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What is Linear Algebra?

@ At the risk of over-simplification, linear algebra solves two
problems:

© System of linear equations:
given matrix!A € R"*" and vector y € R”, find x

Ax =y (1)
@ Eigen-decomposition:
given matrix A € R™" find eigen-pair?(\,v), where A € R
and v € R”, such that

Av = )\v (2)

Matrix A and vector y can also be complex: A € C™" y € C".

2One can also pose the generlized eigenvalue problem: Av:= A\Bv.
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Why should | care? (Part I)

e Ax =y yields solution to the least-square problem?3:
@ Overdetermined equation: For “tall” matrix H, solve

min |y — Hx3 3)
— H'Hx*=H'y (4)
@ Underdetermined equation: For “fat” matrix H, solve
min|[x||3 st y=Hx (5)
X
I —IHT X 0
2 _
= [a W R0 e
© Regularization:
min |y — Hx|[3 + A[|Ax[3 (7)
= (H'H+)ATA)x*=H'y (8)

http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/index.html
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Why should | care? (Part Il)

o Evaluate stability of Ax =y.
o Condition number k(A) of coefficient matrix A:

_ [Amax(A)]
B D) @
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Why should | care? (Part Il)

o Evaluate stability of Ax =y.
o Condition number k(A) of coefficient matrix A:

[ Amax(A)]
K(A) = ————— 9
(A) Do (A)] (9)
e E-optimality criteria:
max Amin(A) (10)

e Compute graph frequencies #:

@ Define variation operator ® on graph, e.g., graph Laplacian

matrix L:
L=D-W (11)
@ Compute Fourier modes for L via eigen-decomposition.
L=VAV' (12)
where V contains eigenvectors vy, Vs, ... as columns, and

A = diag(Ag, Ao, .. .).
4A. Ortega et al., “Graph signal processing: Overview, challenges, and applications,” Proceedings of the IEEE, vol.

106, no. 5, pp. 808-828, 2018.
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Graph Frequencies: Discrete Cosine Transform (GCT)

@ Cosines are eigenfunctions of differential operator:

@ Construct graph Laplacian L for line graph with weights 1.
@ Compute eigenvectors for L.
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Figure: Eigenvectors of line graph Laplacian matrix L=D — W
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Graph Frequencies: Discrete Fourier Transform (GFT)

Figure: 1st eigenvector of graph Laplacian matrix L=D — W
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Graph Frequencies: Discrete Fourier Transform (GFT)
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Figure: 2nd eigenvector of graph Laplacian matrix L=D — W
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Graph Frequencies: Discrete Fourier Transform (GFT)
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Figure: 3rd eigenvector of graph Laplacian matrix L=D — W



Graph Frequencies: Discrete Fourier Transform (GFT)
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Figure: 9th eigenvector of graph Laplacian matrix L=D — W
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Solving a m of Linear Equations

Q: How to solve Ax = b?

5M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” Journal of

Research of the National Bureau of Standards, 1952, vol. 49, no. 1.
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Solving a System of Linear Equations

Q: How to solve Ax = b?

A: Many methods.

© Gaussian elimination.

@ If A is symmetric and positive semi-definite (PSD), then
Cholesky decomposition.

@ If A is diagonally dominant, Jacobi method.

@ If A is diagonally dominant, or symmetric and PD,
Gauss-Seidel method.

© Successive approximations using Krylov subspace methods:

o If A symmetric and PD, Conjugate Gradient®.

5M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” Journal of

Research of the National Bureau of Standards, 1952, vol. 49, no. 1.
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Solving the Eigen-decomposition Problem

Q: How to solve Av = \v?
@ How to compute eigenvalues \'s?

@ How to compute eigenvectors v's?

A: Many methods.
© Power method.
@ QR algorithm.

© Successive approximations using Krylov subspace methods:

o Arnoldi iteration.
o Divide-and-conquer algorithm.
e If A Hermetian, Lanczos algorithm.
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Lower-bounding Smallest Eigenvalue Ay

o Recall E-optimality criteria:

Amin (A 13
max (A) (13)

6R. S. Varga, Gersgorin and His Circles Springer, 2004
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Lower-bounding Smallest Eigenvalue Ay

o Recall E-optimality criteria:

Amin (A 13
max (A) (13)

Gershgorin Circle Theorem (GCT) ©
@ Given matrix A, Gershgorin disc i, ®;, has centre ¢; = A;; and
radius r; = Z#,- |Ajl.
@ For each eigenvalue A of A, there exists a disc ®; such that:
ci—r<A<c+r (14)

e Compute a lower bound for Amin(A) without computing
eigen-pairs:
\-

min

(A) = miin ¢i — i < Amin(A) (15)

6R. S. Varga, Gersgorin and His Circles Springer, 2004
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Lower-bounding Smallest Eigenvalue Ay

Q: How tight is GCT lower bound A_. (A) for Amin(A)?

7Y. Bai et al., “Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment,” submitted to /EEE
Transactions on Signal Processing, July 2019.
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Lower-bounding Smallest Eigenvalue Ay

Q: How tight is GCT lower bound A_. (A) for Amin(A)?
A: Consider instead similar transform’:

B =SAS! (16)

where S = diag(s1, 2, .. .).
@ B has same eigenvalues as A.

o If A is a generalized graph Laplacian with positive edges, 39S
such that A_. (B) = Amin(B) = Amin(A).

7Y. Bai et al., “Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment,” submitted to /EEE
Transactions on Signal Processing, July 2019.
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Lower-bounding Smallest Eigenvalue Ay

@ Partition matrix A:

| A A
A_[Asz AZJ (17)

8G. Cheung et al., “Robust Semisupervised Graph Classifier Learning with Negative Edge Weights,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.
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Lower-bounding Smallest Eigenvalue Ay

@ Partition matrix A:

A;p Ap }
A= 17
|: Asz A22 ( )
@ Define Schur Complement:
A/A1; = Ay — ALA A (18)

@ Haynsworth Inertia Additivity formula:
In(A) = In(Ay;) + In(A/Aq1) (19)

8G. Cheung et al., “Robust Semisupervised Graph Classifier Learning with Negative Edge Weights,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.
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Lower-bounding Smallest Eigenvalue Ay

o Partition matrix A:
A;p Ap }
A= 17
AR A (17)
@ Define Schur Complement:
A/A1; = Ay — ALA A (18)

Haynsworth Inertia Additivity formula:
In(A) = In(Ay;) + In(A/Aq1) (19)

o If A is real and symmetric, can compute tight lower bound for
Amin Using a recursive procedure plus shifting (+ul) 8.

8G. Cheung et al., “Robust Semisupervised Graph Classifier Learning with Negative Edge Weights,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.
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Computing Extreme Eigenvectors

locally optimal block preconditioned conjugated gradient
(LOBPCG) method °:

o Compute extreme eigen-pairs for symmetric, PD matrices.
o Cost per iteration competitive with Lanczos.

@ Can directly take advantage of preconditioning.

°

Can benefit from warm start.

9A. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method,” SIAM journal on scientific computing, 23(2):517-541, 2001.
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@ Linear algebra solves:
O Ax=y
Q Av = )v.

Mature algorithms to solve Ax =y using Krylov methods.

Fast algorithms to find extreme eigen-pairs (A;, v;).

New algorithms to find tight lower bounds for Apin.
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