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Digital Signal Processing

• Discrete signals on regular data kernels.
• Ex.1:  audio on regularly sampled timeline.

• Ex.2: image on 2D grid.

• Harmonic analysis tools (transforms, wavelets) 
for diff. tasks: 
• Compression.

• Restoration.

• Segmentation, classification.
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Smoothness of Signals 

• Signals are often smooth.

• Notion of frequency, band-limited.

• Ex.: DCT:
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Graph Signal Processing

• Signals on irregular data kernels described by graphs.
• Graph: nodes and edges.

• Edges reveals node-to-node relationships.

1. Data domain is naturally a graph.
• Ex:  ages of users on social networks.

2. Underlying data structure unknown.
• Ex:  images: 2D grid → structured graph.

7[1] D. I. Shuman et al.,”The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks 

and other Irregular Domains,” IEEE Signal Processing Magazine, vol.30, no.3, pp.83-98, 2013.

example graph-signal
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Graph Signal Processing (GSP) addresses the problem of 

processing signals that live on graphs.

[1] D. I. Shuman et al.,”The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks 
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Graph Signal Processing

Research questions*:

• Sampling:  how to efficiently acquire / sense 
a graph-signal?
• Graph sampling theorems.

• Representation:  Given graph-signal, how to 
compactly represent it?
• Transforms, wavelets, dictionaries.

• Signal restoration:  Given noisy and/or 
partial graph-signal, how to recover it?
• Graph-signal priors.

8

node
edge

*Graph Signal Processing Workshop, Philadelphia, US, May, 2016. https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program

*Graph Signal Processing Workshop, Pittsburgh, US, May, 2017. https://gsp17.ece.cmu.edu/

*Graph Signal Processing Workshop, Lausanne, Switzerland, June, 2018. https://gsp18.epfl.ch/
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Graph Fourier Transform (GFT)

Graph Laplacian:

• Adjacency Matrix A:  entry Ai,j has non-negative
edge weight wi,j connecting nodes i and j.

• Degree Matrix D:  diagonal matrix w/ entry Di,i

being sum of column entries in row i of A.

• Combinatorial Graph Laplacian L:   L = D-A
• L is symmetric (graph undirected).

• L is a high-pass filter.

• L is related to 2nd derivative.
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Graph Spectrum from GFT

10

1st AC eigenvector

1 2 3 4 8…2,1w 1 1

TVVL 

eigenvalues along diagonal

eigenvectors in columns

GFT xVx~ T

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

1. Edge weights affect shapes of eigenvectors.

2. Eigenvalues (≥ 0) as graph frequencies.

• Constant eigenvector is DC.

• # zero-crossings increases as λ increases.

• GFT defaults to DCT for un-weighted connected line.

• GFT defaults to DFT for un-weighted connected circle.

GFT coefficients
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V1: DC component

Graph Frequency Examples (US Temperature) 
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*https://en.wikipedia.org/wiki/Delaunay triangulation

• Weather stations from 100 most populated cities.

• Graph connections from Delaunay Triangulation*.

• Edge weights inverse proportion to distance.
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Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

• Other definitions of graph Laplacians:

• Normalized graph Laplacian:

• Random walk graph Laplacian:

• Generalized graph Laplacian [1]:

12

2/12/12/12/1   ADDILDDLn

ADILDLrw

11  

*DLLg 

Characteristics:

• Normalized.

• Symmetric. 

• No DC component.

• Normalized.

• Asymmetric.

• Eigenvectors not orthog.

• Symmetric.

• L plus self loops.

• Defaults to DST, ADST.

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," IEEE 

Signal Processing Letters, vol.22, no.11, pp. 1913-1917, November 2015.

eigenvalues along diagonal

eigenvectors in columns

GFT
TVVL 



GSP and Graph-related Research

GSP:  SP framework that unifies concepts from multiple fields.
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GFT for Image Compression

• DCT are fixed basis.  Can we do better?
• Idea:  use adaptive GFT to improve sparsity [1].

15

1. Assign edge weight 1 to adjacent pixel pairs.

2. Assign edge weight 0 to sharp signal discontinuity.

3. Compute GFT for transform coding, transmit coeff.

4. Transmit bits (contour) to identify chosen GFT to 

decoder (overhead of GFT).

xVx~ T
GFT

[1]  G. Shen et al., “Edge-adaptive Transforms for Efficient Depth Map Coding,”  IEEE Picture Coding Symposium, 

Nagoya, Japan, December 2010.

[2] W. Hu, G. Cheung, X. Li, O. Au, “Depth Map Compression using Multi-resolution Graph-based Transform 

for Depth-image-based Rendering,” IEEE International Conference on Image Processing, Orlando, FL, September 2012.
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GFT: Derivation of Optimal Edge Weights

• Assume a 1D 1st-order autoregressive (AR) process  where,

0-mean r.v. with var. σk
2
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• Covariance matrix

• Precision matrix (tri-diagonal)
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Multi-resolution-GFT Implementation

18[1] Wei Hu, Gene Cheung, Antonio Ortega, Oscar Au, "Multiresolution Graph Fourier Transform for Compression of 

Piecewise Smooth Images," IEEE Transactions on Image Processing, vol.24, no.1, pp.419-433, January 2015.
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Experimentation
• Setup

- Test images: depth maps of Teddy and Cones, and graphics images of Dude and Tsukuba.

- Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H.264.

• Results

HR-DCT:      6.8dB
HR-SGFT:    5.9dB
SAW:            2.5dB
MR-SGFT:   1.2dB
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Subjective Results

HR-DCT HR-SGFT MR-GFT



Summary of GFT for Image Coding

• Optimality of GFT for AR model. 

• Variants of GFT for prediction residuals, anti-correlated pixels.

• Fast implementation (w/o eigen-decomposition) via Graph 
Lifting Transform (GLT) [1] or Fast Graph Fourier 
Transform (FGFT) [2].

21[2] L. Le Magoarou et al., "Approximate Fast Graph Fourier Transforms via Multilayer Sparse Approximations," 

IEEE TSIPN, May, 2018.

[1] Y.-H. Chao et al., "Edge-Adaptive Depth Map Coding with Lifting Transform on Graphs," 31st Picture Coding 

Symposium, Cairns, Australia, May, 2015.
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Graph-Signal Sampling / Encoding for 3D 
Point Cloud

• Problem: Point clouds require encoding specific 3D coordinates.

• Assumption: smooth 2D manifold in 3D space.

• Proposal: progressive 3D geometry rep. as series of graph-signals. 
1. adaptively identifies new samples on the manifold surface, and 

2. encodes them efficiently as graph-signals.

• Example:

1. Interpolate 𝑖𝑡ℎ iteration samples (black circles) to a continuous kernel (mesh), 
an approximation of the target surface S.

2. New sample locations, knots (squares), are located on the kernel surface.

3. Signed distances between knots and S are recorded as sample values.

4. Sample values (green circles) are encoded as a graph-signal via GFT.

MIT 𝑑𝑎𝑡𝑎𝑠𝑒𝑡∗
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Graph-Signal Sampling / Encoding for 3D 
Point Cloud
• Experimental Results:

(a) Dataset1 (b) Dataset2

[1] M. Zhao, G. Cheung, D. Florencio, X. Ji, "Progressive Graph-Signal Sampling and Encoding for Static 3D Geometry 

Representation," IEEE International Conference on Image Processing, Beijing, China, September, 2017.
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Pre-Demosiac Light Field Image Compression 
Using Graph Lifting Transform

• Problem: Sub-aperture images in Light field data are huge. 

• Proposal: postpone demosiacking to decoder. 
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Pre-Demosiac Light Field Image Compression Using 
Graph Lifting Transform

• Experimental Results:

[1] Y.-H. Chao, G. Cheung, A. Ortega, "Pre-Demosiac Light Field Image Compression Using Graph Lifting 

Transform," IEEE Int’l Conf. on Image Processing, Beijing, China, September, 2017. (Best student paper award)

Dataset: EPFL light field image dataset

Baseline: All-intra HEVC coding in YUV4:2:0 and RGB 4:4:4



Outline

• GSP Fundamentals

• GSP for Image Compression
• Optimality of GFT

• GSP for Inverse Imaging
• Graph Laplacian Regularizer

• Image denoising, contrast enhancement
• Reweighted Graph TV

• Deep GLR

• Ongoing & Future Work
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Graph Laplacian Regularizer

• (graph Laplacian regularizer) [1]) is one smoothness measure.

• Signal Denoising:

• MAP Formulation:

27
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Optimal Graph Laplacian Regularization for Denoising

• Adopt a patch-based recovery framework, for a noisy patch

1. Find            patches similar to       in terms of Euclidean distance.

2. Compute feature functions, leading to edge weights and Laplacian. 

3. Solve the unconstrained quadratic optimization:

to obtain the denoised patch.

0p

1K  0p

• Aggregate denoised patches to form an updated image.

• Denoise the image iteratively to gradually enhance its quality.

• Optimal Graph Laplacian Regularization for Denoising (OGLRD).

  0
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q

pLIqLqqqpminarg*q
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[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain," IEEE 

Transactions on Image Processing, vol. 26, no.4, pp.1770-1785, April 2017.
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Denoising Experiments (natural images)

• Subjective comparisons (             )40 I

Original Noisy, 16.48 dB K-SVD, 26.84 dB

BM3D, 27.99 dB PLOW, 28.11 dB OGLR, 28.35 dB
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• Subjective comparisons (             )30 I

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB

Denoising Experiments (depth images)

[1] W. Hu et al., "Depth Map Denoising using Graph-based Transform and Group Sparsity," IEEE International Workshop on 

Multimedia Signal Processing, Pula (Sardinia), Italy, October, 2013.



GLR for Joint Dequantization / Contrast Enhancement

• Retinex decomposition model:

• Objective: general smoothness for luminance, smoothness 
w/ negative edges for reflectance.

• Constraints:  quantization bin constraints 

• Solution: Alternating accelerated proximal gradient alg [1].

31[1] Xianming Liu, Gene Cheung, Xiangyang Ji, Debin Zhao, Wen Gao, "Graph-based Joint Dequantization and Contrast 

Enhancement of Poorly Lit JPEG Images," accepted to IEEE Transactions on Image Processing, September 2018.
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Outline

• GSP Fundamentals

• GSP for Image Compression
• Optimality of GFT

• GSP for Inverse Imaging
• Graph Laplacian Regularizer
• Reweighted Graph TV
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• Deep GLR
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GTV for Point Cloud Denoising

• Acquisition of point cloud introduces noise.

• Point cloud is irregularly sampled 2D manifold in 3D space.

• Not appropriate to apply GTV directly on 3D coordinates [1]. 
• only a singular 3D point has zero GTV value.

• Proposal: Apply GTV is to the surface normals of 3D point 
cloud—a generalization of TV to 3D geometry.

36[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, “Graph-based denoising for time-varying point clouds,” in 

IEEE 3DTV-Conference, 2015, pp. 1–4

x

f(x)

x

y

functional

smoothness

 
i

ii xfxf )()( 1

geometry

smoothness

 
i

ii yy 1



GTV for Point Cloud Denoising

• Acquisition of point cloud introduces noise.

• Point cloud is irregularly sampled 2D manifold in 3D space.

• Not appropriate to apply GTV directly on 3D coordinates [1]. 
• only a singular 3D point has zero GTV value.

• Proposal: Apply GTV is to the surface normals of 3D point 
cloud—a generalization of TV to 3D geometry.

36[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, “Graph-based denoising for time-varying point clouds,” in 

IEEE 3DTV-Conference, 2015, pp. 1–4

x

f(x)

x

y

functional

smoothness

 
i

ii xfxf )()( 1

geometry

smoothness

 
i

ii yy 1



GTV for Point Cloud Denoising

• Acquisition of point cloud introduces noise.

• Point cloud is irregularly sampled 2D manifold in 3D space.

• Not appropriate to apply GTV directly on 3D coordinates [1]. 
• only a singular 3D point has zero GTV value.

• Proposal: Apply GTV is to the surface normals of 3D point 
cloud—a generalization of TV to 3D geometry.

36[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, “Graph-based denoising for time-varying point clouds,” in 

IEEE 3DTV-Conference, 2015, pp. 1–4

x

f(x)

x

y

functional

smoothness

 
i

ii xfxf )()( 1

geometry

smoothness

 
i

ii yy 1  
i

ii 11nn



Algorithm Overview

• Use graph total variation (GTV) of surface normals over the K-NN graph:

• Denoising problem as l2-norm fidelity plus GTV of surface normals:

• Surface normal estimation of n𝒊 is a nonlinear function of p𝒊 and neighbors.          

Proposal:

1. Partition point cloud into two independent classes (say red and blue). 

2. When computing surface normal for a red node, use only neighboring blue points. 

3. Solve convex optimization for red (blue) nodes alternately.

𝑖 𝑗

n𝒊 n𝒋

37[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, “Fast 3D Point Cloud Denoising via Bipartite Graph Approximation 

& Total Variation,” IEEE 20th International Workshop on Multimedia Signal Processing, Vancouver, Canada, August 2018.
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Experimental Results – Visual Comparison
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Reweighted Graph Total Variation

• TV on graphs.

40

Gradient of nodes on the graph:

Reweighted Graph TV:

[1] M. Hidane, O. Lezoray, and A. Elmoataz, “Nonlinear multilayered representation of graph-signals,” in Journal of Mathematical Imaging

and Vision, February 2013, vol. 45, no.2, pp. 114–137.

[2] P. Berger, G. Hannak, and G. Matz, “Graph signal recovery via primal-dual algorithms for total variation minimization,” in IEEE Journal 

on Selected Topics in Signal Processing, September 2017, vol. 11, no.6, pp. 842–855. 
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Background for Image Deblurring

• Image blur is a common image degradation.

• Typically, blur process is modeled:

𝑦 = 𝑘𝑥

where y is the blurry image, k is the blur kernel, x is the
original sharp image.

• Blind-image deblurring focuses on estimating blur kernel k.

• Given k, problem becomes de-convolution.

41



Observation
• Skeleton image:

• PWS image keeping only structural edges.

• Proxy to estimate blur kernel k.
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Our algorithm

• The optimization function can be written as follows,  
ෝ𝐱, መ𝐤 = argmin

𝐱,𝐤
𝜑 𝐱𝐤 − 𝐛 + 𝜇1 ∙ 𝜃𝑥 𝐱 + 𝜇2 ∙ 𝜃𝑘 (𝐤)

• Assume 𝐿2 norm for fidelity term 𝜑(∙).

• 𝜃𝑥 ∙ = 𝑅𝐺𝑇𝑉(∙).

• 𝜃𝑘 ∙ = | ∙ |2 , assuming zero mean Gaussian distribution of k.

• RGTV is non-differentiable and non-convex.

Solution: 

• Solve x and k alternatingly. 

• For x, spectral interpretation of GTV, fast spectral filter.

43



Workflow

Blurry Image ReconstructionSkeleton 

Image 

Reconstruction

Kernel Estimation
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Experimental Results

45[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Graph-Based Blind Image Deblurring from a Single Photograph," accepted to IEEE 

Transactions on Image Processing, October 2018.
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Unrolling Graph Laplacian Regularizer

• Recall MAP formulation of denoising problem with quadratic 
graph Laplacian regularizer:

• Solution is system of linear equations:

49
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smoothness priorfidelity term

  yxLI *  

linear system of eqn’s w/ sparse, symmetric PD matrix

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain," IEEE 

Transactions on Image Processing, vol. 26, no.4, pp.1770-1785, April 2017.
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Unrolling Graph Laplacian Regularizer

• Deep Graph Laplacian Regularization:
1. Learn features f’s using CNN.

2. Compute distance from features.

3. Compute edge weights using Gaussian kernel.

4. Construct graph, solve QP. 

50

[2] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. 27th Int. Conf. Machine Learning, 2010..

features

pre-filter

weight para

[1] M. McCann et al., “Convolutional Neural Networks for Inverse Problems in Imaging,“ IEEE SPM, Nov. 2017.



Unrolling Graph Laplacian Regularizer

51

[1] J. Zeng et al., “Deep Graph Laplacian Regularization,“ submitted to arXiv, July 2018. (https://arxiv.org/abs/1807.11637 )

https://arxiv.org/abs/1807.11637


Unrolling Graph Laplacian Regularizer

• Graph Model guarantees numerical stability of solution:

• Thm 1: condition number κ of matrix satisfies [1]:

• Observation: By restricting search space of CNN to degree-bounded graphs, 
we achieve robust learning.

52

  yxLI *  

[1] J. Zeng et al., “Deep Graph Laplacian Regularization,“ submitted to arXiv, July 2018. (https://arxiv.org/abs/1807.11637 )

maximum node degree

https://arxiv.org/abs/1807.11637


Experimental Results – Numerical Comparison
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• Trained on AWGN on 5 images, patches of size 26-by-26. 

• Batch size is 4, model is trained for 200 epochs.

• Trained for both known and blind noise variance.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.



Experimental Results – Numerical Comparison
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• DeepGLR has average PSNR of 0.34 dB higher than CDnCNN [1].

• Model-based provides robustness against overfitting.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.



Experimental Results – Visual Comparison
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• trained on Gaussian noise, tested on low-light images in (RENOIR).

• Competing methods: DnCNN [1], noise clinic [2].

• outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” TIP 2017.

[2] Marc Lebrun et al, “The noise clinic: a blind image denoising algorithm,” IPOL 2015.

DnCNN clinic DeepGLR
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Outline

• GSP Fundamentals

• GSP for Image Compression
• Optimality of GFT

• GSP for Inverse Imaging
• Graph Laplacian Regularizer

• Reweighted Graph TV: 3D Point Cloud Denoising

• Deep GLR

• Ongoing & Future Work
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Summary

• Frequencies for Graphs
• Optimality of GFT for signal decorrelation

• Compression for PWS images, point cloud, light field images

• GSP for Inverse Imaging
• PWS-promoting Graph Laplacian Regularizer, RGTV

• Image / point cloud denoising, deblurring, contrast enhancement

• Hybrid graph-based / data-driven approach
• Robustness against CNN overfitting

59



Ongoing & Future Work

• Graph learning given small data
• Bayesian networks, DAG

• Unrolling of graph-based convex optimization
• Unrolling of ADMM, proximal gradient with GTV prior, convex set 

constraints.

• Graph sampling
• Fast sampling w/o eigen-decomposition, matrix inverse [1]

• Reconstruction-cognizant sampling [2]

60[1] F. Wang et al, "Fast Sampling of Graph Signals with Noise via Neumann Series Conversion," submitted to ICASSP, May 2019.

[2] Y. Bai et al., "Reconstruction-Cognizant Graph Sampling Using Gershgorin Disc Alignment," submitted to ICASSP, May 2019.



Q&A

• Email:  genec@yorku.ca
• Homepage: https://www.eecs.yorku.ca/~genec/index.html
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