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On Constructing z-dimensional
DIBR-Synthesized Images
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Abstract—The “color-plus-depth” format represents a 3D
scene using multiple color and depth images captured by an
array of closely spaced cameras. Using this format, a novel
image as observed from a horizontally shifted virtual view-
point can be synthesized via depth-image-based rendering
(DIBR), using neighboring camera-captured viewpoint im-
ages as reference. In this paper, using the same popularized
color-plus-depth representation, we propose to construct in
addition novel images as observed from virtual viewpoints
closer to the 3D scene, enabling a new dimension of view
navigation. To construct this new image type, we first per-
form a new DIBR pixel-mapping for z-dimensional camera
movement. We then identify expansion holes—a new kind
of missing pixels unique in z-dimensional DIBR-mapped
images—using a depth layering procedure. To fill expansion
holes we formulate a patch-based maximum a posteriori
(MAP) problem, where the patches are appropriately spaced
using diamond tiling. Leveraging on recent advances in
graph signal processing (GSP), we define a graph-signal
smoothness prior to regularize the inverse problem. Finally,
we design a fast iterative reweighted least square (IRLS)
algorithm to solve the posed problem efficiently. Experimen-
tal results show that our z-dimensional synthesized images
outperform images rendered by a naı̈ve modification of
VSRS 3.5 by up to 4.01dB.

Index Terms—Depth-image-based rendering (DIBR), color-
plus-depth representation, graph signal processing

I. Introduction

The promise of free viewpoint video [1] is to provide
users the freedom to choose any vantage point from
which to construct a viewpoint image for observation
of a 3D scene. To enable free viewpoint, a conventional
multiview imaging system contains an array of horizon-
tally spaced cameras to capture color maps (conventional
RGB images) and depth maps (per-pixel distance be-
tween objects in the 3D scene and the capturing camera)
from different viewpoints—a format called color-plus-
depth [2]. The captured images are subsequently encoded
at the sender using standardized multiview coding tools
such as 3D-HEVC [3].

At the receiver, a novel image from a virtual
viewpoint—a horizontally shifted camera angle from
the captured views—can be synthesized using depth-
image-based rendering (DIBR) techniques such as 3D warp-
ing [4]. In a nutshell, DIBR maps each color pixel in
a reference view to a 2D grid location in the virtual
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view, using disparity information provided by the cor-
responding depth pixel. Due to occlusion (visible spatial
areas in the virtual view that are occluded by foreground
objects in the reference view), there are missing pixels
in the virtual view called disocclusion holes. They are
subsequently completed using inpainting algorithms de-
signed specifically for disocclusion hole filling [5–7]. For
small camera movement from reference to virtual view
along the x-dimension (camera moving left or right), this
DIBR view synthesis plus inpainting approach works
reasonably well [1], and is the conventional approach
in the free view synthesis literature.

In immersive applications such as teleconferencing, a
sitting viewer observes rendered images on a 2D display,
where the image viewpoints are interactively adjusted
according to the tracked locations of the viewer’s head
as he shifts left or right [8]. The resulting motion parallax
effect can greatly enhance the viewer’s depth perception
in the 3D scene [9]. To enable this interactive view
navigation in streaming systems over networks, previous
works have optimized strategies for coding of color and
depth maps [10, 11], error resilience [12], packet schedul-
ing [13], caching [14] and reference view selection [15]
for visual quality and/or view interactivity.

Besides x-dimensional head movement (moving one’s
head left or right), z-dimensional head movement (mov-
ing one’s head front or back) is also very natural for
a sitting observer. However, while interactive streaming
for x-dimensional view navigation has been investigated
extensively [10–15], to the best of our knowledge, the
problem of synthesizing viewpoint images corresponding to
large z-dimensional virtual camera movements using the
color-plus-depth format has not been formally studied from
a classical image interpolation perspective. We address this
problem formally in this paper, extending the capabilities
of previous interactive free-viewpoint systems.

(a) captured far view (b) DIBR-synthesized (c) expansion holes filled

Fig. 1: Examples of disocclusion and expansion holes:
a) camera-captured color map; b) z-dimensional DIBR-
synthesized view, where disocclusion holes are larger contigu-
ous empty regions next to foreground object boundaries, and
expansion holes are smaller empty regions on the surfaces of
foreground objects; c) synthesized view with expansion holes
filled by our proposed scheme.
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When the virtual camera is located closer to the 3D
scene than the reference view camera, objects close to
the camera will increase in size in the virtual view.
This means that the aforementioned pixel-to-pixel map-
ping during DIBR from reference to virtual view cannot
complete entire surfaces of rendered objects, resulting
in expansion holes [16]. Note that expansion holes differ
fundamentally from disocclusion holes in that the objects
are visible in the reference view(s), but the pixel sampling
in the reference view is not sufficient for rendering in the
synthesized view when z-directional camera movement is
significant. See Fig. 1 for an illustration of expansion and
disocclusion holes.

In this paper, we propose a methodology to construct
z-dimensional DIBR-synthesized images, including an
efficient solution to the challenging expansion hole filling
problem. We first perform a new DIBR pixel-mapping
for z-dimensional camera movement. We then identify
disocclusion holes using a depth layering procedure. To
fill expansion holes, we formulate a patch-based maxi-
mum a posteriori (MAP) problem, where the patches are
appropriately spaced using diamond tiling. Leveraging
on recent advances in graph signal processing (GSP) [17],
we define a graph-signal smoothness prior to regularize
the inverse problem. Finally, we design a fast iterative
reweighted least square (IRLS) algorithm [18] to solve
the posed problem efficiently. Experimental results show
that our z-dimensional synthesized images outperform
images rendered by a naı̈ve modification of VSRS 3.5 by
up to 4.01dB in PSNR, and noticeably in two other qual-
ity metrics, SSIM [19] and 3DSwIM [20]. We claim that
we are the first to rigorously formulate the expansion
hole filling problem in DIBR images as a MAP problem,
and provide a graph-based interpolation algorithm that
solves it efficiently.

The outline of the paper is as follows. We first
discuss related work in Section II and overview GSP
theory and techniques in Section III. We describe our
free view synthesis system in Section IV, including the
new DIBR pixel-mapping procedure for z-dimensional
camera movement. We formulate our expansion hole
filling problem in Section V, and describe our joint
denoising and expansion hole interpolation algorithm in
Section VI. Finally, experimentation and conclusions are
presented in Section VII and VIII, respectively.

II. RelatedWork
We divide our discussion of related work into three

subsections. First, we discuss previous DIBR techniques
in Section II-A. We then discuss notable works in image
super-resolution in Section II-B. Finally, we discuss re-
lated works using GSP techniques for inverse imaging
problems in Section II-C.

A. Depth-Image-Based Rendering
Color-plus-depth format [2], consisting of one or more

color and depth image pairs from different viewpoints,

is a widely used 3D scene representation. Using this
format, low-complexity DIBR view synthesis procedure
such as 3D warping [21] can be used to create credible
virtual view images, with the aid of inpainting algo-
rithms to complete disocclusion holes [5–7]. While the
conventional approach [4] transmits two (or more) pairs
of color and depth maps from neighboring viewpoints
for synthesis of an intermediate virtual view, recently,
the authors in [22, 23] have shown that transmission
of a single color-depth map pair can be more rate-
distortion (RD) optimal, if the resulting larger disoc-
clusion holes can be properly filled. In this work, we
assume that enough pixels from one or more reference
view(s) have been transmitted to the decoder for virtual
view synthesis, and we focus only on the construction of
z-dimensional DIBR-synthesized images given received
reference view pixels.

A few recent works on DIBR have investigated view
synthesis for large z-dimensional camera movements.
The EU project DIOMEDES [24] proposed to enlarge
pixel size uniformly to eliminate cracks due to a large
change in viewing angle. While this technique can also
be used for z-dimensional camera movements, the ab-
sence of an advanced interpolation technique results in
unsatisfactory synthesis quality. Further, it introduces
undesirable blurring in the rendered image. Another EU
project MUSCADE [25] also enlarged the pixel sizes, but
avoided unnecessary blurring by adaptively adjusting
individual pixel enlargement rate. However, the lack of
a sophisticated interpolation method remains a problem
when there is a large z-dimensional movement. A depth-
layering based interpolation method is proposed in [26],
where each pixel in the virtual view is back projected
to the reference view and then interpolated by bicubic
interpolation. However, to be shown in Section VII, bicu-
bic interpolation in general cannot generate satisfactory
images synthesis quality.

As an alternative to color-plus-depth image-based rep-
resentation of the 3D scene, the captured images can also
be first converted to a triangular mesh representation
at the encoder [27]. At the decoder, given only color
and depth values of the mesh points with no explicitly
coded surface curvature information, each pixel on the
2D grid in the virtual image is then linearly interpolated
using nodes that define the enclosing triangle. We will
show in Section VII that our proposed expansion hole
filling scheme outperforms a competing linear interpo-
lation scheme significantly. Lumigraph-based rendering
techniques [28] can synthesize a new viewpoint image
from multiple closely spaced color images with camera
position information. However, because the inputs are
fundamentally different from the considered color-plus-
depth format, the synthesis algorithm is not suitable for
a typical DIBR system.

B. Image Super-Resolution
Increase in object size due to large z-dimensional

virtual camera movement is analogous to increasing the
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resolution (super-resolution (SR)1) of the whole image.
However, during z-dimensional camera motion an ob-
ject closer to the camera increases in size faster than
objects farther away, while in SR, resolution is increased
uniformly for all spatial regions in the image. For the
above reason, we cannot directly apply conventional
image SR techniques [30] in rectangular pixel grid to
interpolate the synthesized view. Further, recent non-
local SR techniques such as [31] leveraging on self-
similarity of natural images that require an exhaustive
search of similar patches throughout an image tend to be
computationally expensive. In contrast, our interpolation
scheme performs only iterative local filtering, and thus
is significantly more computation-efficient.

C. Graph-based Image Processing

GSP is the study of signals that live on structured
data kernels described by graphs [17], leveraging on
spectral graph theory [32] for frequency analysis of
graph-signals. Graph-signal priors have been derived
for inverse problems such as denoising [33–35], inter-
polation [36, 37], bit-depth enhancement [38] and de-
quantization [39]. The common idea among these works
is the assumption that the desired graph-signal is smooth
with respect to a properly chosen graph G that reflects
the structure of the signal. Typically one assumes that
the appropriate graph G is known a priori as available
side information, or can be discovered from noisy and
/ or partial observations of the signal. In this work, we
assume the latter case and construct a suitable graph G
from available DIBR-synthesized pixels for joint denois-
ing / interpolation of pixels in a target patch.

III. Graph Signal Processing & Spectral Analysis

We now overview the basic concepts in graph signal
processing (GSP) and graph spectral analysis [17]. GSP is
the study of signals on structured data kernels described
by graphs; as done in [17], we will focus on undirected
graphs with non-negative edge weights. A weighted
undirected graph G = {V,E,W} consists of a finite set
of vertices V with cardinality |V| = N, a set of edges
E connecting vertices, and a weighted adjacency matrix
W. W is a real N×N symmetric matrix, where Wi, j ≥ 0 is
the weight assigned to the edge (i, j) connecting vertices
i and j, i , j. Wi, j = 0 means vertices i and j are not
connected, i.e., (i, j) < E.

Given a defined graph G, the degree matrix D is a
diagonal matrix whose i-th diagonal element is the sum
of all elements in the i-th row of W, i.e., Di,i = ΣN

j=1Wi, j.
The combinatorial graph Laplacian L (graph Laplacian for
short) is then defined as:

L = D −W (1)

1The goal of SR “is to recover a high resolution image from one or
more low resolution input images.” [29]

TABLE I: Selected notations

Q voxel in the 3D space
Vi,V j view points

V0,V1,V2 view points
P0,P1,P2 projections of Q on the image plane
µL, l mean and scale parameter of Laplace distribution

p target pixel to optimize
R analysis window defined around p

Sw[p] structural tensor on p
Cp coordinates of pixel p in the image
λ1, λ2 eigen-values of the structural tensor
ρ elongation factor to define the ellipse
φ scaling factor to define the ellipse
s available pixels in the selecting ellipse
so ground truth signal in the selecting ellipse
ŝ signal reconstructed by our formulation

Because L is a real symmetric matrix, there exists a set
of eigenvectors φi with corresponding real eigenvalues
λi that decompose L, i.e.,

ΦΛΦT =
∑

i

λiφiφ
T
i = L (2)

where Λ is a diagonal matrix with eigenvalues λi or-
dered from smallest to largest on its diagonal, and Φ is
an eigenvector matrix with corresponding eigenvectors
φi as its columns. It can be shown that L is positive semi-
definite [17], i.e. xTLx ≥ 0, ∀x ∈ RN, which implies that
the eigenvalues are non-negative, i.e. λi ≥ 0. The eigen-
values can be interpreted as frequencies of the graph;
thus using ΦT as a transform, any input graph-signal x
can be decomposed into its graph frequency components
via ΦTx, where αi = φT

i x is the i-th frequency coefficient.
ΦT is called the graph Fourier transform (GFT) [40].

The expression xTLx—called the graph Laplacian regu-
larizer [35]—captures the total variation of the signal x
with the respect to the graph G [41]:

xTLx =
1
2

∑
(i, j)∈E

Wi, j (xi − x j)2. (3)

In words, xTLx is small if connected nodes xi and x j have
similar values for each edge (i, j) ∈ E, or if the weight Wi, j
is small.

xTLx can alternatively be expressed in terms of graph
frequencies λi:

xTLx =
∑

i

λiα
2
i (4)

Thus a small xTLx means that the energy of signal x
is mostly concentrated in the low graph frequencies—
smooth with respect to the defined graph. We will employ
the Laplacian regularizer xTLx—i.e., the desired signal is
mostly smooth with respect to a defined graph—as our
image prior in the subsequent section.

IV. System Overview
A. Interactive Free Viewpoint Streaming System

We first overview our interactive free viewpoint
streaming system; an illustration is shown in Fig. 2. As in
conventional free viewpoint TV systems [1], we assume
that a 1D array of closely spaced cameras along the
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I. Request virtual view: (2.2,1.1)

Current view in buffer: (3,2) 

Capture the scene

1. Compress, store the captured image

2. Synthesize additional views

3. Respond to client request

clients

1. Request the server for an 

adequate reference view 

2. Do DIBR to synthesize virtual view

II. Send the best reference view(2,2)

III. Synthesize view (2.2, 1) 

using the received view (2,2)

Internet

Fig. 2: Interactive free view streaming system and the example of how the system present the requested virtual
view, V j = (2.2, 1),Vi = (2, 2)

horizontal x-axis is used to capture a 3D scene from
different viewpoints. At each viewpoint, both color and
depth images are captured by a camera2. Alternatively,
depth images can be computed via a stereo-matching
algorithm [42]. Both color and depth images are com-
pressed and stored at a server using standard coding
tools like MVC and 3D-HEVC [3, 43]. Representing a 3D
scene using multiple viewpoints of color and depth im-
ages is called “color-plus-depth” or “video-plus-depth”
in the 3D imaging literature [2, 27].

In interactive multiview video streaming (IMVS) [10, 11]
there exists an asymmetry between data available at the
server and data consumption at the client. Specifically,
while the server contains coded 3D data that can synthe-
size a large number of views, a client can observe only
one viewpoint of the 3D scene at a time rendered on
a 2D display. Thus, in IMVS the client will periodically
request new views for observation, and in response the
server must transmit appropriate data for rendering of
the requested views.

More specifically, in a conventional IMVS system [10,
11], given a set of color-plus-depth image pairs at
camera-captured viewpoints X = {1, . . . ,N} at some fixed
z-coordinate z0 relative to the 3D scene, a client can
select any viewpoint x between leftmost view 1 and
rightmost view N to observe the scene. A virtual view
x, 1 < x < N and x < Z+, can be synthesized using
color and depth image pairs of the nearest left and right
camera-captured views bxc and dxe via DIBR [4] (to be
discussed in detail). Thus, when a client requests virtual
view x, color and depth map pairs at one or both camera-
captured viewpoints bxc and dxe (an RD decision based
on bandwidth cost and synthesized view quality [22, 23])
will be transmitted to the client.

In contrast, in our enhanced IMVS system a client
can in addition synthesize images at virtual camera
location (x, z), where the z-coordinate can differ from the
captured cameras’—i.e. z , z0—as shown in Fig. 2. A
virtual camera location (x, z1) for small z1 means that

2Depth sensors like Microsoft Kinect can capture both color and
depth images simultaneously.

the viewpoint is closer to the 3D scene than camera
location (x, z0), z1 < z0. It means that objects close to
the camera now appear bigger, and the field-of-view
is narrower; see Fig. 1(c) for an example. Note that in
general one cannot practically set up a 2D camera array
along both x- and z-dimension; the physical camera closer to
the scene along the z-dimension will be visible and obstruct
the view of a camera further from the scene. Thus, given
only a conventional 1D camera array setup, a client
must synthesize a novel image at virtual viewpoint (x, z1)
using only color and depth map pairs at camera-captured
views (bxc, z0) and / or (dxe, z0). As shown in Fig. 1(b),
this results in expansion holes that require filling; the
formulation and algorithm for expansion hole filling are
discussed in Section V and VI respectively.

In the next section, we first overview the x-
dimensional DIBR pixel-to-pixel mapping procedure,
and then extend it to z-dimensional mapping. We then
describe how we distinguish between two different kinds
of missing pixels in a z-dimensional DIBR-synthesized
image, each requiring a different filling method. For
simplicity, we only describe the DIBR view synthesis
procedure using a single reference color and depth map
pair in the following discussions.

B. Depth-Image-Based Rendering

We now review the image capturing process using
the popular pinhole camera model [44] and DIBR for x-
dimensional camera movement.

1) Pinhole camera model: The optical system can be
simplified as a pinhole camera model, shown in Fig. 3.
In the figure, the camera’s aperture is denoted by V0
and serves as the center of the camera system. The focal
length—the distance between the aperture and the image
plane—is denoted by f . The image plane is orthogonal to
the system’s principal axis, which indicates the camera’s
viewing direction and goes through V0.

A 3D coordinate system is established using V0 as
its origin. γ0 is the “depth” distance between a voxel
in the 3D scene and V0—a projected component onto
the principal axis. α0 is the horizontal distance between
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Fig. 3: Projection of a 3D voxel onto an image plane using
a pinhole camera model.

the voxel and the principal axis. Given this coordinate
system, in Fig. 3 a voxel Q in the 3D space with a
particular color intensity is projected through V0 onto the
image plane as pixel P0. Note that the image projected
by a pinhole camera is flipped upside down and left to
right; in the sequel we revert this inversion to present
the captured image more naturally. An example of the
inverted captured image is shown in Fig. 4(a).

In the inverted image plane, pixel P0’s 2D coordinates
in the captured image are denoted by (u0, v0), where u0
can be computed using similar triangles:

u0 = α0
f
γ0

(5)

The vertical coordinate v0 can be computed using the
same procedure.

The described mapping procedure from voxels in 3D
space to pixels on a 2D image plane retains color infor-
mation as observed from a particular camera viewpoint.
The same procedure can also be used to capture a depth
image, where each 3D voxel Q now reflects its depth
value γ0 (or its reciprocal, disparity, 1/γ0). Fig. 4(b) shows
a captured depth image from the same viewpoint.

u p
0

v
0

0

(a) texture image

u p
0

v
0

0

(b) depth image
Fig. 4: Texture / depth image pair from the same camera
viewpoint.

2) DIBR for x-dimensional camera movement: We now
overview the DIBR image synthesis process when the
camera movement is restricted to the x-dimension. In
Fig. 5(a), we show the top view of the previously de-
scribed optical system, allowing us to focus on the

geometric relationships among objects on the x-z plane.
A virtual camera with aperture V1 = (x0 − ∆x, z0) is
located at distance ∆x from the reference camera with
aperture V0, resulting in a corresponding shift in the
principal axis. The location of the image plane remains
the same, though the center also moves from V0 to V1.
The previously projected pixel P0 = (u0, v0) in the old
image plane can now be translated to a location P1 in
the new image plane as follows. First, pixel P0 is back-
projected to position Q in the 3D space, and then is re-
projected to location P1 = (u1, v0) in the new image plane.
Again using similar triangles, we can calculate u1:

u1 = α1
f
γ0

= α0
f
γ0

+ (α1 − α0)
f
γ0

= u0 − ∆x
f
γ0

(6)

Thus, given the x-dimensional camera movement by
∆x, the new horizontal coordinate u1 can be computed
using f and γ0. Further, for x-dimensional camera move-
ment there is no change in the vertical coordinate.
The original and synthesized images after x-dimensional
camera movement are shown in Fig. 5(b) and (c) re-
spectively, where the pixels of the sculpture’s eye are
highlighted.

Note that multiple pixels from the old image plane
with different depth values may be mapped to the same
pixel location in the new image. In this case, we keep the
pixel with the shallowest depth, as foreground objects
occlude background objects. Note also that there are holes
in the synthesized virtual view, i.e., a pixel location in
the virtual view that has no corresponding pixel in the
reference view. There are three kinds of holes. The first
is disocclusion holes, which are spatial locations that are
occluded by foreground object(s) in the reference view,
but become exposed in the virtual view. Disocclusion
holes are large continuous areas appearing between fore-
ground and background. There have been many depth-
based image inpainting techniques proposed to complete
disocclusion holes [5–7].

The second kind is out-of-view holes, which appear
at the left or right boundaries of the image. They exist
because the image’s field of view has changed due to the
x-dimensional camera movement. The out-of-view holes
are filled using the same method as disocclusion holes.

The last kind of holes, known as rounding holes, appear
when an object covers a slightly larger spatial area in
the synthesized image due to the change of viewpoints.
This change in size is typically very small during x-
dimensional camera movement, and rounding holes are
filled using simple local interpolation methods, such as
bilinear interpolation [4].

Finally, we note that in practice a pixel (u0, v0) in the
reference view is copied to the nearest integer position to
(u1, v0), i.e. (u0 + round(∆u), v0), on the 2D image grid
of the virtual view. This rounding operation introduces
errors in the synthesized view. We will study the error
due to this rounding operation closely later.

3) DIBR for z-dimensional camera movement: In this
paper we extend DIBR to enable z-dimensional camera
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Fig. 5: DIBR for x-dimensional camera movement.

movement also. The top view of the optical system is
again shown in Fig. 6(a), where the virtual camera with
aperture V2 = (x0, z0 − ∆z) is shifted from reference
camera with aperture V0 by ∆z along the principal axis.
The image plane is shifted correspondingly while the
principal axis remains the same. Thus, when a pixel
(u0, v0) on the old image plane is translated to the
new image plane, we can compute the new horizontal
coordinate u2 again using similar triangles:

u2 = α0
f
γ2

= u0
γ0

γ2
= u0

γ0

γ0 − ∆z
(7)

Unlike the x-dimensional camera movement, the ver-
tical coordinate of a pixel also changes during a z-
dimensional camera movement. The new vertical coor-
dinate can be calculated similarly as follows:

v2 = v0
γ0

γ0 − ∆z
(8)

The original and synthesized images after the z-
dimensional camera movement towards the 3D scene
are shown in Fig. 6(b) and (c) respectively, with example
pixels highlighted. Besides holes we encountered during
a x-dimensional camera movement, we now have a
scattering of missing pixels over the surfaces of objects.
We call this new kind of holes—unique for z-dimensional
camera movement—expansion holes.

Though in principle the expansion holes are similar
to rounding holes, they are much larger in size when
there is a large z-dimensional movement, and hence
the interpolation quality strongly influences the overall
synthesized image perception. We will describe a scheme
specifically for expansion hole filling in a later section.

Note that though we focus on the z-directional camera
movement in this paper, in practice when any mixture
of x-/y-/z-directional camera movements is possible, we
can take the following strategy. First, we differentiate
between disocclusion holes and expansion holes. Second,
we determine if the amount of z-directional movement is
larger than a threshold. If so, our algorithm can be used
for interpolation of expansion holes. If not, a local hole
filling strategy as done in VSRS software is employed.

C. Rounding Noise in DIBR-mapped pixels
As previously discussed, when we compute new coor-

dinates for pixels mapped from the reference to virtual

Q
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(a) movement
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0

v
0

0

(b) reference

2
u 

P
0

0
P

2

0
v 2

v 

u 

(c) synthesized

Fig. 6: DIBR for z-dimensional camera movement.

view, the computed quantities are in general not integers
and must be rounded to the nearest 2D grid positions
for display, resulting in errors we call rounding noise. To
the best of our knowledge, the extent and characteristics of
rounding noise in the DIBR pixel-to-pixel mapping procedure
have not been studied systematically in the literature before.
We characterize such rounding noise in this section
empirically.

We first seek a suitable statistical description for
rounding noise. Specifically, we compute the differences
between DIBR-mapped pixels from reference views and
camera-captured ground truth pixels of the same views
to construct an error distribution. We then describe the
resulting distribution using two popular noise models—
Gaussian and Laplacian distribution with probability
density functions (PDF):

fGaussian(x|µG, σ) =
1

σ
√

2π
exp

{
−

(x − µG)2

2σ2

}
(9)

fLaplacian(x|µL, l) =
1
2l

exp
{
−
|x − µL|

l

}
(10)

where µG and µL are the means, and σ2 and 2l2 are the
variances of the distributions respectively. The reason
we restrict our attention to only Gaussian and Laplacian
distributions is because the subsequent MAP problem
formulations stemming from these models become rel-
atively straightforward l2- and l1-norm minimization,
solvable via efficient iterative algorithms. Problem for-
mulation and corresponding optimization algorithms are
described in Section V and VI respectively.

Using squared error as a criteria, we compute the
error-minimizing model parameters for the Gaussian
and Laplacian distributions separately. The best fitted
models are shown in Fig. 7 for image sequences Art
and Dolls. We observe that the root mean square errors
(RMS) of the Laplacian model (0.0008 for Art and 0.0006
for Dolls) are smaller than that of Gaussian model
(0.0020 for Art and 0.0017 for Dolls). Thus, we conclude
that the Laplacian distribution is a better statistical de-
scription of rounding noise, and is the preferred noise
model for later optimization.

D. Identification of Expansion Holes
Before we can complete the expansion holes, we need

to first properly identify them. For intuition, we examine
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Fig. 7: Fitting noise models to DIBR noise distribution for Art
and Dolls

a magnified patch of a z-dimensional DIBR-synthesized
image in Fig. 8, where disocclusion holes are enclosed by
yellow lines and expansion holes are enclosed by blue
or green lines. Formally, we define an expansion hole as
follows: a spatial area of an object’s surface in the virtual
view, whose corresponding area in the reference view is
visible but smaller in size. Since the amount of expansion
is typically evenly distributed over the surface of an
object, expansion holes are small “cracks” that spread
all over the surface of an enlarged object. As observed,
this signal characteristic is very different from the large
and continuous disocclusion holes.

Further, while a disocclusion hole always appears
empty, expansion holes can often be wrongly filled with
background pixels during DIBR. The reason is because the
size expansion for a foreground object surface is typically
larger than a background surface during a z-dimensional
camera movement, and hence in an expansion hole due
to enlargement of foreground object surface, a back-
ground pixel can be mapped from reference view er-
roneously. Fig. 8 shows an example with a foreground
detergent bottle in front of a background wooden panel.
However, the pixels of the panel erroneously fill the
expansion holes of the bottle. Hence it is important to
correctly identify and remove these erroneously mapped
background pixels before performing completion of ex-
pansion holes.

1) Depth Layering to Identify Expansion Holes: To iden-
tify pixels from the same physical object in the DIBR
synthesized view, we adopt a depth layering approach.
Specifically, for a given pixel block in the synthesized
view, we first construct a histogram containing depth
values of pixels in the block. Fig. 9(b) shows an example.
Peaks in the histogram are labeled as layers ordered from
shallow depth to deep depth. Fig. 9(a) shows the depth

Fig. 8: Expansion holes and disocclusion holes in the output
image of DIBR

pixels in the block with assigned layer numbers.

(a) block

The Block’s Depth Histogram

DepthShallow Deep

(b) depth histogram (c) first layer (d) reconstructed

Fig. 9: Examples of depth layers and corresponding histogram:
a) pixels in a depth block are classified into depth layers and
empty pixels; b) corresponding histogram of depth values for
the block; c)the first depth layer separated from the second
depth layer; d) reconstructed depth block.

The identification is performed layer-by-layer, starting
from the shallowest, so that when interpolating missing
pixels in layer a, each pixel in layer b > a that is inside
a convex set spanned by pixels in layer a is treated
as an empty pixel. In Fig. 9(c), we shown that layer
2 pixels are treated as empty pixels during expansion
hole filling of layer 1. The reconstructed depth block is
shown in Fig. 9(d). Having identified available pixels in
a depth layer for interpolation of empty pixels, we next
formulate our joint denoising / interpolation problem for
expansion hole filling.

V. Expansion Hole Filling Formulation

Having chosen a rounding noise model and identified
the expansion holes, we next denoise DIBR-mapped
pixels and complete expansion holes via a unified max-
imize a posteriori (MAP) formulation for a given target
patch with center at pixel p. Specifically, first we divide
the image into individual patches with overlaps, where
each patch contains similar pixels (Section V-A). To
restore pixels in each patch, we introduce a graph-signal
smoothness prior to regularize an otherwise under-
determined problem (Section V-B). Finally, we formulate
the MAP estimation problem in Section V-C.
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A. Patch Selection via Adaptive Kernel

We first divide the pixels in the same depth layer
into overlapping patches. In particular, we adaptively
select patch shapes based on observed signal character-
istics, because the same physical object can have distinct
textural patterns that influence how pixels should be
interpolated. For example, if the captured object is a
red and blue striped shirt, then pixels inside a blue
stripe should be interpolated using only neighboring
blue pixels.

1) Selecting the first patch: To select the first pixel patch
for joint denoising / interpolation, we first select a pixel p
in the depth layer (e.g., the top-left pixel), and calculate
an adaptive kernel centered at p, similarly done in [45]
(we discuss our implementation difference from [45] in
details later). There are two basic steps. In the first step,
the principal gradient in a local neighborhood is derived
via computation of the structure tensor [46]. The structure
tensor Sw(p) defined on pixel p’s location Cp is:

Sw(p) =
∑

r∈R
w(Cr)(∆x(Cp,Cr))2 ∑

r∈R
w(Cr)∆x(Cp,Cr)∆y(Cp,Cr)∑

r∈R
w(Cr)∆x(Cp,Cr)∆y(Cp,Cr)

∑
r∈R

w(Cr)(∆y(Cp,Cr))2


(11)

where R defines a square neighborhood around pixel p,
∆x(Cp,Cr) and ∆y(Cp,Cr) are the color image gradients3

along the x- and y-axis at pixel p respectively, and
w(Cr) is a weight assigned to neighbor r. Weights are
determined by a Gaussian kernel, which is normalized
so that

∑
r∈R w(Cr) = 1.

Having computed Sw(p), we perform eigen-
decomposition on the matrix, which summarizes
the local gradients within R. The ratio between the
larger λ2 and smaller eigenvalue λ1 indicates relative
strength of the principal gradient in the patch R, and the
eigenvector v2 corresponding to the larger eigenvalue
λ2 indicates the direction of R’s principal gradient. For
example, in the case that a strong edge is present in the
pixel patch, the principal gradient will be orthogonal to
the edge. See Fig. 10 for an illustration.

Fig. 10: Illustration of patch selection via adaptive kernel. An
ellipse is elongated perpendicular to the principal gradient, so
that similar pixels are selected for pixel interpolation.

3Gradient ∆(Cp,Cr) at pixel p is computed as the intensity difference
from a neighbor r divided by the distance between p and r.

Finally, an ellipse centered at the target pixel p is
defined to identify a subset of pixels in the same depth
layer for joint denoising / interpolation. The ellipse has
minor axis aligned with the tensor eigenvector v2, and
the major axis orthogonal to the minor axis. In particular,
let a and b be the major and minor radius, i.e., in the
rotated coordinate system (x′, y′),(x′

a

)2

+

(
y′

b

)2

= 1 (12)

We compute a and b as:

a = ρφ, b = ρ−1 φ (13)

ρ =
√

λ2+ω
λ1+ω is the elongation factor. ρ reflects the relative

strength of the principal gradient, with ω > 0 for
numerical stability. Using ρ, the shape of the kernel is
kept circular in flat areas, where λ1 ≈ λ2 ≈ 0, and
elongated when near a strong edge (λ2 � λ1). The
idea is to construct an ellipse elongated perpendicular
to the principal gradient of the patch, so we can include
enough similar pixels for joint denoising / interpolation.
φ = m

√
λ1λ2 + ε is a scaling factor, where m is a size

parameter and ε is used for numerical stability. Since
√
λ1λ2 is the geometric mean of the tensor’s eigenvalues,

φ induces a large kernel in a flat area to average over
more pixels (better denoising), and induces a smaller
kernel in a heavily textured area (avoid blurring).

In Fig. 10, an example ellipse is elongated to contain
only blue neighboring pixels, resulting in a texture-
adaptive pixel kernel. In contrast, a classic kernel will
be a circle with a fixed radius, containing both blue and
red pixels.

p

p
p

1

4 p’
1

p3 p2

B

A

Fig. 11: Illustration of choosing next kernel center pixel

2) Selecting the next patch: We now determine the
location of the next patch. The spacing of the patches
should satisfy two conditions: i) cover all pixels in a
depth layer for reconstruction, and ii) overlap to some
controlled extent to avoid boundary artifacts. However,
too large an overlap will increase the number of patches
and computation complexity.

To compute an appropriate distance between two
neighboring patches, we first assume that the to-be-
computed kernels have the same shape and size as the
just computed one. Further, we approximate a kernel’s
ellipse shape with a diamond, where the diamond’s
corners are the ellipse’ endpoints along the major and
minor axis. The appropriate spacing of the patches is
then computed as the spacing of the diamonds when
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packed to fill a plane without overlap. It is known
that a diamond—itself a concatenation of two identical
triangles connected back-to-back—can be used to fill a
plane without gap—a process called tessellation4. Hence
the spatial areas enclosed by the tiled diamonds alone
are guaranteed to cover all pixels in the 2D grid. Further,
because an ellipse always properly encloses the approxi-
mating diamond, the spatial areas covered by the ellipses
contain overlaps. This patch selection procedure based
on diamond tiling thus satisfies both required conditions:
i) covers all pixels in a depth layer for optimization, and
ii) creates overlaps to eliminate boundary artifacts. See
Fig. 11 for an illustration.

3) Complexity of patch-based reconstruction: We now
discuss the complexity of our patch-based approach as
compared to the pixel-based approach LARK [45]. First,
our adaptive kernel is based on eigen-decomposition
of a 2 × 2 structure tensor, while LARK performed
singular value decomposition (SVD) of a much larger
matrix. Both eigen-decomposition and SVD require O(n3)
computation time, where n is the larger dimension of
the target matrix. Thus for each computed kernel our
implementation is significantly faster.

Second, LARK is pixel-based, which means that a
kernel is constructed for every pixel for reconstruction.
In contrast, our optimization is patch-based, and all the
pixels in a patch are reconstructed simultaneously. Thus
the number of calculated adaptive kernels in our method
is reduced compared to LARK by a factor equals to the
average non-overlapping area inside a diamond, which
is approximately 6 in our experiments. We can thus
estimate that our patch-based approach is no more than
1/6 the computation cost of LARK.

Finally, we note that our scheme is inherently local,
which is much faster than non-local schemes like non-
local means (NLM) [47] that rely on searches of similar
patches in distant spatial areas and thus is computation-
ally much more complex.

B. Graph Construction and Graph Laplacian Prior
Having identified a subset of pixels in the same depth

layer suitable for interpolation, we next define a graph G
connecting these pixels for graph-based optimization as
follows. Each pixel in the kernel ellipse is represented as
a node in the graph G. We draw four edges between each
pixel and its four nearest neighbors in terms of Euclidean
distance, and each edge weight ep,q between two pixels
p and q is computed as:

ep,q = wp,qvp,q,

wp,q = exp

−
∥∥∥Ip − Iq

∥∥∥2

2

σ2
I

 ,
vp,q = exp

−
∥∥∥Cp − Cq

∥∥∥2

2

σ2
C


(14)

4https://en.wikipedia.org/wiki/Tessellation

where Ip and Cp are the intensity and Cartesian grid
coordinate for pixel p respectively. σI and σC are chosen
parameters. This exponential edge weight assignment is
similar to one used in bilateral filter [48].

Having constructed the graph, we compute the graph
Laplacian matrix L described in Section III to define the
prior probability of the underlining signal so, a vector
composed of the n pixels in the graph [so

1, . . . , s
o
n]:

Pr(so) = C exp
{
−d soTLhso

}
(15)

where d and h are chosen parameters for the distribution
and C is chosen so that the distribution integrates to one.
The graph-signal smoothness prior promotes signals that
are smooth with respect to the defined graph.

C. Graph-Based Pixel Interpolation via MAP Formulation
We now derive the objective of our MAP formu-

lation. Without loss of generality, let the ns synthe-
sized pixels, np previously interpolated pixels and n −
ns − np empty pixels in the kernel be arranged in or-
der in signal s; i.e., the signal has initial observation
[s1, . . . , sns , pns+1, . . . , pns+np , 0, . . . , 0]. Let ui’s be a set of
ns + np length-n unit vectors, [0, . . . , 0, 1, 0, . . . , 0], where
the single non-zero entry is at position i. As previously
discussed, the error between the synthesized pixels in
s and the underlining signal so follows a Laplacian
distribution. Thus, our likelihood will be the product of a
series of probability density functions:

Pr(s | so) =

ns∏
i=1

1
2l

exp
−|uT

i so
− si|

l

 (16)

Given the defined prior and likelihood, we now for-
mulate a MAP estimation problem to find the most
probable s, where the posterior probability is replaced by
the product of the prior probability and the likelihood:

Pr(so
|s) ∝ Pr(s|so) × Pr(so) =

ns∏
i=1

1
2l

exp
−|uT

i so
− si|

l

 · C exp
{
−p soTLhso

}
(17)

Then the estimation ŝ of so is computed as the argu-
ment that minimizes the negative log of our formulated
objective:

min
ŝ

ns∑
i=1

|uT
i ŝ − si| + µ ŝTLhŝ (18)

where for simplicity µ replaces various constants in
previous formulation.

Further, during a particular patch-based optimization,
the optimized solution ŝ should be consistent with previ-
ously optimized pixels pns+1, . . . , pns+np in the ellipse. We
apply the following constraint on the difference between
ŝ and previously optimized pixels:

ns+np∑
j=ns+1

(uT
j ŝ − p j)2

≤ τ (19)

We describe an efficient algorithm to solve (18) with
constraint (19) next.
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VI. Expansion Hole Filling Algorithm
A. Lagrangian Relaxation

To solve the formulated constrained optimization
problem directly is difficult, and so we convert it into an
unconstrained optimization via Lagrangian relaxation:

min
ŝ

ns∑
i=1

|uT
i ŝ − si| + µ ŝTLhŝ + ν

ns+np∑
j=ns+1

(uT
j ŝ − p j)2 (20)

where weight parameter ν > 0 must be chosen so that
the original constraint (19) is met.

Our new objective is then to minimize a weighted sum
of: i) the l1-norm of the difference between interpolated
signal x and ns synthesized pixels si’s , ii) smoothness
prior ŝTLhŝ, and iii) penalty term to penalize the inconsis-
tency between the interpolated signal and np previously
optimized pixels p j’s.

B. Iterative reweighted Least Square Algorithm
The objective (20) is a combination of one l1-norm term

and two l2-norm terms. To solve the problem efficiently,
we leverage on the idea of iterative reweighted least square
(IRLS) [18], where the l1-norm fidelity term of ŝ in (18)
is replaced by a weighted l2-norm:

min
ŝ

ns∑
i=1

wi(uT
i ŝ−si)2 + µ ŝTLhŝ + ν

ns+np∑
j=ns+1

(uT
j ŝ−p j)2 (21)

where the weights wi’s are calculated as:

wi =
1

|uT
i ŝ − si| + ε′

(22)

where ε′>0 is used for numerical stability.
With weights calculated by (22), the weighted l2-norm

(21) minimizing solution s∗ will promote a solution ŝ to
the original problem with small l1-norm. However, ŝ is
unknown beforehand. To find appropriate weights wi’s
for (21) to approximate (18), we design an algorithm,
where (21) is solved iteratively, with weights w(t)

i ’s at
iteration t computed as:

w(t)
i =

1
|uT

i s∗(t−1) − si| + ε′
(23)

where s∗(t−1) is the solution of the previous iteration t−1.
The idea is that in the iterative algorithm, one can

assume each iteration’s s∗(t) serves as a good estimate
to optimal solution ŝ. Hence, we can define the weights
using (23), so the iteratively weighted l2-norm can mimic
the l1-norm. Algorithm 1 shows how we adopt IRLS for
optimizing (21). Each iteration of the algorithm is an
unconstrained quadratic programming problem, which
can be solved efficiently in closed form:

s∗(t) = (W(t) + V + µLh)−1(W(t) + V)s (24)
where W(t) is a diagonal matrix with w(t)

i ’s as its first
ns diagonal elements, and V is another diagonal matrix
whose (ns + 1)-th through (ns + np)-th diagonal elements
are ν. The initial weights are calculated with s0 where
the rendered pixels are kept and the missing pixels are
filled with bilinear interpolation.

Algorithm 1 Iterative algorithm to solve weighted l2-
norm minimization

1: s′ ← s0;
2: while true do
3: wi ← 1/(‖uT

i s′ − si‖1 + ε′);
4: s∗ = (W + V + µLh)−1(W + V)s
5: if round(s′) equals round(s∗) then
6: return round(s∗)
7: else
8: s′ ← s∗

9: end if
10: end while

1) Alternative Objective: As the IRLS can require many
iterations before it converges, the l1-norm formulation
can be further reduced to an unweighted l2-norm opti-
mization problem shown below for computation reason:

min
ŝ

ns∑
i=1

(uT
i ŝ − si)2 + µ ŝTLhŝ + ν

ns+np∑
j=ns

(uT
j ŝ − t j)2 (25)

The intuition is that the l2 norm can also serves as a
fidelity term to penalize ŝ that deviates from s for i =
1 . . . ns. Further, if the reference texture and depth images
are coarsely quantized during compression, the noise of
the synthesized image is dominated by quantization, and
modeling noise as the l1-norm is no longer necessary.

In this alternative formulation, (25) is again an uncon-
strained quadratic programming problem with a closed
form solution, and thus, can be solved efficiently. In
the experiment, the unweighted l2-norm formulation is
referred as UL2A, and applied when large QP is used
for efficient computation. We will discuss it in detail in
Section VII.

C. Selection of Smoothing Parameters
The amount of smoothness applied during the op-

timization can be adapted locally via adjustments to
parameters µ and h in (21) or (25). First, h, the power of
the graph Laplacian, L, means a signal should be smooth
with respect to its h-hop neighbors. In this paper, we
select h to be proportional to the major radius a of the
adaptive kernel ellipse. The rationale is that an elongated
ellipse means more pixels geometrically farther from the
target pixel is included in the kernel, and our h selection
allows the filtering to smooth over more pixels when
a strong patch gradient is detected (large λ2), resulting
in a sharper textural edge. In particular, we set h to be
the Manhattan distance between the target pixel and the
pixel at the end of the long axis for the experiment.

Unlike our previous work [49], where parameter µ—
weighting the importance of the smoothness prior rela-
tive to the fidelity term—is chosen globally and heuristi-
cally, our new proposal assigns different µ’s for different
patches. For each patch Pv around a target pixel pv in
the virtual view, we first find the corresponding center
pixel pr in the reference view by reverse DIBR, and then
draw a reduced-size version of Pv around pr to define Pr.
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Then, we remove a selection of pixels in Pr and test our
interpolation method using a set of parameter candidates
µ’s. The µ value that leads to best interpolation quality
is then used to interpolate Pv.

VII. Experimentation

A. Experimental Setup
To demonstrate the performance of our proposed z-

dimensional image synthesis method, we conducted ex-
tensive experiments using the Middlebury’s 2003, 2005
and 2014 datasets5 and Nagoya datasets6, which are mul-
tiview image sequences captured indoor using an array
of cameras shifted along the x-dimension. We consider a
reduction of the distance between the observer and the
nearest object by half, which means the spatial resolution
of the nearest object can be increased by 2x.

Without an actual array of cameras set up along
both x- and z-dimension to capture different viewpoint
images, we performed the following to establish ground
truth. Assuming a captured image v0 is the near-camera
image, we first synthesized an image vr as observed from
the far-camera—located at roughly twice the distance
from the 3D scene as the near-camera—via DIBR using
v0 as reference. This near-to-far DIBR view synthesis
typically generates no expansion holes (pixel sampling
in the reference view is sufficient), but has large out-of-
view holes (and some disocclusion holes), since the near-
camera reference views have narrower fields-of-view. To
avoid the problem of filling out-of-view holes, we only
considered the available field-of-view in a synthesized
far-camera viewpoint image as the spatial area of in-
terest. Examples of synthesized far-camera texture and
depth images are shown in Fig. 12.

(a) Art color map (b) Art depth map
Fig. 12: Example of DIBR-synthesized far-camera color and
depth images

With these synthesized narrower field-of-view far-
camera images compressed using H.264 [50] with dif-
ferent quantization parameters (QP) as the references,
we synthesized back the near-camera images v̂0’s via
z-dimensional pixel mapping, and then identified and
filled expansion holes as we propsed, and completed
disocclusion holes using an existing disocclusion hole
filling algorithm [7]. We compared our constructions to
v0 to compute PSNR and two other quality metrics SSIM

5http://vision.middlebury.edu/stereo/data
6http://http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data

[19] and 3DSwIM [20] to evaluate the quality of our
constructed DIBR-synthesized images.

For comparison, we employed seven competing
schemes. In the first scheme called VSRS+, we modified
VSRS software version 3.5 7 to use a single reference
view for pixel mapping, and then called the default
inpainting scheme in VSRS to fill in all missing pix-
els. The remaining three schemes first employed our
proposed z-dimensional DIBR for initial pixel mapping,
identified expansion holes using our proposed method,
then completed expansion holes using different inter-
polation methods. Note that without our proposed depth
layering strategy to properly identify expansion holes, these
three schemes would suffer from foreground / background
confusion, as observed in the rendering results of VSRS+.
Bilinear is a conventional bilinear interpolation scheme
[51], which represents the quality of mesh-based render-
ing techniques, as discussed in Section II-A. Cubic+TGV
first interpolates the expansion holes via bicubic interpo-
lation [51], then enhances the result via Total Generalized
Variation (TGV) [52]. LARK is the kernel-regression based
technique in [45] and can be considered the state-of-the-
art among local interpolation methods. While there are
recent image interpolation methods based on patch clus-
tering, non-local methods [53, 54] or dictionary learning
[55], their complexity are significantly higher than local
methods. Hence we do not compare against them here
for complexity reason.

Further, we compared with three methods in the liter-
ature that can be used for expansion hole filling during
large z-dimensional camera movements, including two
pixel-enlargement methods proposed in the EU project
DIOMEDES [24] and MUSCADE [25], and the back-
projection based method proposed in [26]. We denote
these three techniques by DIO, MUS and BP respectively
in the sequel.

In Section VI we described two algorithms, IRLS in
(21) and UL2A in (25), where the former employs a
more accurate statistical noise model and the latter is
computationally faster. We tested the two algorithms
using color / depth image pairs compressed with various
QPs. Table II shows the difference in PSNR between
the two algorithms, computed for all non-disocclusion
pixels (DIBR-mapped pixels from reference view and
interpolated expansion hole pixels). It shows that IRLS
is up to 0.22dB better than UL2A when QP = 4. As QP
increases, the gain of IRLS over UL2A diminishes as the
quantization noise in compressed color and depth maps
becomes dominant compared to rounding noise when
QP becomes large. As IRLS requires more computation
than UL2A, we used IRLS when QP is small (QP ≤ 12)
for better image quality and UL2A when QP is large
(QP > 12) to reduce computation cost. Our proposed
scheme is called AGFT+ in the sequel.
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TABLE III: PSNR comparison of DIBR synthesized pixels using different methods given compressed reference views

QP=4 QP=16
DIBR AGFT+ BP DIO MUS DIBR AGFT+ BP DIO MUS

Teddy 35.10 35.34 35.27 34.86 34.66 34.10 34.30 34.28 33.86 33.51
Laundry 27.15 27.30 27.30 26.94 26.77 26.80 27.01 26.93 26.57 26.54
Art 28.85 29.08 29.11 28.66 28.44 28.23 28.37 28.46 28.17 27.77
Dolls 29.59 29.64 29.70 29.51 29.37 28.93 29.05 29.08 28.88 28.36
Moebius 32.61 32.86 32.75 32.27 31.99 31.93 32.02 32.00 31.78 31.08
Reindere 29.77 29.83 29.83 29.64 29.54 29.00 29.12 29.07 28.86 28.47
Motorcycle 30.80 30.93 30.92 30.60 30.49 29.82 30.00 29.98 29.62 29.21
Vintage 33.37 33.49 33.45 33.19 33.02 33.11 33.25 33.21 32.94 32.69
Akko 31.12 31.31 31.20 30.89 30.66 30.48 30.58 30.55 30.32 29.71
Balloon 29.36 29.52 29.28 29.18 29.02 28.68 28.80 28.69 28.54 28.12

TABLE II: PSNR gain of IRLS over UL2A for different QPs

QP 4 8 12 16 20 28 36
Teddy 0.27 0.24 0.17 0.10 0.09 0.01 0.01
Laundry 0.22 0.16 0.11 0.08 0.05 0.02 0.01
Art 0.28 0.19 0.14 0.09 0.05 0.01 0.01
Dolls 0.19 0.15 0.13 0.08 0.04 0.02 0.00
Moebius 0.17 0.13 0.11 0.07 0.03 -0.01 -0.01
Reindeer 0.20 0.14 0.12 0.08 0.04 0.02 0.01
Motorcycle 0.21 0.18 0.14 0.06 0.04 0.04 0.02
Vintage 0.19 0.20 0.16 0.07 0.03 0.02 0.01
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Fig. 13: PSNR
comparison of
DIBR synthesized
pixels using
different methods
for different QPs
when compressing
reference views.

B. Experimental Comparison
1) Numerical Comparison for DIBR-synthesized Pixels:

We first compare quality of DIBR-synthesized pixels with
and without our proposed optimization, denoted as DIBR
and AGFT+, which are shown in Fig. 13. Numerical PSNR
values when QP = 4 and QP = 16 are listed in Table III.
We observe that, using our proposed scheme, PSNR can
be improved by up to 0.25dB when QP = 4, showing
that the pixels synthesized by DIBR and degraded by
rounding noise can by effectively restored by our algo-
rithm. The gain diminishes as QP increases, however, as
quantization becomes coarser and details become harder
to recover.

We observe that the pixel-enlargement methods DIO
and MUS have even lower PSNR value than DIBR as they
inevitably introduces blurring in the synthesized area,

7While VSRS has been updated to version 4.0, the view synthesis
component remains the same as version 3.5.
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Fig. 14: PSNR
comparison
of completed
expansion holes
using different
methods for
different QPs used
when compressing
reference views.

degrading the image quality.

2) Numerical Comparison for Expansion Holes: We next
exam reconstruction quality of expansion holes: de-
noised DIBR-synthesized pixels and interpolated expan-
sion hole pixels. As shown in Fig. 14 and Table IV, for
all eight sequences, Bilinear, Cubic+TGV, LARK, AGFT+
outperformed VSRS+ dramatically. This demonstrates
that the correct identification of expansion holes and
subsequent interpolation are crucial for z-dimensional
DIBR image synthesis. Also, we see that AGFT+ outper-
formed Bilinear and Cubic+TGV by up to 1.84dB and
1.54dB, showing that by using our proposed interpola-
tion method, we can achieve better image quality than
the common techniques. Further, our method AGFT+ has
comparable PSNR numbers as LARK while doing so at a
much reduced complexity. We will show later that AGFT+
is actually better than LARK in the other two quality
metrics. Comparing with BP, MUS and DIO, we observe
that AGFT+ outperforms them by up to 1.89dB, 1.95dB
and 2.01dB respectively in the expansion hole area due
to our more advanced interpolation technique. Finally,
comparing to our previous method AGFT [49] shown in
gray, we see that the large reduction in computation
complexity results in a very small reduction in synthesis
quality.
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TABLE IV: PSNR comparison for completed expansion holes using different methods, given compressed reference views at QP
= 4 and 16

(a) QP = 4
z-dimensional DIBR, Depth Layering BP MUS DIO VSRS+AGFT AGFT+ LARK Cubic+TGV Bilinear

Teddy 31.86 31.82 31.99 31.16 31.02 31.28 31.17 31.14 30.14
Laundry 27.62 27.58 27.80 26.91 26.74 27.00 26.91 26.85 25.63
Art 30.34 30.44 30.26 29.33 29.15 29.45 29.35 29.30 26.43
Dolls 28.80 28.83 28.70 27.83 27.59 27.95 27.90 27.81 26.60
Moebius 32.16 32.16 32.34 30.87 30.69 30.99 30.91 30.87 29.41
Reindeer 29.08 29.11 29.25 27.89 27.68 30.00 27.93 27.88 25.01
Motorcycle 27.79 27.78 28.08 26.82 26.71 26.93 26.81 26.78 23.86
Vintage 30.20 30.19 30.36 29.63 29.53 29.76 29.62 29.58 28.62
Akko 30.76 30.73 30.92 28.77 28.54 28.89 28.84 28.77 27.23
Balloon 26.13 26.14 26.43 23.95 23.57 24.56 24.62 24.50 22.87

(b) QP = 16
z-dimensional DIBR, Depth Layering BP MUS DIO VSRS+AGFT AGFT+ LARK Cubic+TGV Bilinear

Teddy 31.16 31.11 31.26 30.76 30.68 30.86 30.71 30.73 29.87
Laundry 27.48 27.46 27.60 26.80 26.62 26.85 26.73 26.79 25.58
Art 29.95 29.94 30.00 28.93 28.78 28.80 28.66 28.70 26.32
Dolls 28.57 28.57 28.51 27.85 27.68 27.92 27.80 27.86 26.50
Moebius 31.49 31.50 31.65 30.31 30.18 30.40 30.27 30.30 29.18
Reindeer 28.62 28.64 28.77 27.74 27.59 27.81 27.69 27.74 25.04
Motorcycle 27.33 27.31 27.46 26.48 26.41 26.57 26.42 26.44 23.72
Vintage 29.53 29.53 29.67 29.21 29.15 29.29 29.13 29.16 28.30
Akko 29.69 29.68 29.98 27.88 27.74 27.96 27.82 27.86 26.20
Balloon 25.71 25.69 26.02 23.44 23.09 24.02 23.96 24.06 22.54

3) Overall Numerical and Visual Comparison: Instead
of PSNR, in addition we use two other image quality
metrics to evaluate the performance of our z-dimensional
image synthesis: SSIM [19], the most commonly used
image visual quality assessment metric, and 3DSwIM
[20], a recently proposed metric dedicated to artifacts
detection in 3D synthesized views. The numerical results
are shown in Table V and VI.

Next, we examine the constructed image quality visu-
ally. For Art sequence, we first see in Fig. 15(a) that z-
dimensional pixel mapping caused the erroneous mixing
of foreground / background pixels during DIBR. Apply-
ing inpainting algorithm naı̈vely to fill in all missing
pixels subsequently do not lead to acceptable quality in
the expansion hole areas. Second, we see in Fig. 15(b)
and Fig. 15(c) that even only using the pixels in the same
depth layer for interpolation, Bilinear and Cubic+TGV
will introduce significant interpolation artifacts, espe-
cially on the texture edges. Finally, we see in Fig.15(d)
that by using our proposed AGFT+, which is comparable
to result produced by LARK in Fig.15(e), expansion holes
can be filled in a visually pleasing manner. Similar
results are shown in Fig. 16, Fig. 17 and Fig. 18.

Finally, we filled in disocclusion holes using an exist-
ing scheme [7] to get the complete z-dimensional DIBR-
synthesized images. As we can see in Fig. 19 and Fig. 20,
visually pleasing images can be successfully synthesized
by our proposal combined with an appropriate disocclu-
sion hole inpainting algorithm like [7].

VIII. Conclusion

Unlike typical free viewpoint system that consid-
ers only synthesis of virtual views shifted horizontally
along the x-dimension via depth-image-based rendering

(b) VSRS+ (a) Proposed
Fig. 19: Final output images for z-movement DIBR for art

(b) VSRS+ (a) Proposed
Fig. 20: Final output images for z-movement DIBR for dolls

(DIBR), in this paper we consider in addition construc-
tion of z-dimensional DIBR-synthesized images. In such
far-to-near viewpoint synthesis, there exists a new type
of missing pixels called expansion holes—where objects
close to the camera will increase in size and simple
pixel-to-pixel mapping in DIBR from reference to virtual
view will result in missing pixel areas—that demand a
new interpolation scheme. We propose to first identify
expansion holes via a depth layering procedure, then
formulate a maximum a posteriori (MAP) problem to
estimate the missing pixels using a graph-signal smooth-
ness prior. We propose an iterative reweighted least
square (IRLS) algorithm to solve the posed MAP prob-
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TABLE V: SSIM comparison for synthesized images, reference view compression QP = 4

z-dimensional DIBR, Depth Layering BP MUS DIO VSRS+AGFT AGFT+ LARK Cubic+TGV Bilinear
Teddy 0.9206 0.9202 0.9206 0.9212 0.9202 0.9216 0.9193 0.9186 0.9077
Laundry 0.9393 0.9395 0.9342 0.9346 0.9312 0.9351 0.9323 0.9314 0.8971
Art 0.9426 0.9423 0.9386 0.9367 0.9369 0.9374 0.9338 0.9259 0.8885
Dolls 0.9231 0.9231 0.9180 0.9174 0.9163 0.9192 0.9183 0.9080 0.9031
Moebius 0.9239 0.9236 0.9242 0.9210 0.9184 0.9167 0.9085 0.9054 0.8912
Reindeer 0.9024 0.9026 0.9012 0.9002 0.8999 0.9021 0.8967 0.8928 0.8775
Motorcycle 0.9343 0.9341 0.9279 0.9281 0.9279 0.9269 0.9257 0.9244 0.8680
Vintage 0.9490 0.9490 0.9472 0.9460 0.9458 0.9446 0.9430 0.9409 0.9366
Akko 0.9494 0.9492 0.9460 0.9453 0.9479 0.9387 0.9384 0.9367 0.8932
Balloon 0.9076 0.9079 0.9061 0.9048 0.9023 0.9045 0.9012 0.9006 0.8727

TABLE VI: 3DSwIM comparison for synthesized images, reference view compression QP = 4

z-dimensional DIBR, Depth Layering BP MUS DIO VSRS+AGFT AGFT+ LARK Cubic+TGV Bilinear
Teddy 0.8459 0.8462 0.8453 0.8392 0.8384 0.8461 0.8398 0.8339 0.8425
Laundry 0.9137 0.9132 0.8992 0.9060 0.9062 0.9136 0.9123 0.9042 0.9101
Art 0.9741 0.9744 0.9621 0.9684 0.9676 0.9691 0.9672 0.9651 0.9573
Dolls 0.9500 0.9499 0.9479 0.9482 0.9499 0.9512 0.9476 0.9468 0.9459
Moebius 0.8938 0.8936 0.8925 0.8873 0.8732 0.8839 0.8724 0.8715 0.8514
Reindeer 0.9512 0.9506 0.9524 0.9545 0.9590 0.9524 0.9533 0.9497 0.9445
Motorcycle 0.9763 0.9754 0.9698 0.9679 0.9678 0.9694 0.9672 0.9613 0.9370
Vintage 0.7595 0.7597 0.7490 0.7496 0.7494 0.7312 0.7325 0.7322 0.7461
Akko 0.8623 0.8619 0.8614 0.8609 0.8602 0.8617 0.8615 0.8606 0.8329
Balloon 0.7453 0.7453 0.7412 0.7386 0.7367 0.7495 0.7351 0.7312 0.7376

(a) VSRS+ (b) Bilinear (c) DIOMEDES (d) MUSCADE (e) BP (f) LARK (g) AGFT+
Fig. 15: Visual evaluation of synthesized images for Art with QP = 4

(a) VSRS+ (b) Bilinear (c) DIOMEDES (d) MUSCADE (e) BP (f) LARK (g) AGFT+
Fig. 16: Visual evaluation of synthesized images for Dolls with QP =4

lem efficiently. Experimental results show up to 4.01dB
gain in PSNR over inpainting method employed in VSRS
3.5. While we focus on static multiview image rendering,
our work can be extended to multiview video rendering,
where additional requirements such as temporal consis-
tency [22, 56] need to be considered also.
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