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NII Overview

• National Institute of Informatics

• Chiyoda-ku, Tokyo, Japan.

• Government-funded research lab.
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• Offers graduate courses & degrees 

through The Graduate University for 

Advanced Studies (Sokendai).

• 60+ faculty in “informatics”: 

quantum computing, discrete 
algorithms, database, machine 

learning, computer vision, speech & 

audio, image & video processing.

• Get involved!

• 2-6 month Internships.

• Short-term visits via 

MOU grant.

• Lecture series, 

Sabbatical.
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APSIPA Distinguished Lecture Series 

www.apsipa.org 

Introduction to APSIPA and APSIPA DL

4

APSIPA Mission: To promote broad spectrum of research and education 
activities in signal and information processing in Asia Pacific

APSIPA Conferences: ASPIPA Annual Summit and Conference 

APSIPA Publications: Transactions on Signal and Information Processing 
in partnership with Cambridge Journals since 2012; APSIPA Newsletters

APSIPA Social Network: To link members together and to disseminate 
valuable information more effectively

APSIPA Distinguished Lectures: An APSIPA educational initiative to reach 
out to the community



Outline

• Graph Signal Processing

• Graph spectrum

• Semi-supervised Graph Classifier

• Smoothness prior & MAP formulation

• Graph construction

• Graph Laplacian perturbation

• Lower bound min eigenvalue computation

• IRLS algorithm

• Experimental Results

• Conclusion

5PKU Visit 11/27/2017



Outline

• Graph Signal Processing

• Graph spectrum

• Semi-supervised Graph Classifier

• Smoothness prior & MAP formulation

• Graph construction

• Graph Laplacian perturbation

• Lower bound min eigenvalue computation

• IRLS algorithm

• Experimental Results

• Conclusion

6PKU Visit 11/27/2017



Graph Signal Processing

• Signals on irregular data kernels described by 
graphs.

• Graph: nodes and edges.

• Edges reveals node-to-node relationships.

1. Data domain is naturally a graph.

• Ex:  ages of users on social networks.

2. Underlying data structure unknown.

• Ex:  images: 2D grid → structured graph.

7

Graph Signal Processing (GSP) addresses the problem of 

processing signals that live on graphs.

[1] D. I. Shuman et al.,”The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks 

and other Irregular Domains,” IEEE Signal Processing Magazine, vol.30, no.3, pp.83-98, 2013.

example graph-signal



Graph Signal Processing

Research questions*:

• Sampling:  how to efficiently acquire / 

sense a graph-signal?

• Graph sampling theorems.

• Representation:  Given graph-signal, how 

to compactly represent it?

• Transforms, wavelets, dictionaries.

• Signal restoration:  Given noisy and/or 

partial graph-signal, how to recover it?

• Graph-signal priors.
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node
edge

*Graph Signal Processing Workshop, Philadelphia, US, May, 2016. https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program

*Graph Signal Processing Workshop, Pittsburgh, US, May, 2017. https://gsp17.ece.cmu.edu/



Graph Fourier Transform (GFT)

Graph Laplacian:

• Adjacency Matrix A:  entry Ai,j has non-negative

edge weight wi,j connecting nodes i and j.

• Degree Matrix D:  diagonal matrix w/ entry Di,i being 

sum of column entries in row i of A.

• Combinatorial Graph Laplacian L:   L = D-A 

• L is symmetric (graph undirected).

• L is a high-pass filter.

• L is related to 2nd derivative.
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Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

1. Edge weights affect shapes of eigenvectors.

2. Eigenvalues (≥ 0) as graph frequencies.

• Constant eigenvector is DC.

• # zero-crossings increases as λ increases.

• GFT defaults to DCT for un-weighted connected line.

• GFT defaults to DFT for un-weighted connected circle.
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iii uuL 
eigenvalue

eigenvector
1st AC eigenvector

1 2 3 4 8…2,1w 1 1
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Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

• Other definitions of graph Laplacians:

• Normalized graph Laplacian:

• Random walk graph Laplacian:

• Generalized graph Laplacian [1]:
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iii uuL 
eigenvalue

eigenvector

2/12/12/12/1   ADDILDDLn

ADILDLrw

11  

*DLLg 

Characteristics:

• Normalized.

• Symmetric. 

• No DC component.

• Normalized.

• Asymmetric.

• Eigenvectors not orthog.

• Symmetric.

• L plus self loops.

• Defaults to DST, ADST.

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," IEEE 

Signal Processing Letters, vol.22, no.11, pp. 1913-1917, November 2015.
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Semi-Supervised Graph Classifier Learning

• Binary Classifier: given feature vector xi of 

dimension K, compute f(xi) ∊ {0,1}.

• Classifier Learning: given partial / noisy labels 

(xi, yi), train classifier f(xi).

• GSP Approach [1]:

1. Construct similarity graph with +/- edges.

2. Pose MAP graph-signal restoration problem.

3. Perturb graph Laplacian to ensure PSD.

4. Solve num. stable MAP as sparse lin. system.
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[1] Yu Mao, Gene Cheung, Chia-Wen Lin, Yusheng Ji, “Image Classifier Learning from Noisy Labels via Generalized Graph 

Smoothness Priors,” IEEE IVMSP Workshop, Bordeaux, France, July 2016. (Best student paper award)

example graph-based classifier

[2] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," submitted 

to IEEE Transactions on Signal and Information Processing over Networks, November 2016. (arXiv)



Graph-Signal Smoothness Prior

• Smoothness: signal “consistent” w/ underlying graph.

• Q1: how to define smoothness w.r.t. graph with +/- edges?

• Q2: is signal smoothness prior robust to errs?

• Q3: is signal smoothness prior easy to solve?

14
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Graph-Signal Smoothness Prior:

Candidate 1

• Shift-based Smoothness Prior [1]:

• Prior minimizes sums of sample values despite negative edges!

• Counter example: 

• x = [ρ, ρ+100, ρ], for large ρ

15

[1] S. Chen, A. Sandryhaila, J. Moura, and J. Kovacevic, “Signal recovery on graphs: Variation minimization,” IEEE 

Transactions on Signal Processing, vol. 63, no.17, September 2015, pp. 4609–4624.

w=-1

shifted version of signal

• Agrees w/ negative edges,

• Large penalty.



Graph-Signal Smoothness Prior:

Candidate 2

16

[1] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, vol. 60, 

no.1-4, November 1992, pp. 259–268.

• Total Variation (TV) [1] on graph:

• Prior minimizes diffs in every pair!

• Counter example: 

• x = [ρ, ρ, ρ], for ρ > 0

w=1

degree 0 at node 2

• Disagrees w/ negative edge,

• Zero penalty.



Graph-Signal Smoothness Prior:

Candidate 3
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[1] J. Kunegis et al., “Spectral analysis of signed graphs for clustering, prediction and visualization,” in SIAM 

International Conference on Data Mining, Columbus, Ohio, May 2010.

• Signed graph Laplacian [1]:

• Prior minimizes sum of first two samples!

• Counter example: 

• x = [ρ, -ρ, -ρ], for small ρ

w=1

• Disagrees w/ negative edge,

• Zero penalty.
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Graph-Signal Smoothness Prior:

Candidate 4

• Graph Laplacian Regularizer [1]:

• Promote large / small inter-node differences depending on 

edge signs.

• Sensible, but numerically unstable.
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[1] J. Pang and G. Cheung, “Graph Laplacian regularization for image denoising: Analysis inn the continuous 

domain,” in IEEE Transactions on Image Processing, vol. 26, no.4, April 2017, pp. 1770–1785.

w=1

eigenvalues / graph freqs

GFT coeff

Promote large difference
Promote small difference



MAP Problem Formulation

• Label Noise Model: uniform noise model [1]

• Probability of observing noisy y given ground truth x:

• MAP formulation:

19

[1] A. Brew, D. Greene, and P. Cunningham, “The interaction between supervised learning and crowdsourcing,” 

Computational Social Science and the Wisdom of Crowds Workshop at NIPS, Whistler, Canada, December 2010.

fidelity term graph-signal 

smoothness prior

perturbation matrix 

to ensure PSD!



Graph Construction:  add positive edges

• Given feature vector per sample in high dim. space.

• First to construct (dis)similarity graph with +/- edges from 

features.

• Positive edge weights reflect inter-node similarity:

• Optimization of feature weights in [1].

20

[1] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li, “Automated variable weighting in k-means type clustering,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no.5, May 2005, pp. 657–668.

inter-node 

feature distance



Graph Construction:  add negative edges

Centroid-based: add 

negative edge connecting 

cluster centroids.

• Connect dissimilar nodes.

• Robust, not precise.

21

Boundary-based: add negative edges connecting boundary 

nodes of two clusters.

• Precise, not robust.

Idea:  use convex combination as we iterate:

    2211

* L1LL  
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Example:  10-node graph

• Centroid-based 1st e-vector: peaks at neg. edge endpoints.

• Boundary-based 1st e-vector: same level @ boundary nodes.

• Low graph frequencies of indefinite L are useful in restoration [1].

22

w=0.1, or -1

[1] A. Knyazev, “Signed Laplacian for spectral clustering revisited,” January 2017, https://arxiv.org/abs/1701.01394.
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Finding Perturbation Matrix:
min norm

• Minimum norm criteria: smallest △ to ensure PSD:   

• Sol’n is special case of Thm 5.1 in [1]:

• Observations:

1. L+△ is PSD (good).

2. L+△ preserves same eigen-vectors (good).

3. Eigenvalue 0 has p+1 eigen-vectors (bad).

23

[1] A. N. Higham and S. H. Cheng, “Modifying the inertia of matrices arising in optimization,” ELSEVIER Linear 

Algebra and its Applications, vol. 275-279, May 1998, pp. 261–279.

assume has p negative 

eigenvalues



Finding Perturbation Matrix:
eigen-structure preservation

• Perturb to ensure PSD while preserving frequency components

(eigenvectors) and frequency preferences.   

• One sol’n is △=λmin I, i.e. shift all eigenvalues up by η=λmin.

• Intuition:  signal variations + signal energies

• Q: computed lower-bound for λmin w/o eigen-decomposition?

24

signal energies
signal variations
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Fast Eigenvalue Methods

• Power iteration method [1]: 

• finds largest eigenvalue in magnitude.

• Lanczos method and variants [2]:

• Prior knowledge about range of target eigenvalue.

• Jacobi-Davidson [3], Chebyshev-Davidson [4]:

• Extremal eigenvalues / eigenvectors.

25

[3] G. Sleijpen and H. V. D. Vorst, “A Jacobi-Davidson iteration method for linear eigenvalue problems,” in SIAM J. Matrix 

Anal. and Appl., vol. 17, no.2, 1996, pp. 401–425.

[1] A. N. Higham and S. H. Cheng, “Modifying the inertia of matrices arising in optimization,” ELSEVIER Linear 

Algebra and its Applications, vol. 275-279, May 1998, pp. 261–279.

[2] G. Golub and C. F. V. Loan, Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences). Johns Hopkins 

University Press, 2012.

[4] Y. Zhou and Y. Saad, “A Chebyshev-Davidson algorithm for large symmetric problems,” in SIAM J. Matrix Anal. and 

Appl., vol. 29, no.3, 2007, pp. 954–971.

Goal: lower-bound of smallest negative eigenvalue



Lower Bound λmin

• Matrix Inertia:

• Haysworth Inertia Additivity:

• EvalBound (Lt, t)

• Step 1: divide Nt nodes in Lt into r and Nt – r nodes. 

• Eigen-decompose Lt
1,1 to find smallest eigenvalue λt

1,1.

• Perturb Lt by augmented eigenvalue κt
min

26

Schur complement

Ensure Lt
1,1 is PD.

[1] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," submitted 

to IEEE Transactions on Signal and Information Processing over Networks, November 2016. (arXiv)



Lower Bound λmin

• Haysworth Inertia Additivity:

• Step 2: ensure SC of Lt
1,1 is PSD:

• if Nt – r ≤ r, 

• eigen-decompose Lt / Lt
1,1 to find smallest eigenvalue λt

2.

• Compute lower bound: 

• if Nt – r > r, 

• Define

• Recursively call

• Return

27

Complexity O(N2 r).

[1] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," submitted 

to IEEE Transactions on Signal and Information Processing over Networks, November 2016. (arXiv)



IRLS Optimization
• MAP formulation:

• Iterative Recursive Least Square (IRLS) [1]:

• Replace L0-norm with weighted L2-norm, solve iteratively.

• Sparse linear system of equations:

• Matrix is sparse, symmetric, positive definite.

• Solve via conjugate gradient instead of matrix inversion.

28

diagonal matrix w/ weights b’s

[1] I. Daubechies, R. Devore, M. Fornasier, and S. Gunturk, “Iteratively re-weighted least squares minimization for 

sparse recovery,” Communications on Pure and Applied Mathematics, vol. 63, no.1, January 2010, pp. 1–38.

mimics L0-norm

ILL #

ming 
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Experimental Setup

• KEEL database [1], face gender dataset [2].

• Features extracted for each sample; ex., local binary pattern (LBP).

• 70% / 30% are training / testing data.

• Graph construction: 

• kNN for positive edges (k=3).

• Centroid / boundary-based negative edges.

• Comparison schemes:

1. Linear SVM, SVM with RBF kernel

2. RobustBoost

3. Graph-Pos, Graph-MinNorm

4. Graph-Bandlimited, Graph-AdjSmooth, Graph-Wavelet

30

[2] L. Spacek, “Face recognition data, university of essex, uk,” http://cswww.essex.ac.uk/mv/allfaces/faces94.html, Feb. 2007.

[1] J. A.-F. et al., “Keel: A software tool to assess evolutionary algorithms to data mining problems,” Soft Computing, vol. 13, 

no.3, February 2009, pp. 307–318.



Experimental Results

• Comparisons w/ other classifiers:
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Experimental Results

• Comparisons w/ other classifiers:
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Experimental Results

• Comparisons w/ other classifiers:
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Experimental Results

• λmin versus computed lower bound:
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Conclusion

• Graph Signal Processing (GSP)

• Tools to process signals that live on graphs.

• Graph-based binary classifier

• Similarity graph with +/- edges, given features.

• Perturbed graph Laplacian that is PSD.

• Fast computation of min eigenvalue lower bound.

• Fast MAP solver via IRLS, conjugate gradient.
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Other GSP Works

• Coding of LF, spectral image [1], 3D point cloud w/ GFT.

• Coding of graph data w/ graph wavelets.

• Political leaning estimation [2].

• Wireless signal / power estimation [3].

[2] B. Renoust et al., "Estimation of Political Leanings via Graph-Signal Restoration," 

IEEE International Conference on Multimedia and Expo, Hong Kong, China, July, 2017

[3] M. Kaneko, G. Cheung, W.-t. Su, C.-W. Lin, "Graph-based Joint Signal / Power 

Restoration for Energy Harvesting Wireless Sensor Networks," accepted to IEEE 

Globecom, Singapore, December, 2017.
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[1] J. Zeng, G. Cheung, Y.-H. Chao, I. Blanes, J. Serra-Sagrista, A. Ortega, "Hyperspectral 

Image Coding using Graph Wavelets," IEEE International Conference on Image 

Processing, Beijing, China, September, 2017.



Q&A

• Email:  cheung@nii.ac.jp

• Homepage: http://research.nii.ac.jp/~cheung/
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