Gene Cheung Associate Professor, York University 16th November, 2018

Graph Spectral Image Processing

1

Acknowledgement

Collaborators:

- Y. Nakatsukasa (NII, Japan)
- S. Muramatsu (Niigata, Japan)
- A. Ortega (USC, USA)
- **D. Florencio** (MSR, USA)
- P. Frossard (EPFL, Switzerland)
- J. Liang, I. Bajic (SFU, Canada)
- X. Wu (McMaster U, Canada)
- V. Stankovic (U of Strathclyde, UK)
- P. Le Callet (U of Nantes, France)
- X. Liu (HIT, China)
- W. Hu, J. Liu, Z. Guo, W. Gao (Peking U., China)
- X. Ji, L. Fang (Tsinghua, China)
- Y. Zhao (BJTU, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)
- E. Peixoto, B. Macchiavello, E. M. Hung (U. Brasilia, Brazil)

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer (GLR)
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Digital Signal Processing

- Discrete signals on *regular* data kernels.
 - Ex.1: audio on regularly sampled timeline.
 - Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms, wavelets) for diff. tasks:
 - Compression.
 - Restoration.
 - Segmentation, classification.

Smoothness of Signals

- Signals are often **smooth**.
- Notion of *frequency*, *band-limited*.
- Ex.: **DCT**: $X_{k} = \sum_{n=0}^{N-1} x_{n} \cos\left(\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right)$

Smoothness of Signals

- Signals are often **smooth**.
- Notion of *frequency*, *band-limited*.
- Ex.: **DCT**: $X_{k} = \sum_{n=0}^{N-1} x_{n} \cos\left(\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right)$

Smoothness of Signals

- Signals are often **smooth**.
- Notion of *frequency*, *band-limited*.
- Ex.: **DCT**: $X_{k} = \sum_{n=0}^{N-1} x_{n} \cos\left(\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right)$

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals *node-to-node relationships*.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
- 2. Underlying data structure unknown.
 - Ex: images: 2D grid \rightarrow structured graph.

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals *node-to-node relationships*.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
- 2. Underlying data structure unknown.
 - Ex: images: 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

[1] D. I. Shuman et al.,"**The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks** 7 and other Irregular Domains," *IEEE Signal Processing Magazine*, vol.30, no.3, pp.83-98, 2013.

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals *node-to-node relationships*.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
- 2. Underlying data structure unknown.
 - Ex: images: 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

[1] D. I. Shuman et al.,"**The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks** 7 and other Irregular Domains," *IEEE Signal Processing Magazine*, vol.30, no.3, pp.83-98, 2013.

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals *node-to-node relationships*.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
- 2. Underlying data structure unknown.
 - Ex: images: 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals *node-to-node relationships*.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
- 2. Underlying data structure unknown.
 - Ex: images: 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

Research questions*:

- **Sampling**: how to efficiently acquire / sense a graph-signal?
 - Graph sampling theorems.
- **Representation**: Given graph-signal, how to compactly represent it?
 - Transforms, wavelets, dictionaries.
- **Signal restoration**: Given noisy and/or partial graph-signal, how to recover it?
 - Graph-signal priors.

*Graph Signal Processing Workshop, Philadelphia, US, May, 2016. https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program

*Graph Signal Processing Workshop, Pittsburgh, US, May, 2017. https://gsp17.ece.cmu.edu/

*Graph Signal Processing Workshop, Lausanne, Switzerland, June, 2018. https://gsp18.epfl.ch/

Research questions*:

- **Sampling**: how to efficiently acquire / sense a graph-signal?
 - Graph sampling theorems.
- **Representation**: Given graph-signal, how to compactly represent it?
 - Transforms, wavelets, dictionaries.
- **Signal restoration**: Given noisy and/or partial graph-signal, how to recover it?
 - Graph-signal priors.

*Graph Signal Processing Workshop, Philadelphia, US, May, 2016. https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program

*Graph Signal Processing Workshop, Pittsburgh, US, May, 2017. https://gsp17.ece.cmu.edu/

*Graph Signal Processing Workshop, Lausanne, Switzerland, June, 2018. https://gsp18.epfl.ch/

Graph Fourier Transform (GFT)

Graph Laplacian:

 Adjacency Matrix A: entry A_{i,j} has non-negative edge weight W_{i,j} connecting nodes i and j.

 Degree Matrix D: diagonal matrix w/ entry D_{i,i} being sum of column entries in row i of A.

$$D_{i,i} = \sum_{j} A_{i,j}$$

- Combinatorial Graph Laplacian L: L = D-A
 - *L* is *symmetric* (graph undirected).
 - *L* is a *high-pass* filter.
 - *L* is related to *2nd derivative*.

$$L_{3,:} x = -x_2 + 2x_3 - x_4$$

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Graph Fourier Transform (GFT)

Graph Laplacian:

 Adjacency Matrix A: entry A_{i,j} has non-negative edge weight W_{i,j} connecting nodes i and j.

 Degree Matrix D: diagonal matrix w/ entry D_{i,i} being sum of column entries in row i of A.

$$D_{i,i} = \sum_{j} A_{i,j}$$

- Combinatorial Graph Laplacian L: L = D-A
 - *L* is *symmetric* (graph undirected).
 - *L* is a *high-pass* filter.
 - *L* is related to *2nd derivative*.

m (GFT)
non-negative
i and j.

$$A = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$L = D - A$$

$$L = \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0 \\ -w_{1,2} & w_{1,2} + 1 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$L_{3,:} x = -x_2 + 2x_3 - x_4$$

 $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$

Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

- GFT defaults to *DCT* for un-weighted connected line.
- GFT defaults to *DFT* for un-weighted connected circle.

Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

- GFT defaults to *DCT* for un-weighted connected line.
- GFT defaults to *DFT* for un-weighted connected circle.

*https://en.wikipedia.org/wiki/Delaunay triangulation

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp\left(-\frac{1}{2}\right)$
- Edge weights inverse proportion to distance.

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp\left(\frac{-|l_i|}{c}\right)$

V2: 1st AC component

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp\left(\frac{-|l_i|}{d}\right)$

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp\left(\frac{-\|l_i l_j\|_2^2}{\sigma^2}\right)$

50 r

45

40

35

30

25 L

-120

-110

-100

-90

-80

-70

0.15

Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

 $L = V \underbrace{\sum V^{T}}_{\text{eigenvectors in columns}} F^{T}$

- Other definitions of graph Laplacians:
 - Normalized graph Laplacian:

$$L_n = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

• Random walk graph Laplacian:

$$L_{rw} = D^{-1}L = I - D^{-1}A$$

• **Generalized** graph Laplacian [1]:

$$L_g = L + D^*$$

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," *IEEE Signal Processing Letters*, vol.22, no.11, pp. 1913-1917, November 2015.

Characteristics:

- Normalized.
- Symmetric.
- No DC component.
- Normalized.
- Asymmetric.
- Eigenvectors not orthog.
- Symmetric.
- L plus self loops.
- Defaults to DST, ADST.

GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

GFT for Image Compression

- DCT are *fixed* basis. Can we do better?
- Idea: use *adaptive* GFT to improve sparsity [1].
 - 1. Assign edge weight 1 to adjacent pixel pairs.
 - 2. Assign edge weight 0 to sharp signal discontinuity.
 - 3. Compute GFT for transform coding, transmit coeff.

$$\widetilde{\mathbf{x}} = \mathbf{V}^{T} \mathbf{x}$$
 GFT

Transmit bits (*contour*) to identify chosen GFT to decoder (overhead of GFT).

[1] G. Shen et al., "**Edge-adaptive Transforms for Efficient Depth Map Coding**," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.

[2] W. Hu, G. Cheung, X. Li, O. Au, "**Depth Map Compression using Multi-resolution Graph-based Transform** 15 for Depth-image-based Rendering," *IEEE International Conference on Image Processing*, Orlando, FL, September 2012.

GFT for Image Compression

- DCT are *fixed* basis. Can we do better?
- Idea: use *adaptive* GFT to improve sparsity [1].
 - 1. Assign edge weight 1 to adjacent pixel pairs.
 - 2. Assign edge weight 0 to sharp signal discontinuity.
 - 3. Compute GFT for transform coding, transmit coeff.

$$\widetilde{\mathbf{x}} = \mathbf{V}^{\widetilde{T}} \mathbf{x}$$
 GFT

Transmit bits (*contour*) to identify chosen GFT to decoder (overhead of GFT).

[1] G. Shen et al., "**Edge-adaptive Transforms for Efficient Depth Map Coding**," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.

[2] W. Hu, G. Cheung, X. Li, O. Au, "**Depth Map Compression using Multi-resolution Graph-based Transform** 15 for Depth-image-based Rendering," *IEEE International Conference on Image Processing*, Orlando, FL, September 2012.

GFT: Derivation of Optimal Edge Weights

• Assume a 1D 1st-order *autoregressive (AR) process* $\mathbf{x} = [x_1, ..., x_N]^T$ where,

$$x_{k} = \begin{cases} \eta & k = 1 \\ x_{k-1} + e_{k} & 1 < k \le N \\ 0 \text{-mean r.v. with var. } \sigma_{k}^{2} \\ x_{1} = \eta & \mathbf{F} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \mathbf{F}^{-1} \mathbf{b} \\ x_{2} - x_{1} = e_{2} \\ \vdots \\ x_{N} - x_{N-1} = e_{N} & \mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \eta \\ e_{2} \\ \vdots \\ e_{N} \end{bmatrix}$$

GFT: Derivation of Optimal Edge Weights

Covariance matrix

$$\mathbf{C} = E\left[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T \right]$$

= $E\left[\mathbf{x} \mathbf{x}^T \right] = E\left[\mathbf{F}^{-1} \mathbf{b} \mathbf{b}^T (\mathbf{F}^{-1})^T \right]$
= $\mathbf{F}^{-1} E\left[\mathbf{b} \mathbf{b}^T \right] (\mathbf{F}^{-1})^T$

$$E[\mathbf{b}\mathbf{b}^{T}] = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_{N}^{2} \end{bmatrix}$$

• Precision matrix (tri-diagonal)

Multi-resolution-GFT Implementation

Fig. 2. MR-GFT coding system for PWS images.

[1] Wei Hu, Gene Cheung, Antonio Ortega, Oscar Au, "**Multiresolution Graph Fourier Transform for Compression of Piecewise Smooth Images**," *IEEE Transactions on Image Processing*, vol.24, no.1, pp.419-433, January 2015.

Experimentation

- Setup
 - Test images: depth maps of *Teddy* and *Cones*, and graphics images of *Dude* and *Tsukuba*.
 - Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H.264.

Subjective Results

HR-DCT

MR-GFT

Summary of GFT for Image Coding

- Optimality of GFT for AR model.
- Variants of GFT for prediction residuals, anti-correlated pixels.
- Fast implementation (w/o eigen-decomposition) via Graph Lifting Transform (GLT) [1] or Fast Graph Fourier Transform (FGFT) [2].

[1] Y.-H. Chao et al., "Edge-Adaptive Depth Map Coding with Lifting Transform on Graphs," 31st Picture Coding Symposium, Cairns, Australia, May, 2015.

[2] L. Le Magoarou et al., "Approximate Fast Graph Fourier Transforms via Multilayer Sparse Approximations," *IEEE TSIPN*, May, 2018.

Graph-Signal Sampling / Encoding for 3D Point Cloud

- Problem: Point clouds require encoding specific 3D coordinates.
- Assumption: smooth 2D manifold in 3D space.
- Proposal: progressive 3D geometry rep. as series of graph-signals. MIT dataset*
 - 1. adaptively identifies new samples on the manifold surface, and
 - 2. encodes them efficiently as graph-signals.

• Example:

- 1. Interpolate i^{th} iteration samples (black circles) to a **continuous kernel** (mesh), an approximation of the target surface **S**.
- 2. New sample locations, **knots** (squares), are located on the kernel surface.
- 3. Signed distances between knots and *S* are recorded as sample values.
- 4. Sample values (green circles) are encoded as a graph-signal via GFT.

Graph-Signal Sampling / Encoding for 3D Point Cloud • Experimental Results:

[1] M. Zhao, G. Cheung, D. Florencio, X. Ji, "**Progressive Graph-Signal Sampling and Encoding for Static 3D Geometry Representation**," *IEEE International Conference on Image Processing*, Beijing, China, September, 2017.
Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

• **Problem**: Sub-aperture images in Light field data are huge.

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

• Experimental Results:

Dataset: EPFL light field image dataset Baseline: All-intra HEVC coding in YUV4:2:0 and RGB 4:4:4

[1] Y.-H. Chao, G. Cheung, A. Ortega, "**Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform**," *IEEE Int'l Conf. on Image Processing*, Beijing, China, September, 2017. (**Best student paper award**)

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Image denoising, contrast enhancement
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Graph Laplacian Regularizer

• $\mathbf{X}^T \mathbf{L} \mathbf{X}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \widetilde{\mathbf{x}}_{k}^{2} \text{ signal contains mostly low graph freq.}$$

• Signal Denoising: signal smooth in nodal domain desired signal observation
• MAP Formulation:
$$\mathbf{y} = \mathbf{x} + \mathbf{v} \leftarrow \text{noise}$$

fidelity term
$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T}\mathbf{L}\mathbf{x} = \text{smoothness prior}$$

$$(\mathbf{I} + \mu \mathbf{L}) \mathbf{x}^{*} = \mathbf{y}$$

linear system of eqn's w/ sparse, symmetric PD matrix

[1] P. Milanfar, "**A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical**," *IEEE Signal Processing Magazine*, vol.30, no.1, pp.106-128, January 2013.

Graph Laplacian Regularizer

• $\mathbf{X}^T \mathbf{L} \mathbf{X}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \widetilde{\mathbf{x}}_{k}^{2}$$
 signal contains mostly low graph freq.

Signal Denoising:

 $\mathbf{y} = \mathbf{x} + \mathbf{v}$

nodal domain

linear system of eqn's w/ sparse, symmetric PD matrix

[1] P. Milanfar, "A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical," *IEEE Signal Processing Magazine*, vol.30, no.1, pp.106-128, January 2013.

Optimal Graph Laplacian Regularization for Denoising

- Adopt a patch-based recovery framework, for a noisy patch \mathbf{p}_0
 - 1. Find K-1 patches similar to \mathbf{p}_0 in terms of Euclidean distance.
 - 2. Compute feature functions, leading to edge weights and Laplacian.
 - 3. Solve the unconstrained quadratic optimization:

$$\mathbf{q}^* = \arg\min_{\mathbf{q}} \left\| \mathbf{p}_0 - \mathbf{q} \right\|_2^2 + \lambda \mathbf{q}^T \mathbf{L} \mathbf{q} \quad \Rightarrow \quad \mathbf{q} = \left(\mathbf{I} + \lambda \mathbf{L} \right)^{-1} \mathbf{p}_0$$

 $\mathbf{f}_2^D(i) = \sqrt{\sigma^2 + \alpha} \cdot \mathbf{y}_i$

 $\mathbf{f}_{1}^{D}(i) = \sqrt{\sigma^{2} + \alpha \cdot x_{i}}$

Spatial

$$\mathbf{f}_{3}^{D} = \frac{1}{K + \sigma_{e}^{2} / \sigma_{g}^{2}} \sum_{k=0}^{K-1} \mathbf{p}_{k}$$

to obtain the denoised patch.

- Aggregate denoised patches to form an updated image.
- Denoise the image iteratively to gradually enhance its quality.
- Optimal Graph Laplacian Regularization for Denoising (OGLRD).

Denoising Experiments (natural images)

• Subjective comparisons ($\sigma_1 = 40$)

Original

Noisy, 16.48 dB

K-SVD, 26.84 dB

OGLR, 28.35 dB

BM3D, 27.99 dB

PLOW, 28.11 dB

Denoising Experiments (depth images)

• Subjective comparisons ($\sigma_{I} = 30$)

[1] W. Hu et al., "**Depth Map Denoising using Graph-based Transform and Group Sparsity**," *IEEE International Workshop on Multimedia Signal Processing*, Pula (Sardinia), Italy, October, 2013.

GLR for Joint Dequantization / Contrast Enhancement

Retinex decomposition model: reflectance

• **Objective**: general smoothness for luminance, smoothness w/ negative edges for reflectance.

 $\mathbf{y} = \tau \mathbf{l} \odot \mathbf{r} + \mathbf{z} \leftarrow \text{noise}$ scalar illumination

$$\begin{array}{ll} \min_{\mathbf{l},\mathbf{r}} & \mathbf{l}^{\top} \left(\mathbf{L}_{l} + \alpha \mathbf{L}_{l}^{2} \right) \mathbf{l} + \mu \, \mathbf{r}^{\top} \mathcal{L}_{r} \mathbf{r} \\ \text{s.t.} & \left(\mathbf{q} - \frac{1}{2} \right) \mathbf{Q} \preceq \mathbf{T} \tau \, \mathbf{l} \odot \mathbf{r} \ \prec \left(\mathbf{q} + \frac{1}{2} \right) \mathbf{Q} \end{array}$$

- **Constraints:** quantization bin constraints
- **Solution**: Alternating accelerated proximal gradient alg [1].

[1] Xianming Liu, Gene Cheung, Xiangyang Ji, Debin Zhao, Wen Gao, "Graph-based Joint Dequantization and Contrast ₃₁ Enhancement of Poorly Lit JPEG Images," accepted to *IEEE Transactions on Image Processing*, September 2018.

Experimental Results

(a)

32

Experimental Results

(e)

(d)

(f)

33

Experimental Results

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
 - 3D point cloud denoising, image deblurring
- Deep GLR
- Ongoing & Future Work

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.

 Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.

• **Proposal**: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

^[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.

 Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

Algorithm Overview

• Use graph total variation (GTV) of surface normals over the K-NN graph:

$$||\mathbf{n}||_{\text{GTV}} = \sum_{i,j\in\mathcal{E}} w_{i,j}||\mathbf{n}_i - \mathbf{n}_j||_1 \qquad \oint_{i} \mathbf{n}_i \qquad \oint_{j} \mathbf{n}_j \qquad w_{i,j} = \exp\left(-\frac{||\mathbf{p}_i - \mathbf{p}_j||_2^2}{\sigma_p^2}\right)$$

• Denoising problem as I2-norm fidelity plus GTV of surface normals:

$$\min_{\mathbf{p},\mathbf{n}} \|\mathbf{q} - \mathbf{p}\|_{2}^{2} + \gamma \sum_{i,j \in E} w_{i,j} \|\mathbf{n}_{i} - \mathbf{n}_{j}\|_{1}$$

- Surface normal estimation of \mathbf{n}_i is a nonlinear function of \mathbf{p}_i and neighbors. **Proposal:**
- 1. Partition point cloud into **two independent classes** (say **red** and **blue**).
- 2. When computing surface normal for a red node, use only neighboring blue points.
- 3. Solve convex optimization for red (blue) nodes alternately.

[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, "Fast 3D Point Cloud Denoising via Bipartite Graph Approximation 37
 & Total Variation," *IEEE 20th International Workshop on Multimedia Signal Processing*, Vancouver, Canada, August 2018.

Experimental Results – Visual Comparison

Anchor model (σ =0.3)

Experimental Results – Visual Comparison

Daratech model (σ =0.3)

Reweighted Graph Total Variation

• TV on graphs.

Gradient of nodes on the graph:

 $(\nabla_i \mathbf{x})_j \triangleq x_j - x_i,$

Reweighted Graph TV:

$$\|\mathbf{x}\|_{RGTV} = \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot}(\mathbf{x}))\nabla_i \mathbf{x}\|_1$$
$$= \sum_{i=1}^N \sum_{j=1}^N w_{i,j}(x_i, x_j) |x_j - x_i|,$$

[1] M. Hidane, O. Lezoray, and A. Elmoataz, "Nonlinear multilayered representation of graph-signals," in *Journal of Mathematical Imaging and Vision*, February 2013, vol. 45, no.2, pp. 114–137.

[2] P. Berger, G. Hannak, and G. Matz, "Graph signal recovery via primal-dual algorithms for total variation minimization," in *IEEE Journal* 40 *on Selected Topics in Signal Processing*, September 2017, vol. 11, no.6, pp. 842–855.

pixel intensity difference

Background for Image Deblurring

- Image blur is a common image degradation.
- Typically, blur process is modeled:

$$y = k \otimes x$$

where y is the blurry image, k is the blur kernel, x is the original sharp image.

- Blind-image deblurring focuses on estimating blur kernel k.
- Given *k*, problem becomes *de-convolution*.

Observation

Skeleton image

- PWS image keeping only structural edges.
- Proxy to estimate blur kernel k.

(d)

(e)

Observation

Skeleton image

- PWS image keeping only structural edges.
- Proxy to estimate blur kernel k.

(d)

(e)

Observation

Skeleton image

- PWS image keeping only structural edges.
- Proxy to estimate blur kernel k.

(d)

Our algorithm

- The optimization function can be written as follows, $\hat{\mathbf{x}}, \hat{\mathbf{k}} = \underset{\mathbf{x}, \mathbf{k}}{\operatorname{argmin}} \varphi(\mathbf{x} \otimes \mathbf{k} - \mathbf{b}) + \mu_1 \cdot \theta_x(\mathbf{x}) + \mu_2 \cdot \theta_k(\mathbf{k})$
- Assume L_2 norm for fidelity term $\varphi(\cdot)$.
- $\theta_{\chi}(\cdot) = RGTV(\cdot).$
- $\theta_k(\cdot) = ||\cdot||_2$, assuming zero mean Gaussian distribution of k.
- RGTV is non-differentiable and non-convex.

Solution:

- Solve x and k alternatingly.
- For x, spectral interpretation of GTV, fast spectral filter.

Workflow

Experimental Results

(a)

(d)

(e)

(f)

Fig. 8. Real Blind Motion Deblurring Example. Image size: 618×464, kernel size: 69×69 . (a) Blurry image. (b) Krishnan et al. [33]. (c) Levin et al [32]. (d) Michaeli & Irani [35]. (e) Pan et al. [4]. (f) The proposed Algorithm 1. The images are better viewed in full size on computer screen.

Experimental Results

(a)

(b)

(c)

(d)

6

Experiment Results

47

(e)

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|y - x\|_{2}^{2} + \mu x^{T} L x$$

fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$

fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

Q: what is the "most appropriate" graph?

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$

fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

Q: what is the "most appropriate" graph?

Bilateral weights:

[1] J. Pang, G. Cheung, "**Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain**," *IEEE Transactions on Image Processing*, vol. 26, no.4, pp.1770-1785, April 2017.

• Deep Graph Laplacian Regularization:

- 1. Learn features **f**'s using CNN.
- 2. Compute distance from features.
- 3. Compute edge weights using Gaussian kernel.
- 4. Construct graph, solve QP.

$$w_{ij} = \exp\left(-\frac{\operatorname{dist}(i,j)}{2\epsilon^2}\right),$$

$$\operatorname{dist}(i,j) = \sum_{n=1}^{N} \left(\mathbf{f}_n(i) - \mathbf{f}_n(j)\right)^2.$$

Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

[1] M. McCann et al., "Convolutional Neural Networks for Inverse Problems in Imaging," *IEEE SPM*, Nov. 2017.

[2] K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in Proc. 27th Int. Conf. Machine Learning, 2010..

Fig. 3. Network architectures of $\text{CNN}_{\mathbf{F}}$, $\text{CNN}_{\hat{\mathcal{Y}}}$ and CNN_{μ} in the experiments. Data produced by the decoder of $\text{CNN}_{\mathbf{F}}$ is colored in orange.

[1] J. Zeng et al., "Deep Graph Laplacian Regularization," submitted to arXiv, July 2018. (https://arxiv.org/abs/1807.11637)

Fig. 2. Block diagram of the overall DeepGLR framework.

• Graph Model guarantees numerical stability of solution:

$$(\mathbf{I} + \mu \mathbf{L}) \mathbf{x}^* = \mathbf{y}$$

• Thm 1: condition number κ of matrix satisfies [1]:

$$\kappa \leq 1 + 2\,\mu\,d_{\rm max}, \qquad {\rm maximum\ node\ degree}$$

• **Observation**: By restricting search space of CNN to degree-bounded graphs, we achieve robust learning.
Experimental Results – Numerical Comparison

- Trained on AWGN on 5 images, patches of size 26-by-26.
- Batch size is 4, model is trained for 200 epochs.
- Trained for both known and blind noise variance.

Table 1. Average PSNR (dB) and SSIM values of different methods for Gaussian noise removal. The best results for each metric is highlighted in boldface.

Noise	Metric	Method								
		BM3D	WNNM	OGLR	DnCNN-S	DnCNN-B	DeepGLR-S	DeepGLR-B		
25	PSNR SSIM	29.95 0.8496	$30.28 \\ 0.8554$	$29.78 \\ 0.8463$	$\begin{array}{c} 30.41 \\ 0.8609 \end{array}$	30.33 0.8594	$30.26 \\ 0.8599$	$30.21 \\ 0.8557$		
40	PSNR SSIM	27.62 0.7920	$\begin{array}{c} 28.08\\ 0.8018 \end{array}$	$27.68 \\ 0.7949$	28.10 0.8080	28.13 0.8091	$28.16 \\ 0.8125$	$28.04 \\ 0.8063$		
50	PSNR SSIM	26.69 0.7651	$27.08 \\ 0.7769$	$26.58 \\ 0.7539$	$27.15 \\ 0.7809$	27.18 0.7811	$27.25 \\ 0.7852$	$27.12 \\ 0.7807$		

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.

[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," IPOL 2015.

Experimental Results – Numerical Comparison

- DeepGLR has average PSNR of 0.34 dB higher than CDnCNN [1].
- Model-based provides robustness against overfitting.

Table 2. Evaluation of different methods for low-light image denoising. The best results for each metric, except for those tested on the training set, are highlighted in boldface.

	Noisy	Method								
Metric		CBM3D	MC-WNNM	$\frac{\text{CDnCNN}}{(\text{train})}$	CDnCNN	$\begin{array}{c} { m CDeepGLR} \\ { m (train)} \end{array}$	CDeepGLR			
PSNR SSIM Y SSIM R SSIM G SSIM B	$\begin{array}{c} 20.36 \\ 0.5198 \\ 0.2270 \\ 0.4073 \\ 0.1823 \end{array}$	$\begin{array}{c} 26.08 \\ 0.8698 \\ 0.6293 \\ 0.8252 \\ 0.5633 \end{array}$	26.23 0.8531 0.5746 0.7566 0.5570	33.43 0.9138 0.8538 0.8979 0.8294	$\begin{array}{c} 31.26 \\ 0.8978 \\ 0.8218 \\ 0.8828 \\ 0.7812 \end{array}$	$\begin{array}{c} 32.31 \\ 0.9013 \\ 0.8372 \\ 0.8840 \\ 0.8138 \end{array}$	$\begin{array}{r} 31.60 \\ 0.9028 \\ 0.8297 \\ 0.8854 \\ 0.7997 \end{array}$			

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

DnCNN

clinic

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

DnCNN

clinic

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: 3D Point Cloud Denoising
- Deep GLR
- Ongoing & Future Work

Summary

- Frequencies for Graphs
 - Optimality of GFT for signal decorrelation
 - Compression for PWS images, point cloud, light field images
- GSP for Inverse Imaging
 - PWS-promoting Graph Laplacian Regularizer, RGTV
 - Image / point cloud denoising, deblurring, contrast enhancement
- Hybrid graph-based / data-driven approach
 - Robustness against CNN overfitting

Ongoing & Future Work

- Graph learning given small data
 - Bayesian networks, DAG
- Unrolling of graph-based convex optimization
 - Unrolling of ADMM, proximal gradient with GTV prior, convex set constraints.
- Graph sampling
 - Fast sampling w/o eigen-decomposition, matrix inverse [1]
 - Reconstruction-cognizant sampling [2]

- Email: genec@yorku.ca
- Homepage: https://www.eecs.yorku.ca/~genec/index.html