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Abstract—The use of strong lighting contrast to accentuate
objects and figures in a painting—called Chiaroscuro—is popular
among Renaissance painters such as Caravaggio, La Tour and
Rembrandt. In this paper, we propose a new metric called LuCo
to quantify the extent to which Chiaroscuro is employed by
an artist in a painting. This measurement could be used to
assess the capability of any system to fulfill the original artistic
intention and consequently ensure minimal disruptions of Quality
of Experience. We first argue that Chiaroscuro is a device for
artists to draw attention to specific spatial regions; thus it can be
understood as a restricted notion of visual saliency computed
using only luminance features. Operationally, using a set of
local luminance patches we first compute a Bayesian surprise
value, where the prior and posterior probabilities are computed
assuming a Gaussian Markov Random Field (GMRF) model.
Inverse covariance matrices of the GMRF model are estimated via
sparse graph learning for robustness. We construct a histogram
using the computed surprise values from different local patches
in a painting. Finally, we compute a skewness parameter for the
constructed histogram as our LuCo score: large skewness means
luminance surprises are either very small or very large, meaning
that the artist accentuated lighting contrast in the painting.
Experimental results show that paintings by Chiaroscuro artists
have higher LuCo scores than 19th century French Impres-
sionists, and Rembrandt’s self-portraits have increasingly higher
LuCo scores as he aged except for his late period—both trends
are in agreement with art historians’ interpretations.

Keywords—luminance contrast, painting analysis, graph-based
statistical learning

I. INTRODUCTION

In the working definition of Quality of Experience (QoE)
proposed by Qualinet [1], it is stated that QoE “results from
the fulfillment of user expectations with respect to the utility
and/or enjoyment of the application or service in the light
of the user’s personality and current state”. In the context
of creative content such as art paintings, artistic intention is
another key factor to consider when evaluating the ability
of a system to convey the right QoE. Thus the mandate
of any technical media delivery system should include the
ability to faithfully convey the original artistic intent. From this
perspective, a computational model of artistic intention would
be practically useful. In this paper, we propose to address this
challenging topic focusing on one particular painting style1.

Centuries have passed, and classical paintings by grand
masters of yester years like Rembrandt and Vermeer still

1We focus exclusively on Chiaroscuro in this paper, and leave the compu-
tation modeling of other painting styles as future work.

fascinate us. One notable artistic trend started in Renaissance
paintings is Chiaroscuro2: the use of strong contrasts between
light and shadows to accentuate the three-dimensionality of
objects and figures in compositions. Though its usage can
be traced back to early Byzantine art, it was most famously
popularized by Caravaggio (1573-1610), who influenced later
painters including Peter Paul Rubens (1577-1640), Georges de
La Tour (1593-1652) and Rembrandt van Rijn (1606-1669).
As an example, we observe that in Crucifixion of St. Peter
by Caravaggio in Fig. 1(a), only the figures in the bottom of
the painting are well lit. Extreme usage of Chiaroscuro is also
called Tenebrism3, which became the signature style for artists
like La Tour (see Smoker in Fig. 1(b)).

(a) LuCo=1.70 (b) LuCo=3.76
Fig. 1. (a) Crucifixion of St. Peter by Caravaggio (1601), LuCo=1.70; (b)
Smoker by La Tour (1646), LuCo=3.76.

Given the prevalence of Chiaroscuro in classical paintings,
in this paper we propose a computational image model to
estimate the extent of (Lu)minance (Co)ntrast employed by an
artist in a given painting, summarized succinctly in a metric
called LuCo. We claim that this metric correctly quantifies
an artist’s intention to manipulate lighting contrast to draw
visual attention to local regions; thus preserving LuCo score
in a media delivery chain would mean preserving the origi-
nal Chiaroscuro artistic intent. Compared to previous visual
saliency models [2], [6], [7], [8] that consider many low-level
features and their correlations when constructing a saliency
map, our computational model has comparable complexity but
focuses exclusively on lighting contrast, resulting in a more
sophisticated and in-depth model based solely on luminance
features.

Operationally, given an observed network of patches in a
local spatial region, we first compute a Bayesian surprise value
[3], where the prior and posterior probabilities are computed

2https://en.wikipedia.org/wiki/Chiaroscuro
3https://en.wikipedia.org/wiki/Tenebrism978-1-5090-0354-9/16/$31.00 c©2016 IEEE



assuming a Gaussian Markov Random Field (GMRF) model
for the patch network. To ensure robustness, the inverse
covariance matrix (precision matrix) for the GMRF model is
estimated via learning of a sparse graph with few parameters,
leveraging on recent advances in graph signal processing
(GSP) [4]. We construct a histogram using the computed
surprise values per local region. Finally, a skewness parameter
is computed from the constructed histogram as the LuCo score
for the painting; a skewed histogram means that the luminance
surprises are either very small or very large—in other words,
the artist accentuated lighting contrast to draw attention to a
few spatial areas.

We conduct experiments on a wide variety of classical
paintings and observe the following two trends. First, among
artists known for Chiaroscuro, we observe similar high com-
puted LuCo scores. This is in contrast to paintings by 19th cen-
tury French Impressionists with lower computed LuCo scores.
Second, focusing on portraits by Rembrandt, we observe a
gradual increase in LuCo scores as he aged except for his
late period. This trend is consistent with commentaries by au-
thoritative art historians [5]. For comparison, we consider two
competitor types to detect luminance trends: i) computation of
skewness of luminance gradients across multiple scales in a
painting, and ii) computation of skewness of saliency values
in an obtained saliency map computed using [2], [6], [7], [8].
We observe that none of the competing schemes reveal the
same trends we observe in computed LuCo scores, validating
the usefulness of our proposal.

The outline of the paper is as follows. We first overview
related works in Section II. We then review basic concepts of
Bayesian surprise and GSP in Section III. We describe our
graph-based metric LuCo in Section IV. Finally, results and
conclusions are presented in Section V and VI, respectively.

II. RELATED WORKS

Li and Chen [9] extracted color, shape and relative location
features to automatically assess the aesthetic quality of a
painting. Other stylistic elements like lighting contrast and
brush strokes are not considered. In contrast, we propose
a computational model to measure how much Chiaroscuro
was employed by an artist, which captures one type of artist
intention and can be used for QoE evaluation.

To discover correlations among artists, Bressan et al. [10]
built a graph to connect artists based on their similarities,
computed using low-level features by the Fisher kernel [11]:
combines discriminative features into a general kernel function.
Wang and Takatsuka [12] proposed a Self Organizing Map
(SOM) based hierarchical model considering color, composi-
tion and line to differentiate among different art periods such as
Post-impressionism, Cubism and Renaissance. However, these
methods focus only on the clustering of artists, but not on
actual painting analysis to quantify artistic styles.

Igor et al. [13] studied the use of complementary col-
ors in Van Gogh’s paintings. Specifically, they proposed a
MECOCO (Method for the Extraction of COmplementary
COlours) method to combine an opponent color space rep-
resentation with Gabor filtering to calculate an “opponency”
value, which reflects the usage of complementary color transi-
tions. Johnson et al. [14] analyzed brushstrokes of Van Gogh’s

painting via a computation model. A texture feature vector was
first constructed using Gabor wavelet coefficients of different
scales and orientations. A Gabor wavelet energy value is then
obtained, where larger energy values mean more contours and
more visible brushstrokes. However, color and brushstroke are
only two characteristics of an artist’s style. In contrast, we
focus on quantifying the amount of Chiaroscuro employed by
an artist for a given painting.

III. PRELIMINARIES

To understand our proposed metric LuCo in Section IV,
we first overview two key concepts in this section in order:
Bayesian surprise, and graph spectral signal decomposition.

A. Bayesian Surprise

Informally, surprise is the arrival of an unexpected event
or observation, one that is incongruent to the previous set of
expectations. Itti and Baldi formalized one notion of surprise,
called Bayesian surprise [3], as a general information-theoretic
concept. It measures the difference between the observer’s
prior belief constructed based on previous observations, and
his posterior belief based on previous and new observations.

First, denote by PXN
1

(y) the prior probability distribution
of a signal y, y ∈ RM , constructed from a set of N previous
observations XN

1 = {x1, . . . ,xN}. Denote by PXN+1
1

(y) the
posterior probability distribution of y, constructed from pre-
vious observations XN

1 and new observation xN+1. Bayesian
surprise is computed as the Kullback-Leibler (KL) divergence
[15] between the prior and posterior probabilities:

S(XN
1 ,xN+1) = KL(PXN+1

1
(y), PXN

1
(y)),

=

∫
PXN+1

1
(y) log

PXN+1
1

(y)

PXN
1

(y)
dy. (1)

The definition in (1) is general; we discuss our definitions
of prior and posterior probabilities PXN

1
(y) and PXN+1

1
(y) in

Section IV-A.

B. Graph Spectral Signal Decomposition

A undirected graph G is composed of nodes N and
undirected edges E that connect nodes in G. A graph-signal
x, x ∈ RM , is a signal on a M -node graph G. x can
be decomposed into its graph frequencies via graph Fourier
transform (GFT) [16]. Denote by W the adjacency matrix,
where wi,j ≥ 0 is the weight of the edge that connects nodes i
and j. Denote by D the degree matrix, where di,i =

∑
j wi,j .

The graph Laplacian matrix L is defined as the difference
matrix between the two:

L = D−W. (2)

L is real and symmetric and can be eigen-decomposed as
L = ΦT ΛΦ, where Λ is a diagonal matrix with eigenvalues λ’s
of L (graph frequencies) along the diagonal, and Φ contains
the corresponding eigenvectors as rows. A graph-signal x can
be decomposed into its frequency components zk’s using Φ:

z = Φx. (3)



A graph-signal x is smooth with respect to graph G if
its energy is concentrated in the low frequencies, i.e., most
coefficients zk’s are near-zero for large λ’s. More precisely, it
can be shown [16] that a smooth signal x leads to a smaller
graph smoothness regularizer xTLx:

xTLx =
∑
i,j

wi,j(xi − xj)2 =
∑
k

λkz
2
k. (4)

We will show how the smoothness regularizer xTLx can be
used for sparse graph learning in Section IV-B.

IV. LUMINANCE CONTRAST METRIC

We now describe our proposed computational model to
compute a LuCo score for a painting. We assume that a
painting photo has first been rescaled (with no change to its
aspect ratio) to a digital image of roughly the same pixel count
as input to our algorithm.

A. Contrast Definition via Bayesian Surprise

Fig. 2. An example of sliding windows. Observations 1 (green) and 2 (orange)
are the previous graph-signals to compute the prior distribution. Together
with new observation 3 (red), one can compute the posterior distribution.
Observation block slides horizontally and vertically with overlaps.

Bayesian surprise has been used for visual saliency detec-
tion [3]. Since we focus on lighting contrast to compute a LuCo
score, we compute Bayesian surprise using the luminance
channel only. Specifically, when an observer scans a paint-
ing, an expectation of what luminance observation y should
come next—described by the prior distribution PXN

1
(y)—is

generated naturally after seeing N local observations XN
1 =

{x1, . . . ,xN}. If a new luminance observation xN+1 drasti-
cally alters the resulting expectation PXN+1

1
(y)—i.e., the KLD

between prior PXN
1

(y) and posterior PXN+1
1

(y) is large—then
this constitutes a large Bayesian surprise.

In our context, we define an observation xn as follows.
We first group

√
K ×

√
K adjacent luminance pixels on a

2D grid into a patch, and group
√
M ×

√
M neighboring

non-overlapping patches into a network of M patches. Each
patch is represented by a node in a graph, and is connected to
nodes representing other patches in the same network. As an
example, in Fig. 2, we see that an observation is composed of
four patches in a network. Two neighboring observations have
an overlap of two patches.

Each node i in the graph is associated with the average
luminance xi of the pixels in patch i. Thus x = [x1, . . . , xM ]T

is a length-M vector of average patch luminance in one ob-
servation. We assume observation x is an instance of a GMRF

generative model; i.e., P (x) follows a Gaussian distribution
with precision matrix L:

P (x) = exp

(
−xTLx

σ2

)
, (5)

where σ is a parameter for the GMRF model.

However, one does not know the important precision matrix
L a priori, and hence it is important to estimate L accurately
using only observations XN

1 . Once L is estimated, the prior
PXN

1
(y) can be expressed using (5). The posterior PXN+1

1
(y)

can be computed similarly using observations XN+1
1 . We

discuss the robust estimation of L given XN
1 next.

B. Robust Learning of Precision Matrices

One naı̈ve method to estimate the precision matrix L in
a GMRF model is to first compute a M × M covariance
matrix C for M samples xi given N observation vectors
xn, then compute L = C−1. However, when the number of
observations N is small relative to the number of samples
M , the estimated C is not robust, potentially resulting in a
precision matrix L∗ that deviates significantly from the true
matrix L.

To robustly estimate L, we take a sparse graph learning
approach. It is known [17] that a GMRF model with precision
matrix L has a corresponding graphical representation: weight
wi,j of an edge connecting nodes i and j in the graph is
assigned −Li,j ; if Li,j = 0 then there is no edge connecting
nodes i and j. The graph Laplacian of the corresponding graph,
as discussed in Section IV-B, is in fact the precision matrix L.
Hence a sparse graph with few connected edges would mean
a sparse precision matrix L with few non-zero entries. Given
observations xn, if we now estimate a sparse graph, it would
mean that we are estimating only a few non-zero entries in L,
which in general is more robust than estimating all entries in
a M ×M matrix.

There are several approaches to estimate a sparse graph
Laplacian L given observations xn, each one is now viewed
as a graph-signal. Friedman et al. [18] proposed graphical
lasso, an extension of the l1-norm regularization popular in
the sparse coding literature to graphs. Rotondo et al. [19] first
identified a suitable graph template with only edges in two
different directions based on the computed structure tensor,
then estimated two weight parameters for edges of the two
different directions robustly. In this paper, we employ instead
the method in [20] for sparse graph learning, which in addition
assumes that the signals xn projected to GFT basis computed
from L are mostly low frequencies.

Denote by X a M × N matrix containing the N ob-
servations xn as columns. Similarly, denote by Y a matrix
containing the N “denoised” signals yn. The term YTLY thus
computes a sum of yT

nLyn, each computing the smoothness
of signal yn with respect to L:

YTLY =

N∑
n=1

yT
nLyn =

N∑
n=1

M∑
i=k

λkzn(k)2, (6)

where λk is the k-th graph frequency, and zn(k) is the k-th
GFT coefficient for signal yn.



The optimization in [20] seeks Y and L simultaneously
with the following objective that contains two regularization
terms: i) a smoothness term YTLY as described previously;
and ii) a sparsity term ‖L‖2F that promotes zero entries in L:

min
L,Y
‖X−Y‖2F + α tr(YTLY) + β ‖L‖2F ,

s.t. tr(L) = M, Li,j = Lj,i ≤ 0, i 6= j, L · 1 = 0, (7)

where α and β are parameters for the two regularization terms.
The constraints restrict the matrix L to be a valid graph
Laplacian. (7) can be solved via an alternating scheme; see
[20] for details.

C. Approximating the Surprise Map

Given that the precision matrices L and L′ for the prior
PXN

1
(y) and the posterior PXN+1

1
(y) can be robustly esti-

mated, in theory we can now compute the Bayesian surprise
S(XN

1 ,xN+1) using the definition in (1). However, (1) is
difficult to compute directly, so we approximate it as fol-
lows. Bayesian surprise, calculated as (1), in our context is
measuring the distance between two exponential probability
distributions with precision matrices L and L′ respectively. So
we compute the distance s( ) between the matrices instead, by
computing the Frobenius norm of difference matrix L− L′:

s(XN
1 ,xN+1) = ‖L− L′‖F . (8)

To compute the surprise value for the entire painting, we
use a sliding window that moves horizontally and then verti-
cally to estimate horizontal and vertical luminance surprises,
and then combine them together to acquire a surprise map,
which is in a smaller scale compared to the original image.
An example surprise map corresponding to Self Portrait by
Rembrandt (Fig. 3(a)) is shown in Fig. 3(b).

(a) (b) (c)

Fig. 3. (a) Self Portrait by Rembrandt (1630); (b) Corresponding computed
surprise map. (c) Corresponding saliency map by Itti’s method [2]. Surprise
and saliency maps are rescaled to the same size as the image.

D. Calculating the Skewness

After computing a surprise map, we construct a histogram
with Q bins and measure the skewness G using the following
formula [21]:

G =

√
Q(Q− 1)

Q− 1

∑Q
i=1(Hi − H̄)3

Qε3
, (9)

where Hi is the height of the i-th bin while the width of each
bin is 0.1. H̄ is the mean height value of bins, and ε is the
standard deviation. This skewness value is our LuCo score for
the painting.

(a) (b)

(c) (d)
Fig. 4. Comparison of skewness between two paintings. (a) The Woman
Taken in Adultery by Rembrandt (1644); (b) Histogram of the surprise map
of (a), LuCo=2.38; (c) Impression by Monet (1872); (d) Histogram of the
surprise map of (c), LuCo=0.66.

As examples, two constructed histograms are shown in Fig.
4. We see that if the LuCo score is large, then the luminance
Bayesian surprises tend to be either very large or very small,
which means that the artist accentuated lighting contrast in
the painting. The complete LuCo computation procedure is
summarized in Algorithm 1.

Algorithm 1 Computing LuCo score:
Input: One scaled painting image with fixed number of pixels
for each sliding window of N + 1 observations XN+1

1 ,
Step A: Learn L, L′ from observations XN

1 , xN+1.
Step B: Compute ‖L− L′‖F .

end for
Construct histogram and compute skewness G.
Output: LuCo score G.

V. EXPERIMENTATION

A. Experimental Setup

To evaluate the effectiveness of our proposed metric, we
collected many high-resolution photos of paintings of old mas-
ters from Google Art Project4 and re-scaled them to roughly
the same pixel count (100000) without changing the aspect
ratio. We conducted experiments on the luminance channel of
these images. In our experiments, we set the patch size K to be
5×5, while the number of patches M in a graph was 25. The
number N of observations counted for the prior distribution
was 5, and the overlap of patches between observations was
20. α and β were set to 10−2 and 10−0.2 respectively, while
the number of bins Q in the histogram was set to 100.

We compare our method with a gradient-based method
and several saliency-based methods. For the gradient-based
method, we reimplemented Itti’s method [2] calculating only
the gradients in the luminance channel of the painting and
obtain a gradient map. We then built a histogram and computed
a skewness parameter using (9). For the second scheme we first
computed a saliency map using [2], [6], [7], [8], with only the

4https://www.google.com/culturalinstitute/project/art-project



luminance channel for a fair comparison. Then, as done in the
previous scheme, we computed the skewness parameter of the
saliency histogram.

B. Comparison Between Chiaroscuro And Impressionism

In the first experiment, we utilized 20 paintings each in
the Chiaroscuro style and Impressionist style. The resulting
average LuCo scores are shown in Table I. We observe that
the LuCo scores of the Chiaroscuro paintings are generally
higher than the Impressionist paintings. Further, the variances
in the two styles are relatively small, showing consistency
of LuCo scores among paintings in each style. Thus, we
can conclude that artists employed stronger lighting contrast
in these Chiaroscuro paintings than Impressionism paintings,
which is in agreement with art historians’ interpretations [22].

For illustration, representative paintings from Chiaroscuro
and Impressionism styles are shown in Fig. 5 and Fig. 6
respectively. We see that in general Chiaroscuro paintings have
larger luminance contrast both visually and in LuCo scores.

TABLE I. LUCO SCORES OF DIFFERENT STYLES

Styles Mean Standard Deviation
Chiaroscuro 1.47 0.42

Impressionism 0.73 0.29

C. Analysis of Rembrandt’s Paintings

Rembrandt van Rijn is well known for strong lighting
contrast via his dexterous usage of light and shadows in his
paintings, thus is a good candidate for us to evaluate the
effectiveness of our luminance contrast computational model.
According to the biographical analysis of Rembrandt in [5],
Rembrandt’s artistic career can be divided into five periods:

1) The Leiden period (1625-31, Period 1),
2) First Amsterdam period (1631-35, Period 2),
3) Second Amsterdam period (1635-42, Period 3),
4) Third Amsterdam period (1643-58, Period 4), and
5) Fourth Amsterdam period (1658-69, Period 5).

It is argued that Rembrandt showed an increased penchant
for strong lighting contrast as he aged, reaching a peak in
Period 4, and dropped during his final productive Period 5
when paintings became mostly dark. We seek to verify this
trend using our proposed LuCo metric.

TABLE II. AVERAGE LUMINANCE CONTRAST SCORES OF
REMBRANDT’S PAINTINGS IN DIFFERENT PERIODS

Periods Proposed Gradient [2] [6] [7] [8]
Period 1 1.25 1.86 2.35 1.86 2.07 1.24
Period 2 1.39 2.42 2.66 2.43 2.40 1.39
Period 3 1.75 2.43 2.69 2.43 2.45 1.63
Period 4 1.91 2.52 2.69 2.52 2.47 1.72
Period 5 1.81 2.53 2.63 2.52 2.51 1.75

We collected 7 images for each period and calculated the
average LuCo scores, and also average values by the competing
gradient-based method [2] and saliency-based method [2], [6],
[7], [8]. The results are shown in Table II. From the table,
we see that only our method reflects the trend described
previously.

It is also well known that Rembrandt painted many self-
portraits over his career, which are representative works at
these periods. We collected all available high-resolution self-
portraits for experiments. The LuCo trend for these self-
portraits is shown in Fig. 7, which also fits the described trend.

Fig. 7. LuCo scores for Rembrandt’s self-portraits

For more intuitive illustrations, we show some example
paintings in Fig. 8. We observe that Rembrandt used more
lighting contrast as he aged until Period 4, and then his painting
became mostly dark in Period 5. Our LuCo scores below also
reflect this trend.

VI. CONCLUSION

Grand masters have accentuated light and shadows in
a scene to portray objects and figures more prominently
in paintings—a style popularized in Renaissance called
Chiaroscuro. In this paper, we propose the first computational
model named LuCo to capture and quantify this effect, intro-
ducing a measure of lighting surprise. The Bayesian surprise
value is first calculated based on a set of local observations of
luminance patches. Precision matrices of a GMRF model for
the prior and posterior distributions are estimated via sparse
graph learning. Finally, a histogram of the acquired surprise
map is constructed, and the computed skewness parameter of
the histogram is deemed the LuCo score. A large LuCo score
thus means that luminance surprises are either very big or
very small in a painting, reflecting the artist’s intention to
accentuate lighting contrast. Experimental results verify the
effectiveness of our LuCo metric when compared to a gradient-
based method and saliency-based methods. In particular, our
computed LuCo scores reflect different usages of lighting con-
trast in Chiaroscuro and Impressionism paintings, and capture
the luminance contrast changes throughout Rembrandt’s life.
Such measures as LuCo open possibilities towards preservation
of artistic intentions during media delivery.
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