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ABSTRACT
Light field data captured by a lenslet-based image sensor is typically
demosaicked, aligned and rearranged into a series of sub-aperture
(viewpoint) images, before a disparity-compensated coding scheme
is employed for compression. In this paper, we focus on the prob-
lem of soft decoding of block-based compressed sub-aperture im-
ages at the decoder: given quantization bin indices of DCT coeffi-
cients of non-overlapping code blocks, we select appropriate coeffi-
cient values that are low-pass filtered using graph spectral filters and
view-consistent across sub-aperture images via projection on convex
sets (POCS). Specifically, after an initial pixel estimate, we low-pass
filter each pixel block using accelerated graph filters based on the
Lanczos method. We then map filtered pixels to a neighborhood of
sub-aperture images based on estimated disparity to enforce indexed
quantization bin constraints of multiple images. Experimental re-
sults show that our algorithm achieves PSNR gain of 2.34dB over
JPEG hard decoding.

Index Terms— light field imaging, graph signal processing

1. INTRODUCTION

A lenslet light field sensor places a microlens array behind a conven-
tional camera lens, so that the image sensor can capture intensity of
light from different directions per pixel. The captured color pixels
then undergo demosaicking, alignment, and finally mapping to a 2D
array of sub-aperture images, that are slight viewpoint shifts of each
other [1]. Because of the large data volume of light field images
compared to conventional RGB images, recently there are extensive
research on the compression of sub-aperture images [2–8]. With
some exceptions, traditional coding tools like block-based intra-
prediction (intra-coding) or disparity compensation (inter-coding)
plus transform coding are applied to exploit inherent spatial and
inter-view redundancy in the sub-aperture images for coding gain.
Transform coefficients are then scalar-quantized and entropy-coded.

In this paper, we address instead the decoder-side problem:
given encoded quantization bin indices of a code block in a sub-
aperture image, how to choose transform coefficients within the
indexed bins to optimize reconstruction quality. A hard decoding
approach would simply choose the center of each indexed quan-
tization bin as the reconstructed coefficient, which typically leads
to annoying coding artifacts in the decoded image. In contrast, a
soft decoding approach would choose coefficients within indexed
bins with the help of appropriate signal priors. For JPEG images,
priors such as total variation (TV) [9], sparsity with respect to a
learned dictionary [10] and graph-signal smoothness [11] have been
proposed.
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Unlike previous JPEG soft decoding works [9–12], we design a
soft decoding algorithm specifically for sub-aperture images using
fast graph spectral filters and projection on convex sets (POCS) [12]
that consider in addition inter-view consistency. Specifically, we first
use [11] to soft decode an initial set of sub-aperture images. We
then design two graph spectral filters—implemented as acceleration
filters based on Lanczos method [13]—that low-pass filter two dif-
ferent types of blocks depending on the block content. Finally, us-
ing disparity estimated in [14], we project filtered pixels of a target
image onto neighboring sub-aperture images to enforce quantization
bin constraints of multiple views. Experimental results show that our
algorithm achieves PSNR gain of 2.34dB over JPEG hard decoding1

and 1.40dB over [11].

2. RELATED WORK

Soft decoding of JPEG images—selecting DCT coefficients within
indexed quantization bins in each code block at the decoder with sig-
nal priors—has been studied extensively [9–12]. Similarly, we also
select coefficients in indexed quantization bins for sub-aperture im-
ages, but in addition consider inter-view consistency as an additional
constraint. Further, our solution to the MAP optimization is imple-
mented using accelerated graph filters [13], which are significantly
faster than alternative straightforward filter implementations.

Most recent light field compression work focus on the encod-
ing component [2–8], i.e., how to exploit spatial and inter-view re-
dundancy among sub-aperture images to maximally reduce encoding
bitrate during lossy compression. Assuming a generic block-based
image compression scheme with scalar quantization, to the best of
our knowledge, how to best select transform coefficients within in-
dexed quantization bins to decode compressed sub-aperture images
has not been studied before. The most related work we are aware
of is [15], which addresses the joint decoding problem of multiview
depth images considering quantization bins of multiple images. Our
work differs from [15] in that we in addition introduce fast graph
spectral filtering to obtain a reasonable starting set of pixels.

3. SYSTEM OVERVIEW

3.1. Sub-aperture Array
We assume that the light field data have been organized into aM×N
2D array of sub-aperture images Ii,j , 1 ≤ i ≤ M , 1 ≤ j ≤ N .
Each sub-aperture image is of the same spatial resolution, and a pair
of neighboring sub-aperture images are a slight viewpoint shift from
each other. We first assume that a recent JPEG soft decoding al-
gorithm [11] has been applied to each sub-aperture image individ-
ually, so that a set of reasonable quality sub-aperture images have

1Although the experiments are conducted using JPEG coded sub-aperture
images, in general any block-based transform coding scheme with scalar
quantization can be candidates for our optimization.



been decoded at the decoder. We next assume that a known dispar-
ity estimation algorithm [14] has been executed. Thus, for a tar-
get patch x of size R

√
K×
√
K in a sub-aperture image, disparity-

compensated patches yi also of size R
√
K×
√
K in a neighborhood

of sub-aperture images have been identified. We denote the average
of these disparity-compensated patches as y.

If target patch x covers only smooth surface of the same object
in a 3D scene, then disparity estimation is likely correct, and the
computed average patch y is typically well matched with x. On
the other hand, if x straddles across a disparity boundary (i.e., it
covers pixels from both foreground objects and background), then
disparity estimation among sub-aperture images is likely inaccurate,
and y would blur foreground and background pixels from different
yi. In this case, we model the average image patch formation using
an image blurring model:

y = Bx + n, (1)

where B is a blur kernel and n is a zero-mean noise term. We discuss
how to estimate B from data in Section 4.3. Based on the gradient
of y, we will employ different image formation models and apply
different graph spectral filters (to be discussed later).

3.2. Quantization Constraints
We assume that each sub-aperture image Ii,j is block-transform-
coded at the encoder using a transform matrix T. Specifically, the
l-th n-pixel block bi,j(l) ∈ Ii,j is DCT-transformed and scalar-
quantized with quantization parameters (QP) Q = [q1, . . . , qn]

T :

qi,j(l)�Q ≤ Tbi,j(l) < (qi,j(l) + 1)�Q, (2)

where qi,j(l) is the vector of quantization indices for bi,j(l) and
� denotes element-by-element multiplication. In words, (2) states
that reconstructed transform coefficients Tbi,j(l) must fall inside
the indexed quantization bins. At the decoder, given indices qi,j(l)
one must choose transform coefficients Tbi,j(l) that satisfy quanti-
zation bin constraints in (2) with the help of additional signal priors.

4. ALGORITHM DEVELOPMENT

4.1. Graph Signal Processing (GSP) Definitions
We begin with a brief review of key GSP definitions. We interpret a
K-pixel patch x ∈ RK as a graph-signal on a sparse graph G(N , E)
with |N | = K nodes and sparse edges E , |E| � K2; each pixel is
represented by one node. We assume a 4-connected graph, meaning
each pixel is connected to its four horizontal and vertical neighbors.
An adjacency matrix W contains entries wi,j that are edge weights
connecting nodes i and j. Conventionally, edge weight wi,j is a
function of inter-pixel difference computed using a Gaussian ker-
nel [16]. In this paper, we argue that compression artifacts make
computation of single pixel-pair difference unreliable. Thus we pro-
pose a robust neighborhood-based measurement as follows:

wi,j = max(0, 1− (gi + gj)/2), (3)

gi =
∑

k∈R(i)

Gi,k|∇xk| /
∑

k∈R(i)

Gi,k, (4)

where R(i) is a small neighborhood around pixel i, |∇xk| is the
gradient magnitude at xk, Gi,k = exp

(
−|i− k|2/σ2

)
is the Gaus-

sian distance weight and gi is the sum of weighted |∇xk| to esti-
mate local variation. A diagonal degree matrix D contains entries
di,i =

∑
j wi,j . An unnormalized Graph Laplacian matrix L is

simply defined as D −W. Given that the edge weights wi,j com-
puted using (4) are non-negative, L is a positive semi-definite (PSD)
matrix.

4.2. MAP Formulation with Graph Smoothness Prior
We first formulate a maximum a posteriori (MAP) problem using
the image model in (1) and blur kernel B, along with graph-signal
smoothness prior xTLx [17]:

min
x
‖y −Bx‖22 + µxTLx, (5)

where µ is a parameter that trades off the fidelity term and the
smoothness prior. xTLx can be rewritten as [16]:

xTLx =
∑
i,j

wi,j(xi − xj)2 =
∑
k

λkα
2
k, (6)

where λk are the eigenvalues (graph frequencies) of L and αk are the
signal x’s corresponding frequency coefficients. A small smooth-
ness prior xTLx thus means that nodes i and j connected by large
weights wi,j have similar values xi and xj , or the signal x has en-
ergy α2

k resides mostly in the low frequencies λk’s.
(5) has a closed-form solution (assuming BTB+µL is positive

definite (PD)):

x∗ =
(
BTB + µL

)−1

By. (7)

We argue BTB + µL is PD in general as follows. By definition
constant vector 1 is a unique eigenvector corresponding to eigen-
value 0 for L. On the other hand, blur kernel B should not change
a constant signal, i.e., B1 = 1. Since both BTB and L are posi-
tive semi-definite (PSD), and @v 6= 0 such that vTBTBv = 0 and
vTLv = 0 at the same time, BTB + µL must be PD for µ > 0.

Let L = UΛUT , where Λ = diag(λ1, . . . , λN ). Suppose
B = Ug(Λ)UT , where g(Λ) = diag (g(λ1), . . . , g(λN )), is a
polynomial of some finite order H . Then,

BTB + µL = Ug2(Λ)UT + µL,

= U
(
g2(Λ) + µΛ

)
UT . (8)

x∗ =

(
g(L)

g2(L) + µL

)
︸ ︷︷ ︸

Θ1

y. (9)

4.3. Optimal g(L) Estimation
To estimate blur kernel B, for simplicity we first assume B is a lin-
ear function of L, i.e., B = a0I + a1L. Then given a non-smooth
patch yi (averaged gradient magnitude |∇y| is greater than a pre-
defined parameter τ ) and its corresponding ground truth patch xi

from the uncompressed image, we compute the optimal polynomial
coefficients as follows:

min
a0,a1

‖(a0I + a1L)xi − yi‖2F . (10)

Taking the derivative with respect to each of the coefficients and
setting them to 0, we get the following linear system of equations:[

xT
i xi xT

i Lxi

xT
i Lxi xT

i L2xi

] [
a0
a1

]
=

[
yT
i xi

yT
i Lxi

]
. (11)

Thus the solution for a pair (xi,yi) is a tuple (a0, a1) in R2. If we
plot these sets of solutions in 2D space as in Fig. 1, we observe that
the distribution of the values of (a0, a1) is highly concentrated at the
same particular value for two different images. In fact, the variance
of a0 and a1 is less than 10−3 and 10−2, respectively, meaning that
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Fig. 1. Distribution of the optimal polynomial coefficients (a0, a1)
over 1678 patches for image Flower (Fig. 2) and 1416 patches for
Bulldozer (Fig. 3) at QF = 40.

we can find one linear polynomial that well models the blur process
of most patches. In this paper, we fix a0 = 1 and empirically set
a1 to −0.39,−0.34,−0.28 and −0.22 for images coded by a JPEG
coder with quality factors (QF) 5, 10, 20 and 40, respectively. One
can show that for this approximated blur kernel B, BTB + µL in
(7) is still PD and thus invertible, since B1 = (I + a1L)1 6= 0.

4.4. Total Generalized Variation for Smooth Patches
For generally smooth patches (where |∇y| ≤ τ ) that suffer little blur
across sub-aperture images, instead of the blur model (1) we adopt
a simplier additive noise model y = x + n. Further, we employ
a graph variant of total generalized variation (TGV) [18] to avoid
well-known staircase artifacts of TV, rather than the graph filter in
(9). We first define a new graph Laplacian L for a 4-connected graph
with all edge weights equal to 1. We then remove rows in L that
correspond to t boundary pixels in the patch, resulting in a (N−t)×
N sub-matrix Ls. Using Ls to construct a higher-order smoothness
prior analogous to TGV, we get:

min
x
‖y − x‖22 + γxTLT

s Lsx. (12)

Taking the derivative and solving for x, we get:

x∗ = (I + γLT
s Ls)

−1y. (13)

Clearly I + γLT
s Ls is PD. We can now define L∗ = LT

s Ls as a
new graph Laplacian, and since it is symmetric and real, it also can
be eigen-decomposed into VΣVT , where Σ is a diagonal matrix
with eigenvalues σ1, . . . , σN . We can thus write the filter (13) as
x∗ = (I + γL∗)−1︸ ︷︷ ︸

Θ2

y.

4.5. Accelerated Graph Filter using Lanczos Method
We follow [13] to construct accelerated graph filter implemen-
tations of (9) and (13). Denote by VZ = [v1, . . . , vZ ] the Z
orthonormal vectors (we set Z = 5) of the Krylov subspace
KM (L,y) = span{y,Ly, . . . ,LZ−1y} computed using the Lanc-
zos method. The computation cost is O(Z|E|). HZ is a symmetric
tridiagonal matrix relating L and VZ :

V ∗ZLVZ = HZ =



α1 β2
β2 α2 β3

β3 α3

. . .
. . .

. . . βZ
βZ αZ

 . (14)

It is shown that a graph filter f(L)y that is a function of graph Lapla-
cian L can be approximated as:

f(L)y ≈ ‖y‖2VZf(HZ)e1 := gZ , (15)

where e1 is the first unit vector. f(HZ) is a length-Z vector, where
λh
z is the z-th eigenvalue of HZ . By the eigenvalue interleaving

properties, λ1 ≤ λh
z ≤ λN , so f(HZ) can be properly evaluated

given f(L).

4.6. Quantization Constraints across Multiple Views

After graph spectral filtering, we project pixels from the target sub-
aperture image to neighboring images to enforce quantization bin
constraints in multiple images. Let N8(u, v) denote the eight neigh-
boring sub-aperture images of Iu,v . To enforce the quantization bin
constraints of Ii,j , (i, j) ∈ N8(u, v), on pixels in Iu,v , we map pix-
els from Iu,v to Ii,j via estimated disparities. Then for each block in
Ii,j we simply clip its coefficients by the corresponding quantization
bin boundaries—this is equivalent to POCS:

min
(
(qi,j(l) + 1)�Q,max

(
qi,j(l)�Q,Tbi,j(l)

))
, (16)

to satisfy (2). Finally, we transform the clipped coefficients back to
pixel domain and map each pixel back to Iu,v .

4.7. Summary of Soft Decoding Algorithm

To summarize, we first soft decode sub-aperture images using [11],
align and take average over them based on the estimated dispari-
ties [14] to obtain an initial Iu,v . Then we classify patches y in Iu,v
by comparing their averaged gradient magnitude |∇y| with a prede-
fined parameter τ , and select graph filters based on the classification
results to low-pass filter y. Finally we project pixels of Iu,v onto
neighboring sub-aperture images to enforce quantization bin con-
straints of multiple views. The fast graph filter procedure and POCS
procedure iterate alternately until a predefined maximum iteration
number K is reached. We include the pseudocode of the light field
soft decoding in Algorithm 1.

Algorithm 1 Light Field Soft Decoding
Input: Initial Iu,v , parameters τ,K, disparity D
Output: Soft decoded image I∗u,v

1: Initialize k = 1, I(k) = Iu,v
2: for k = 1→ K do
3: 4 Fast graph spectral filters:
4: for all y ∈ I(k) do
5: if |∇y| is greater than τ then
6: Update y as x∗ = F1(y) (Eq. (9)(15))
7: else
8: Update y as x∗ = F2(y) (Eq. (13)(15))
9: 4 Multi-view quantization bin constraints:

10: for all (i, j) ∈ N8(u, v) ∪ {(u, v)} do
11: Map pixels from Iu,v to Ii,j via D
12: for all bi,j(l) ∈ Ii,j do
13: Clip coefficients via (16) and update bi,j(l)

14: Map updated pixels back to Iu,v via D
15: I(k+1) = I(k), k = k + 1

16: I∗u,v = I(K)



Table 1. Quality comparison with respective to PSNR (in dB) at different QF

Methods Flower Bracelet Bulldozer Average
5 10 20 40 5 10 20 40 5 10 20 40

JPEG 26.31 29.15 31.65 33.89 25.02 27.92 30.28 32.71 26.24 28.91 31.34 33.67 29.76
LERaG [11] 27.48 29.94 32.37 34.48 25.79 28.58 31.03 33.55 27.55 30.12 32.46 34.99 30.70
Ours 29.35 31.95 34.11 36.00 26.76 29.78 32.28 34.88 28.62 31.40 33.81 36.27 32.10

(a) JPEG (26.31dB) (b) LERaG [11] (27.48dB) (c) Ours (29.35dB) (d) Ground truth

Fig. 2. Comparison of tested methods in visual quality on Flower at QF = 5. For visual inspection, regions highlighted by red rectangles are
enlarged and shown below the results. The corresponding PSNR values are also given as references.

(a) LERaG [11] (32.46dB) (b) Ours (33.81dB)

Fig. 3. Comparison of tested methods in visual quality on Bulldozer
at QF = 20. For visual inspection, regions highlighted by red rect-
angles are enlarged and shown below the results. The corresponding
PSNR values are also given as references.

5. EXPERIMENTS

We now present experimental results to demonstrate the superior per-
formance of our soft decoding algorithm. In the experiments, we
use 10 × 10 patches with an overlap of two pixel between adjacent
patches. Weights for smoothness prior are set as µ = γ = 0.05.
We run for K = 1 iteration and empirically set parameter τ to
0.03, 0.02, 0.005 and 0.005 at QF = 5, 10, 20 and 40, respectively.
To the best of our knowledge, there does not exist such a system that
focuses on soft decoding of sub-aperture images. For comparison,
we thus use LERaG [11], a JPEG soft decoding algorithm using an
improved graph Laplacian based smoothness prior.

For quantitative comparison, soft decoding results in terms of

PSNR are reported in Table 1. We observe that our method consis-
tently performs better than other methods. The average PSNR gain
over LERaG [11] is 1.40dB.

For visual comparison, soft decoding results for Flower at QF
= 5 and for Bulldozer at QF = 20 are shown in Fig. 2 and Fig. 3,
respectively. At very low QF = 5, the quantization noise is severe
in the compressed JPEG image. Without reliable pixel information,
LERaG [11] produces over-smoothed texture and edge regions. By
carefully integrating the pixel information as well as the quantiza-
tion information from nearby sub-aperture images, our method can
restore image details like the dark stems and flower branches. At
medium QF = 20, our result enjoys richer details as shown in Fig. 3.

6. CONCLUSION

The large volume of light field imaging data has attracted a lot of re-
search in efficient compression of 2D arrays of sub-aperture images.
In this paper, we focus instead on the soft decoding problem at the
decoder-side: given indexed quantization bins of code blocks in a
compressed sub-aperture image, how to best select transform coeffi-
cients within the indexed bins with appropriate signal priors. After
an initial soft decoding of individual sub-aperture images using a re-
cent work [11], we first estimate disparity among images using [14]
to find matching patches across images to compute an average y in
a target image. We then classify patch y into two classes depend-
ing on patch gradient, and apply one of two designed graph spectral
low-pass filters, implemented as accelerated filters using the Lanczos
method [13]. Finally, we project the low-pass filtered pixels to neigh-
boring sub-aperture images for projection on convex sets (POCS), so
that the quantization bin constraints of multiple images are satisfied.
Experimental results show that our method outperforms JPEG hard
decoding and a state-of-the-art JPEG soft decoding method [11] no-
ticeably in both PSNR and subjective quality.
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