mathbf{L} = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

undirected graph

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

### Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.



- GFT defaults to *DCT* for un-weighted connected line.
- GFT defaults to *DFT* for un-weighted connected circle.

### Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.



- GFT defaults to *DCT* for un-weighted connected line.
- GFT defaults to *DFT* for un-weighted connected circle.

#### 0.4

• Weather stations from 100 most populated cities.



Graph Frequency Examples (US Temperature)







\*https://en.wikipedia.org/wiki/Delaunay triangulation

### Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation\*.  $w_{i,j} = \exp\left(\frac{-|l_i|}{c}\right)$







#### Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation\*.  $w_{i,j} = \exp\left(\frac{-|l_i|}{c}\right)$







#### Graph Frequency Examples (US Temperature)

-80

-70

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation\*.  $w_{i,j} = \exp\left(\frac{-\|l_i l_j\|_2^2}{\sigma^2}\right)$

50 r



location diff. **Edge weights** 



# Outline

- Defining Graph frequencies
- Inverse Imaging
  - Image denoising
  - Image contrast enhancement
  - 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
  - Matrix completion

# Graph Laplacian Regularizer

•  $\mathbf{X}^T \mathbf{L} \mathbf{X}$  (graph Laplacian regularizer) [1]) is one smoothness measure.

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \widetilde{\mathbf{x}}_{k}^{2} \text{ signal contains mostly low graph freq.}$$
  
• Signal Denoising: signal smooth in nodal domain desired signal  
• beservation  $\mathbf{y} = \mathbf{x} + \mathbf{v} \leftarrow \text{noise}$   
• MAP Formulation:  $\mathbf{y} = \mathbf{x} + \mathbf{v} \leftarrow \text{noise}$   
fidelity term  $\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$  smoothness prior  
 $(\mathbf{I} + \mu \mathbf{L}) \mathbf{x}^{*} = \mathbf{y}$   
linear system of eqn's w/ sparse, symmetric PD matrix

[1] P. Milanfar, "A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical," *IEEE Signal Processing Magazine*, vol.30, no.1, pp.106-128, January 2013.

# Graph Laplacian Regularizer

•  $\mathbf{X}^T \mathbf{L} \mathbf{X}$  (graph Laplacian regularizer) [1]) is one smoothness measure.

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \widetilde{\mathbf{x}}_{k}^{2}$$
 signal contains mostly low graph freq.

• Signal Denoising:

 $\mathbf{y} = \mathbf{x} + \mathbf{v}$ 

nodal domain



linear system of eqn's w/ sparse, symmetric PD matrix

[1] P. Milanfar, "A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical," *IEEE Signal Processing Magazine*, vol.30, no.1, pp.106-128, January 2013.

### Results: natural image denoising

• Subjective comparisons ( $\sigma_{I} = 40$ )



Original



Noisy, 16.48 dB



K-SVD, 26.84 dB



BM3D, 27.99 dB

PLOW, 28.11 dB

OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "**Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain**," *IEEE Transactions on Image Processing*, vol. 26, no.4, pp.1770-1785, April 2017.

### Results: depth image denoising

• Subjective comparisons ( $\sigma_{I} = 30$ )



[1] W. Hu et al., "**Depth Map Denoising using Graph-based Transform and Group Sparsity**," *IEEE International Workshop on Multimedia Signal Processing*, Pula (Sardinia), Italy, October, 2013.

GLR for Joint Dequantization / Contrast Enhancement

- Retinex decomposition model: reflectance y = τ l ⊙ r + z noise scalar illumination
  Objective: general smoothness for luminance, smoothness w/ negative edges for reflectance. generalized smooth nin l<sup>T</sup> (L<sub>l</sub> + αL<sub>l</sub><sup>2</sup>) l + μr<sup>T</sup> L<sub>r</sub>r s.t. (q - 1/2) Q ≤ Tτ l ⊙ r ≺ (q + 1/2) Q
- **Constraints:** quantization bin constraints
- **Solution**: Alternating accelerated proximal gradient alg [1].

25

[1] X. Liu, G. Cheung, X. Ji, D. Zhao, W. Gao, "Graph-based Joint Dequantization and Contrast Enhancement of Poorly Lit JPEG Images," *IEEE Transactions on Image Processing*, vol. 28, no.3, pp.1205-1219, March 2019.

### Results: Contrast Enhancement















#### Results: Contrast Enhancement



(d)

(f)

### Results: Contrast Enhancement



(d)

(f)

# GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
  - only a singular 3D point has zero GTV value.



 Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

### GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
  - only a singular 3D point has zero GTV value.



 Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

### GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
  - only a singular 3D point has zero GTV value.



 Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

# PC Denoising Algorithm

• Use GTV of surface normals over the K-NN graph:

$$||\mathbf{n}||_{\text{GTV}} = \sum_{i,j\in\mathcal{E}} w_{i,j}||\mathbf{n}_i - \mathbf{n}_j||_1 \qquad \qquad \mathbf{n}_i \qquad \mathbf{n}_j \qquad w_{i,j} = \exp\left(-\frac{||\mathbf{p}_i - \mathbf{p}_j||_2^2}{\sigma_p^2}\right)$$

• Denoising problem as I2-norm fidelity plus GTV of surface normals:

$$\min_{\mathbf{p},\mathbf{n}} \|\mathbf{q} - \mathbf{p}\|_2^2 + \gamma \sum_{i,j \in E} w_{i,j} \|\mathbf{n}_i - \mathbf{n}_j\|_1 \text{ smoothness on surface normals}$$

- Surface normal estimation of n<sub>i</sub> is a nonlinear function of p<sub>i</sub> and neighbors.
   Proposal:
- 1. Partition point cloud into **two independent classes** (say **red** and **blue**).
- 2. When computing surface normal for a red node, use only neighboring blue points.
- 3. Solve convex optimization for red (blue) nodes alternately.

[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, "**Fast 3D Point Cloud Denoising via Bipartite Graph Approximation** 32 & **Total Variation**," *IEEE 20th International Workshop on Multimedia Signal Processing*, Vancouver, Canada, August 2018.

### Results: Point Cloud Denoising

Anchor model ( $\sigma$ =0.3)



## Results: Point Cloud Denoising

Daratech model ( $\sigma$ =0.3)



### PC Super-Res Algorithm

- Add new interior points to low-res point cloud.
  - 1. Construct triangular mesh using Delaunay triangulation using known points **q**.
  - 2. Insert new points at the centroids of triangles.
- Partition point cloud into two independent classes (say red and blue).
- When computing normal for a red node, use only neighboring blue points.
- Use graph total variation (GTV) of surface normals over the K-NN graph:

smoothness on surface normals  $\min_{p,n} \sum_{i,j \in E} w_{i,j} \| \mathbf{n}_i - \mathbf{n}_j \|_1 \qquad \begin{bmatrix} \mathbf{I} & -\mathbf{B} \\ \mathbf{0} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{q} \end{bmatrix}$ 

• Solved via augmented Lagrangian + ADMM.

[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, "**3D Point Cloud Super-Resolution via Graph Total Variation on Surface Normals**," *IEEE International Conference on Image Processing*, Taiwan, October 2019.

# Results: Point Cloud Super-Resolution

- APSS and RIMLS schemes generate overly smooth models.
- Existing methods result in distorted surfaces with some details lost.



[1] C. Dinesh, G. Cheung, I. V. Bajic, "**3D Point Cloud Super-Resolution via Graph Total Variation on Surface Normals**," *IEEE International Conference on Image Processing*, October 2019.


# Outline

- Defining Graph frequencies
- Inverse Imaging
  - Image denoising
  - Image contrast enhancement
  - 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
  - Matrix completion

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$
  
Fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$
  
fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

**Q**: what is the "most appropriate" graph?

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$
  
fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

**Q**: what is the "most appropriate" graph?

Bilateral weights:

$$w_{i,j} = \exp\left(\frac{-\|x_i - x_j\|_2^2}{\sigma_1^2}\right) \exp\left(\frac{-\|l_i - l_j\|_2^2}{\sigma_2^2}\right)$$

[1] J. Pang, G. Cheung, "**Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain**," *IEEE Transactions on Image Processing*, vol. 26, no.4, pp.1770-1785, April 2017.

### • Deep Graph Laplacian Regularization:

- 1. Learn features **f**'s using CNN.
- 2. Compute distance from features.
- 3. Compute edge weights using Gaussian kernel.
- 4. Construct graph, solve QP.

$$w_{ij} = \exp\left(-\frac{\operatorname{dist}(i,j)}{2\epsilon^2}\right),$$

$$\operatorname{dist}(i,j) = \sum_{n=1}^{N} \left(\mathbf{f}_n(i) - \mathbf{f}_n(j)\right)^2.$$



### Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

[1] M. McCann et al., "Convolutional Neural Networks for Inverse Problems in Imaging," *IEEE SPM*, Nov. 2017.

[2] K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in Proc. 27th Int. Conf. Machine Learning, 2010..



**Fig. 3.** Network architectures of  $\text{CNN}_{\mathbf{F}}$ ,  $\text{CNN}_{\hat{\mathcal{Y}}}$  and  $\text{CNN}_{\mu}$  in the experiments. Data produced by the decoder of  $\text{CNN}_{\mathbf{F}}$  is colored in orange.

[1] J. Zeng et al., "Deep Graph Laplacian Regularization for Robust Denoising of Images," *NTIRE Workshop*, CVPR 2019.



Fig. 2. Block diagram of the overall DeepGLR framework.

• Graph Model guarantees numerical stability of solution:

$$(\mathbf{I} + \boldsymbol{\mu} \mathbf{L}) \mathbf{x}^* = \mathbf{y}$$

• Thm 1: condition number κ of matrix satisfies [1]:

$$\kappa \leq 1 + 2\,\mu\,d_{\rm max}, \qquad {\rm maximum \ node \ degree}$$

• **Observation**: By restricting search space of CNN to degree-bounded graphs, we achieve robust learning.

### Experimental Results – Numerical Comparison

- Trained on AWGN on 5 images, patches of size 26-by-26.
- Batch size is 4, model is trained for 200 epochs.
- Trained for both known and blind noise variance.

Table 3. Average PSNR (dB) and SSIM values for Gaussian noise removal.

| Noise | CBM3D         | CDnCNN        | DeepGLR       |
|-------|---------------|---------------|---------------|
| 15    | 33.49/ 0.9216 | 33.80/ 0.9268 | 33.65/ 0.9259 |
| 25    | 30.68/ 0.8675 | 31.13/ 0.8799 | 31.03/ 0.8797 |
| 50    | 27.35/ 0.7627 | 27.91/ 0.7886 | 27.86/ 0.7924 |

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

### Experimental Results – Numerical Comparison

- Cross-domain generalization.
- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.

Table 4. Evaluation of cross-domain generalization for real image denoising. The best results are highlighted in boldface.

|        | Noisy  | Method       |        |         |  |  |
|--------|--------|--------------|--------|---------|--|--|
| Metric |        | Noise Clinic | CDnCNN | DeepGLR |  |  |
| PSNR   | 20.36  | 27.43        | 24.36  | 30.10   |  |  |
| SSIM   | 0.1823 | 0.6040       | 0.5206 | 0.8028  |  |  |

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

### Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.



[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

### Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.



### Noise Clinic

CDnCNN

DeepGLR

# Outline

- Defining Graph frequencies
- Inverse Imaging
  - Image denoising
  - Image contrast enhancement
  - 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
  - Matrix completion

### Semi-Supervised Graph Classifier Learning

- **Binary Classifier**: given feature vector  $x_i$  of dimension K, compute  $f(x_i) \in \{0,1\}$ .
- **Classifier Learning**: given partial, noisy labels  $(x_i, y_i)$ , train classifier  $f(x_i)$ .

### • GSP Approach [1]:

- 1. Construct *signed similarity graph* with +/- edges.
- 2. Pose MAP graph-signal restoration problem.
- 3. Perturb graph Laplacian to ensure PSD.
- 4. Solve num. stable MAP as sparse lin. system.

[1] Yu Mao, Gene Cheung, Chia-Wen Lin, Yusheng Ji, "**Image Classifier Learning from Noisy Labels via Generalized Graph Smoothness Priors**, " *IEEE IVMSP Workshop*, Bordeaux, France, July 2016. (**Best student paper award**)

[2] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "**Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights**," *IEEE* 50 *Transactions on Signal and Information Processing over Networks*, vol. 4, no.4, pp.712-726, December 2018.



example graph-based classifier

### Semi-Supervised Graph Classifier Learning

- **Binary Classifier**: given feature vector  $x_i$  of dimension K, compute  $f(x_i) \in \{0,1\}$ .
- **Classifier Learning**: given partial, noisy labels  $(x_i, y_i)$ , train classifier  $f(x_i)$ .

### • GSP Approach [1]:

- 1. Construct *signed similarity graph* with +/- edges.
- 2. Pose MAP graph-signal restoration problem.
- 3. Perturb graph Laplacian to ensure PSD.
- 4. Solve num. stable MAP as sparse lin. system.

[1] Yu Mao, Gene Cheung, Chia-Wen Lin, Yusheng Ji, "**Image Classifier Learning from Noisy Labels via Generalized Graph Smoothness Priors**, " *IEEE IVMSP Workshop*, Bordeaux, France, July 2016. (**Best student paper award**)

[2] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "**Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights**," *IEEE* 51 *Transactions on Signal and Information Processing over Networks*, vol. 4, no.4, pp.712-726, December 2018.



example graph-based classifier

Graph-Signal Smoothness Prior for signed graphs

• Graph Laplacian Regularizer [1]:

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{(i,j) \in \mathcal{E}} w_{i,j} \left( x_i - x_j \right)^2 = \sum_k \lambda_k \, \alpha_k^2 \qquad \text{GFT coeff}$$

eigenvalues / graph freqs

 $W \equiv I$ 

52

 Promote large / small inter-node differences depending on edge signs.



• Sensible, but numerically unstable.

[1] J. Pang and G. Cheung, "**Graph Laplacian regularization for image denoising: Analysis inn the continuous domain**," in *IEEE Transactions on Image Processing*, vol. 26, no.4, April 2017, pp. 1770–1785.

### Semi-Supervised Learning Formulation

• MAP formulation:



- One sol'n is  $\triangle = \lambda_{\min}$  I, *i.e.* shift all eigenvalues up by  $\eta = \lambda_{\min}$ .
- Intuition: signal variations + signal energies

$$\mathbf{x}^{T}(\mathbf{L} + \boldsymbol{\Delta})\mathbf{x} = \mathbf{x}^{T}\mathbf{L}\mathbf{x} + \eta \,\mathbf{x}^{T}\mathbf{I}\mathbf{x}$$
$$= \sum_{i,j} w_{i,j}(x_{i} - x_{j})^{2} + \eta \sum_{i} x_{i}^{2}$$

[1] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "**Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights**," *IEEE* 53 *Transactions on Signal and Information Processing over Networks*, vol. 4, no.4, pp.712-726, December 2018.

• Comparisons w/ other classifiers:

#### TABLE II

#### CLASSIFICATION ERROR RATES IN THE BANANA DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

| % label noise          | 0%      | 5%      | 10%     | 15%     | 20%     |
|------------------------|---------|---------|---------|---------|---------|
| SVM-Linear             | 54.71%  | 54.97%  | 54.70%  | 53.95%  | 53.42%  |
| SVM-RBF                | 12.49%  | 13.27%  | 13.72%  | 16.23%  | 18.63%  |
| RobustBoost [26]       | 20.42%  | 22.73%  | 24.53%  | 25.12%  | 27.52%  |
| Graph-Pos              | 14.05%  | 15.89%  | 18.02%  | 20.76%  | 21.93%  |
| Graph-MinNorm          | 10.23%  | 12.37%  | 14.44%  | 17.41%  | 18.69%  |
| Graph-Bandlimited [58] | 7.53%   | 11.77%  | 15.80%  | 19.14%  | 21.07%  |
| Graph-AdjSmooth [9]    | 8.85%   | 12.08%  | 15.28%  | 18.26%  | 20.67%  |
| Graph-Wavelet [6]      | 23.18%  | 24.25%  | 25.70%  | 27.15%  | 30.13%  |
| Proposed-Centroid      | 5.17%   | 10.50%  | 13.79%  | 16.80%  | 19.39%  |
| Proposed-Boundary      | 13.37%  | 15.68%  | 18.27%  | 20.51%  | 22.72%  |
| Proposed-Hybrid        | 5.36%   | 9.43%   | 12.79%  | 16.04%  | 18.43%  |
| Proposed-Rej           | 3.74%   | 6.57%   | 9.26%   | 12.19%  | 14.06%  |
| rioposed-Rej           | (9.59%) | (9.89%) | (9.14%) | (9.96%) | (9.95%) |

• Comparisons w/ other classifiers:

#### TABLE II

#### CLASSIFICATION ERROR RATES IN THE BANANA DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

|                        |         |         |         |         | · · · · · · · · · · · · · · · · · · · |  |
|------------------------|---------|---------|---------|---------|---------------------------------------|--|
| % label noise          | 0%      | 5%      | 10%     | 15%     | 20%                                   |  |
| SVM-Linear             | 54.71%  | 54.97%  | 54.70%  | 53.95%  | 53.42%                                |  |
| SVM-RBF                | 12.49%  | 13.27%  | 13.72%  | 16.23%  | 18.63%                                |  |
| RobustBoost [26]       | 20.42%  | 22.73%  | 24.53%  | 25.12%  | 27.52%                                |  |
| Graph-Pos              | 14.05%  | 15.89%  | 18.02%  | 20.76%  | 21.93%                                |  |
| Graph-MinNorm          | 10.23%  | 12.37%  | 14.44%  | 17.41%  | 18.69%                                |  |
| Graph-Bandlimited [58] | 7.53%   | 11.77%  | 15.80%  | 19.14%  | 21.07%                                |  |
| Graph-AdjSmooth [9]    | 8.85%   | 12.08%  | 15.28%  | 18.26%  | 20.67%                                |  |
| Graph-Wavelet [6]      | 23.18%  | 24.25%  | 25.70%  | 27.15%  | 30.13%                                |  |
| Proposed-Centroid      | 5.17%   | 10.50%  | 13.79%  | 16.80%  | 19.39%                                |  |
| Proposed-Boundary      | 13.37%  | 15.68%  | 18.27%  | 20.51%  | 22.72%                                |  |
| Proposed-Hybrid        | 5.36%   | 9.43%   | 12.79%  | 16.04%  | 18.43%                                |  |
| Proposed Rej           | 3.74%   | 6.57%   | 9.26%   | 12.19%  | 14.06%                                |  |
| Proposed-Rej           | (9.59%) | (9.89%) | (9.14%) | (9.96%) | (9.95%)                               |  |

#### • Comparisons w/ other classifiers:

#### TABLE III

#### CLASSIFICATION ERROR RATES IN THE FACE GENDER DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

| % label noise          | 0%               | 5%               | 10%              | 15%              | 20%              |
|------------------------|------------------|------------------|------------------|------------------|------------------|
| SVM-Linear             | 17.65%           | 18.22%           | 18.77%           | 19.59%           | 21.6%            |
| SVM-RBF                | 12.14%           | 12.16%           | 12.83%           | 16.30%           | 24.01%           |
| RobustBoost [26]       | 9.15%            | 11.09%           | 14.36%           | 17.36%           | 20.68%           |
| Graph-Pos              | 13.15%           | 13.62%           | 14.38%           | 15.39%           | 16.54%           |
| Graph-MinNorm          | 7.15%            | 8.26%            | 9.48%            | 10.37%           | 12.01%           |
| Graph-Bandlimited [58] | 5.78%            | 11.83%           | 15.30%           | 19.74%           | 23.44%           |
| Graph-AdjSmooth [9]    | 1.25%            | 5.01%            | 7.94%            | 11.45%           | 15.39%           |
| Graph-Wavelet [6]      | 20.02%           | 19.95%           | 20.12%           | 20.7%            | 21.43%           |
| Proposed-Centroid      | 1.44%            | 2.96%            | 4.46%            | 5.88%            | 8.07%            |
| Proposed-Boundary      | 10.81%           | 12.09%           | 13.17%           | 14.33%           | 15.96%           |
| Proposed-Hybrid        | 1.71%            | 3.02%            | 4.22%            | 5,75%            | 7.71%            |
| Proposed-Rej           | 0.36%<br>(9.70%) | 0.68%<br>(9.29%) | 1.08%<br>(9.85%) | 2.39%<br>(9.08%) | 4.18%<br>(9.05%) |

#### • Comparisons w/ other classifiers:

#### TABLE III

#### CLASSIFICATION ERROR RATES IN THE FACE GENDER DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

| % label noise          | 0%      | 5%      | 10%     | 15%     | 20%     |
|------------------------|---------|---------|---------|---------|---------|
| SVM-Linear             | 17.65%  | 18.22%  | 18.77%  | 19.59%  | 21.6%   |
| SVM-RBF                | 12.14%  | 12.16%  | 12.83%  | 16.30%  | 24.01%  |
| RobustBoost [26]       | 9.15%   | 11.09%  | 14.36%  | 17.36%  | 20.68%  |
| Graph-Pos              | 13.15%  | 13.62%  | 14.38%  | 15.39%  | 16.54%  |
| Graph-MinNorm          | 7.15%   | 8.26%   | 9.48%   | 10.37%  | 12.01%  |
| Graph-Bandlimited [58] | 5.78%   | 11.83%  | 15.30%  | 19.74%  | 23.44%  |
| Graph-AdjSmooth [9]    | 1.25%   | 5.01%   | 7.94%   | 11.45%  | 15.39%  |
| Graph-Wavelet [6]      | 20.02%  | 19.95%  | 20.12%  | 20.7%   | 21.43%  |
| Proposed-Centroid      | 1.44%   | 2.96%   | 4.46%   | 5.88%   | 8.07%   |
| Proposed-Boundary      | 10.81%  | 12.09%  | 13.17%  | 14.33%  | 15.96%  |
| Proposed-Hybrid        | 1.71%   | 3.02%   | 4.22%   | 5,75%   | 7.71%   |
| Proposed-Rej           | 0.36%   | 0.68%   | 1.08%   | 2.39%   | 4.18%   |
| Proposed-Rej           | (9.70%) | (9.29%) | (9.85%) | (9.08%) | (9.05%) |

# Outline

- Defining Graph frequencies
- Inverse Imaging
  - Image denoising
  - Image contrast enhancement
  - 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
  - Matrix completion

# Graph Sampling (with and without noise)

• **Q**: How to choose best samples for graph-based reconstruction?

- Existing graph sampling strategies extend Nyquist sampling to graph data kernels:
  - Assume *bandlimited* signal.
  - Greedily select most "informative" samples by computing extreme eigenvectors of sub-matrix.
  - Computation-expensive.



59

### Related Works



[1] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "**Sampling of graph signals with successive local aggregations**." *IEEE Transactions on Signal Processing*, vol. 64, no. 7, pp. 1832–1843, 2016.

[2] X. Wang, J. Chen, and Y. Gu, "Local measurement and reconstruction for noisy bandlimited graph signals," *Signal Processing*, vol. 129, pp. 119–129, 2016.

[3] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, "**Random sampling of bandlimited signals on graphs**," *Applied and Computational Harmonic Analysis*, vol. 44, no. 2, pp. 446–475, 2018.



• Signal prior is graph Laplacian regularizer (GLR) [1]:

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \tilde{x}_{k}^{2}$$
 signal contains mostly low graph freq.

signal smooth w.r.t. graph

• MAP Formulation:

$$(\mathbf{H}^T \mathbf{H} + \mu \mathbf{L}) \mathbf{x}^* = \mathbf{y}$$
  
linear system of eqn's solved using *conjugate gradient*

### Stability of Linear System

• Examine system of linear equations :

 $(\mathbf{H}^T \mathbf{H} + \mu \mathbf{L})\mathbf{x}^* = \mathbf{y}$ 

- Stability depends on the condition number  $(\lambda_{\text{max}}/\lambda_{\text{min}})$  of coeff. matrix **B**.
- $\lambda_{max}$  is upper-bounded by  $1 + \mu 2^* d_{max}$ .
- Goal: select samples to maximize  $\lambda_{min}$  (without computing eigen-pairs)!
- Also minimizes worst-case MSE:

$$\|\widehat{\mathbf{x}} - \mathbf{x}\|_{2} \le \mu \left\|\frac{1}{\lambda_{min}(\mathbf{B})}\right\|_{2} \|\mathbf{L}(\mathbf{x} + \widetilde{\mathbf{n}})\|_{2} + \|\widetilde{\mathbf{n}}\|_{2}$$

1 - 2 - 3 - 4

$$\mathbf{L} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

 $\mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 

Sample set {2, 4}

### Gershgorin Circle Theorem

### Gershgorin Circle Theorem:

 Row *i* of L maps to a Gershgorin disc w/ centre L<sub>ii</sub> and radius R<sub>i</sub>

$$R_i = \sum_{j \neq i} |L_{ij}|$$

-  $\lambda_{\text{min}}$  is lower-bounded by smallest left-ends of Gershgorin discs:

$$\min_i \ L_{i,i} - R_i \le \lambda_{\min}$$

• Graph Laplacian  $\boldsymbol{L}$  has all Gershgorin disc left-ends at  $0\to\boldsymbol{L}$  is psd.



$$\mathbf{L} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$



### Gershgorin Disc Alignment

• Main Idea: Select samples to max smallest disc left-end of coefficient matrix **B**:

 $\mathbf{B} = \mathbf{H}^T \mathbf{H} + \mu \mathbf{L} \quad \longleftarrow \text{ coeff. matrix}$ 

- Sample node  $\rightarrow$  shift disc.
- Consider similar transform of **B**:

 $\mathbf{C} = \mathbf{S} \, \mathbf{B} \, \mathbf{S}^{-1} \longleftarrow \text{similarity transform}$ diagonal matrix w/ scale factors

• Scale row  $\rightarrow$  **expand** disc radius.

→ **shrink** neighbors' disc radius.





Sample set {2} Scale factor {1,4,,1,1}

# Aligning discs at threshold 7

### Breadth First Iterative Sampling (BFIS):

- Given initial node set, threshold *T*.
- 1. Sample chosen node *i* (shift disc)
- 2. Scale row *i*

(expand disc radius *i* to *T*)

3. If disc left-end of connected node j > T, Scale row j(expand disc radius j to T)

Else,

Add node *j* to node set.

- 4. Goto 1 if node set not empty.
- 5. Output sample set and count *K*.







d1 -W12

W21

53>1

W32

-W34

d<sub>4</sub>

-W54

-W4

-W43



### Gershgorin Disc Alignment (math)

### • Binary Search with BFIS:

- Sample count K inverse proportional to threshold T.
- Binary search on T to drive count K to budget.

- Example: line graph with equal edge weight.
  - Uniform sampling.



# Disc-based Sampling (intuition)

- Analogy: throw pebbles into a pond.
- **Disc Shifting**: throw pebble at sample node *i*.
- **Disc Scaling**: ripple to neighbors of node *i*.
- **Goal**: Select min # of samples so ripple at each node is at least *T*.





### Results: Graph Sampling

- GDA is 100x to 1000x faster than state-of-art methods computing e-vectors.
- GDA is "comparable" in complexity to Random [23] and Ed-free [8].

# TABLE II SPEEDUP FACTORS OF OUR ALGORITHM WITH RESPECT TO OTHER SAMPLING ALGORITHMS FOR N=3000

| Sampling Methods | Sensor  | Community |
|------------------|---------|-----------|
| Random [23]      | 0.22    | 0.21      |
| E-optimal [20]   | 2812.77 | 1360.76   |
| SP [12]          | 174.09  | 466.18    |
| MFN [18]         | 2532.91 | 1184.23   |
| MIA [16]         | 1896.19 | 964.65    |
| Ed-free [8]      | 1.82    | 8.11      |

[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "**Fast Graph Sampling Set Selection Using Gershgorin Disc** 68 **Alignment**," submitted to *IEEE Transactions on Signal Processing*, July 2019.

### Results: Graph Sampling

• Small graphs: GDA has roughly the same reconstruction MSE.

• Random sensor graph of size 500 for two signal types.



[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "**Fast Graph Sampling Set Selection Using Gershgorin Disc** 69 Alignment," submitted to *IEEE Transactions on Signal Processing*, July 2019.

### Results: Graph Sampling

- Large graphs: GDA has smallest reconstruction MSE.
  - Minnesota road graph of size 2642 and for two signal types.



[1] Yuanchao Bai, Fen Wang, Gene Cheung, Yuji Nakatsukasa, Wen Gao, "**Fast Graph Sampling Set Selection Using Gershgorin Disc** 70 **Alignment**," submitted to *IEEE Transactions on Signal Processing*, July 2019.

# Matrix Completion

• Fill in missing entries in a matrix: (Low-rank matrix recovery problem)

 $\min_{\mathbf{X}\in R^{M\times N}} \operatorname{rank}(\mathbf{X})$ 

s.t. 
$$X_{i,j} = M_{i,j}, \quad \forall i, j \in S$$

- Examples of applications:
  - Recommendation system—making rating prediction.
  - Remote sensing—infer full covariance matrix from partial correlations.
  - Structure-from-motion in computer vision.

# Matrix Completion

- Convex relaxation to nuclear norm:
  - $\min_{X \in \mathbb{R}^{M \times N}} \| X \|_*$ s.t.  $X_{i,j} = M_{i,j}, \quad \forall i, j \in S$
  - Proximal Gradient: SVD plus singular value soft-thresholding.
- Use **dual graph-signal smoothness prior** to promote low rank [1]:  $\min_{\mathbf{X}\in R^{M\times N}} \operatorname{tr}(\mathbf{X}^{T}\mathbf{L}_{r}\mathbf{X}) + \gamma \operatorname{tr}(\mathbf{X}\mathbf{L}_{c}\mathbf{X}^{T}) + \mu \|\mathbf{S}\circ\mathbf{M} - \mathbf{S}\circ\mathbf{X}\|_{F}^{2}$ 
  - Unconstrained convex objective solvable via ADMM, conjugate gradient.





Results: Sampling for matrix completion



Figure: Reconstruction MSE of different sampling methods on synthetic dataset. The reconstruction method for matrix completion is dual graph smoothness based method.

Comparison methods: PG [1]; GWC-random [2]; LOC [3]

- [1] Guillermo Ortiz-Jiménez, Mario Coutino, Sundeep Prabhakar Chepuri, and Geert Leus. "Sampling and reconstruction of signals on product graphs". arXiv preprint arXiv:1807.00145, 2018.
- [2] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, "Random sampling of bandlimited signals on graphs," Applied and Computational Harmonic Analysis, vol. 44, no. 2, pp. 446–475, 2018.
- [3] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, "Eigendecomposition-free sampling set selection for graph signals," IEEE Transactions on Signal Processing, 2019.

[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," submitted to *IEEE Transactions on Signal Processing*, October 2019.

80 100

Noisy synthetic rating matrix

120 140

60

### Results: Sampling for matrix completion

|    | SVT [1]       | GRALS [2]     | GMC [3]       | NMC [4]              |
|----|---------------|---------------|---------------|----------------------|
| G1 | 1.021   1.031 | 0.947   0.931 | 1.036   1.037 | 0.890   <b>0.888</b> |
| G2 | 1.021   0.983 | 0.945   0.893 | 1.118   1.054 | 0.890   <b>0.858</b> |

Table: RMSE of different matrix completion methods on Mocielens\_100k dataset with different sampling strategies on Feature-based graph (G1) and Content-based graph (G2). In each grid, the value on left side belongs to random sampling; the right side value is of *our proposed IGCS sampling*. The best performance in each row is marked in bold and red. In our experiments, the sampling budget is 80k out of 100k available ratings; We first use random 60k samples as given, and then proceed to sample the next 20k samples base on random sampling or the proposed IGCS sampling.

- [1] J. Cai, E. J. Candes, and Z. Shen. "A singular value thresholding algorithm for matrix completion". preprint, 2008.
- [2] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. "Collaborative filtering with graph information: Consistency and scalable methods". In Proc. NIPS, 2015.
- [3] V. Kalofolias, X. Bresson, M. M. Bronstein, and P. Vandergheynst." Matrix completion on graphs. "2014.
- [4] D. M. Nguyen, E. Tsiligianni, and N. Deligiannis, "Extendable neural matrix completion," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2018, pp. 1–5.

[1] [1] F. Wang, Y. Wang, G. Cheung, C. Yang, "**Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift**," submitted to *IEEE Transactions on Signal Processing*, October 2019.

74

### Summary

- Graph Spectral Analyis Tools
  - Similarity graph, graph frequencies.





- Email: genec@yorku.ca
- Homepage: https://www.eecs.yorku.ca/~genec/index.html

### Primal Sample Selection Problem

• **Optimization**: Select sample vector **a** and scalars **s**:

$$\max_{\mathbf{a},\mathbf{s}} \min_{i \in \{1,...,N\}} c_{ii} - \sum_{j \neq i} |c_{ij}| \qquad \text{smallest disc left-end of C}$$
s.t.  $\mathbf{C} = \mathbf{S} (\mathbf{A} + \mu \mathbf{L}) \mathbf{S}^{-1} \leftarrow \mathbf{C}$  is similar transform of coeff. matrix
$$\mathbf{A} = \operatorname{diag}(\mathbf{a}), \quad a_i \in \{0,1\}, \quad \sum_{i=1}^N a_i \leq K, \quad \text{sample vector } \mathbf{a} \text{ is binary and within budget } K$$

$$\mathbf{S} = \operatorname{diag}(\mathbf{s}), \quad s_i > 0. \quad \text{scalars s are positive}$$

• **Difficulty**: max-min objective is hard to optimize.

### Dual Sample Selection Problem

• **Dual Formulation**: Select sample vector **a** and scalars **s**:



• **Proposition**: If there exists threshold T s.t. optimal sol'n (**a**,**s**) to dual satisfies  $\Sigma a_i = K$ , one dual sol'n is also optimal to primal.