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What is Linear Algebra?

At the risk of over-simplification, linear algebra solves two
problems:

1 System of linear equations:
given matrix1A ∈ Rn×n and vector y ∈ Rn, find x

Ax = y (1)

2 Eigen-decomposition:
given matrix A ∈ Rn×n, find eigen-pair2(λ, v), where λ ∈ R
and v ∈ Rn, such that

Av = λv (2)

1Matrix A and vector y can also be complex: A ∈ Cn×n, y ∈ Cn.
2One can also pose the generlized eigenvalue problem: Av = λBv.
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Why should I care? (Part I)

Ax = y yields solution to the least-square problem3:

1 Overdetermined equation: For “tall” matrix H, solve

min
x
‖y −Hx‖2

2 (3)

=⇒ H>H x∗ = H>y (4)

2 Underdetermined equation: For “fat” matrix H, solve

min
x
‖x‖2

2 s.t. y = Hx (5)

=⇒
[

I − 1
2 H>

H 0

] [
x
µ

]
=

[
0
y

]
(6)

3 Regularization:

min
x
‖y −Hx‖2

2 + λ‖Ax‖2
2 (7)

=⇒
(
H>H + λA>A

)
x∗ = H>y (8)

3
http://eeweb.poly.edu/iselesni/lecture notes/least squares/index.html
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Why should I care? (Part II)

Evaluate stability of Ax = y.
Condition number κ(A) of coefficient matrix A:

κ(A) =
|λmax(A)|
|λmin(A)|

(9)

E-optimality criteria:

max
A∈S

λmin(A) (10)

Compute graph frequencies 4:
1 Define variation operator Φ on graph, e.g., graph Laplacian

matrix L:
L = D−W (11)

2 Compute Fourier modes for L via eigen-decomposition.

L = VΛV> (12)

where V contains eigenvectors v1, v2, . . . as columns, and
Λ = diag(λ1, λ2, . . .).

4
A. Ortega et al., “Graph signal processing: Overview, challenges, and applications,” Proceedings of the IEEE, vol.

106, no. 5, pp. 808–828, 2018.
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Graph Frequencies: Discrete Cosine Transform (GCT)

Cosines are eigenfunctions of differential operator:
1 Construct graph Laplacian L for line graph with weights 1.
2 Compute eigenvectors for L.

Figure: Eigenvectors of line graph Laplacian matrix L = D−W
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Graph Frequencies: Discrete Fourier Transform (GFT)

Figure: 1st eigenvector of graph Laplacian matrix L = D−W
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Graph Frequencies: Discrete Fourier Transform (GFT)

Figure: 2nd eigenvector of graph Laplacian matrix L = D−W
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Graph Frequencies: Discrete Fourier Transform (GFT)

Figure: 3rd eigenvector of graph Laplacian matrix L = D−W
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Graph Frequencies: Discrete Fourier Transform (GFT)

Figure: 9th eigenvector of graph Laplacian matrix L = D−W
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Solving a System of Linear Equations

Q: How to solve Ax = b?

A: Many methods.

1 Gaussian elimination.

2 If A is symmetric and positive semi-definite (PSD), then
Cholesky decomposition.

3 If A is diagonally dominant, Jacobi method.

4 If A is diagonally dominant, or symmetric and PD,
Gauss-Seidel method.

5 Successive approximations using Krylov subspace methods:

If A symmetric and PD, Conjugate Gradient5.

5
M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” Journal of

Research of the National Bureau of Standards, 1952, vol. 49, no. 1.
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Solving the Eigen-decomposition Problem

Q: How to solve Av = λv?

1 How to compute eigenvalues λ’s?

2 How to compute eigenvectors v’s?

A: Many methods.

1 Power method.

2 QR algorithm.
3 Successive approximations using Krylov subspace methods:

Arnoldi iteration.
Divide-and-conquer algorithm.
If A Hermetian, Lanczos algorithm.
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Lower-bounding Smallest Eigenvalue λmin

Recall E-optimality criteria:

max
A∈S

λmin(A) (13)

Gershgorin Circle Theorem (GCT) 6

Given matrix A, Gershgorin disc i , Φi , has centre ci = Aii and
radius ri =

∑
j 6=i |Aij |.

For each eigenvalue λ of A, there exists a disc Φi such that:

ci − ri ≤ λ ≤ ci + ri (14)

Compute a lower bound for λmin(A) without computing
eigen-pairs:

λ−min(A) = min
i

ci − ri ≤ λmin(A) (15)

6
R. S. Varga, Gersgorin and His Circles Springer, 2004
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Lower-bounding Smallest Eigenvalue λmin

Q: How tight is GCT lower bound λ−min(A) for λmin(A)?

A: Consider instead similar transform7:

B = SAS−1 (16)

where S = diag(s1, s2, . . .).

B has same eigenvalues as A.

If A is a generalized graph Laplacian with positive edges, ∃S
such that λ−min(B) = λmin(B) = λmin(A).

7
Y. Bai et al., “Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment,” submitted to IEEE

Transactions on Signal Processing, July 2019.
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Lower-bounding Smallest Eigenvalue λmin

Partition matrix A:

A =

[
A11 A12

A>12 A22

]
(17)

Define Schur Complement:

A/A11 = A22 − A>12A−1
11 A12 (18)

Haynsworth Inertia Additivity formula:

In(A) = In(A11) + In(A/A11) (19)

If A is real and symmetric, can compute tight lower bound for
λmin using a recursive procedure plus shifting (+µI) 8.

8
G. Cheung et al., “Robust Semisupervised Graph Classifier Learning with Negative Edge Weights,” IEEE

Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.
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Computing Extreme Eigenvectors

locally optimal block preconditioned conjugated gradient
(LOBPCG) method 9:

Compute extreme eigen-pairs for symmetric, PD matrices.

Cost per iteration competitive with Lanczos.

Can directly take advantage of preconditioning.

Can benefit from warm start.

9
A. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate

gradient method,” SIAM journal on scientific computing, 23(2):517–541, 2001.
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Summary

Linear algebra solves:
1 Ax = y
2 Av = λv.

Mature algorithms to solve Ax = y using Krylov methods.

Fast algorithms to find extreme eigen-pairs (λi , vi ).

New algorithms to find tight lower bounds for λmin.
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