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ABSTRACT

When collecting samples via crowd-sourcing for semi-supervised
learning, often labels that designate events of interest are assigned
unreliably, resulting in label noise. In this paper, we propose a ro-
bust method for graph-based image classifier learning given noisy
labels, leveraging on recent advances in graph signal processing. In
particular, we formulate a graph-signal restoration problem, where
the objective includes a fidelity term to minimize the l0-norm be-
tween the observed labels and a reconstructed graph-signal, and gen-
eralized graph smoothness priors, where we assume that the recon-
structed signal and its gradient are both smooth with respect to a
graph. The optimization problem can be efficiently solved via an
iterative reweighted least square (IRLS) algorithm. Simulation re-
sults show that for two image datasets with varying amounts of label
noise, our proposed algorithm outperforms both regular SVM and a
noisy-label learning approach in the literature noticeably.

Index Terms— Graph-based classifiers, label denoising, gener-
alized smoothness priors

1. INTRODUCTION
The prevalence of social media sites like Facebook and Instagram
means that user-generated content (UGC) like selfies is growing
rapidly. Classification of this vast content into meaningful cat-
egories can greatly improve understanding and detect prevailing
trends. However, the sheer size of UGC means that it is too costly
to hire experts to assign labels (classification into different events of
interest) to partial data for semi-supervised classifier learning.

One approach to this big data problem is crowd-sourcing [1]:
employ many non-experts online to assign labels to a subset of data
at a very low cost. However, non-experts can often be unreliable
(e.g., a non-expert is not competent in a label assignment task but
pretends to be, or he simply assigns label randomly to minimize
mental effort), leading to label errors or noise.

In this paper, we propose a new method to robustly learn a graph-
based image classifier given (partial) noisy labels, leveraging on re-
cent advances in graph signal processing (GSP) [2]. In particular,
we formulate a graph-signal restoration problem, where the graph-
signal is the desired labeling of all samples into two events. The
optimization objective includes a fidelity term that measures the l0-
norm between the observed labels in the training samples and the
reconstructed signal, and generalized graph smoothness priors that
assume the desired signal and its gradient are smooth with respect
to a graph—an extension of total generalized variation (TGV) [3] to
the graph-signal domain. Because the notion of smoothness applies
to the entire graph-signal, unlike SVM that considers only samples
along boundaries that divide the feature space into clusters of differ-
ent events, all available samples are considered during graph-signal
reconstruction, leading to a more robust classifier. The optimization

is solved efficiently via an iterative reweighted least square (IRLS)
algorithm [4]. Simulation results for two image datasets with vary-
ing amount of label noise show that our proposed algorithm outper-
forms both regular SVM and a noisy-label learning approach in the
literature noticeably.

The outline of the paper is as follows. We first overview related
works in Section 2. We then review basic GSP concepts and define
graph smoothness notions in Section 3. In Section 4, we describe our
graph construction using available samples and formulate our noisy
label classifier learning problem. We present our proposed IRLS
algorithm in Section 5. Finally, we present experimental results and
conclusions in Section 6 and 7, respectively.

2. RELATED WORK
Learning with label noise has garnered much interest, including a
workshop1 in NIPS’10 [1] and a journal special issue in Neurocom-
puting [5]. There exists a wide range of approaches, including the-
oretical (e.g., label propagation in [6]) and application-specific (e.g.
emotion detection using inference algorithm based on multiplicative
update rule [7]). In this paper, similar to previous works [8, 9, 10, 11]
we choose to build a graph-based classifier, where each acquired
sample is represented as a node in a high-dimensional feature space
and connects to other sample nodes in its neighborhood. Our ap-
proach is novel in that we show how generalized graph smooth-
ness notion—extending TGV [3] to the graph-signal domain—can
be used for robust graph-based classifier learning with label noise.

Graph-signal priors have been used for image restoration prob-
lems such as denoising [12, 13, 14], interpolation [15, 16], bit-depth
enhancement [17] and JPEG de-quantization [18]. The common as-
sumption is that the desired graph-signal is smooth or band-limited
with respect to a properly chosen graph that reflects the structure
of the signal. In contrast, we define a generalized notion of graph
smoothness for signal restoration specifically for classifier learning.

3. SMOOTHNESS OF GRAPH-SIGNALS
3.1. Preliminaries
GSP is the study of signals on structured data kernels described by
graphs [2]. We focus on undirected graphs with non-negative edge
weights. A weighted undirected graph G = {V, E ,W} consists of
a finite set of vertices V with cardinality |V| = N , a set of edges E
connecting vertices, and a weighted adjacency matrix W. W is a
realN×N symmetric matrix, wherewi,j ≥ 0 is the weight assigned
to the edge (i, j) connecting vertices i and j, i 6= j.

Given G, the degree matrix D is a diagonal matrix whose i-
th diagonal element Di,i = ΣNj=1wi,j . The combinatorial graph
Laplacian L (graph Laplacian for short) is then:

L = D−W (1)
1https://people.cs.umass.edu/ wallach/workshops/nips2010css/
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Because L is a real symmetric matrix, there exists a set of eigen-
vectors φi with corresponding real eigenvalues λi that decompose L,
i.e.,

ΦΛΦT =
∑
i

λiφiφ
T
i = L (2)

where Λ is a diagonal matrix with eigenvalues λi on its diagonal,
and Φ is an eigenvector matrix with corresponding eigenvectors φi
as its columns. L is positive semi-definite [2], i.e. xTLx ≥ 0,
∀x ∈ RN , which implies that the eigenvalues are non-negative, i.e.
λi ≥ 0. The eigenvalues can be interpreted as frequencies of the
graph. Hence any signal x can be decomposed into its graph fre-
quency components via ΦTx, where αi = φTi x is the i-th frequency
coefficient. ΦT is called the graph Fourier transform (GFT).

3.2. Generalized Graph Smoothness
We next define the notion of “smoothness” for graph-signals. xTLx
captures the total variation of signal x with respect to graph G in
l2-norm:

xTLx =
1

2

∑
(i,j)∈E

wi,j (xi − xj)2 (3)

In words, xTLx is small if connected vertices xi and xj have similar
signal values for edge (i, j) ∈ E , or if the edge weight wi,j is small.

xTLx can also be expressed in terms of graph frequencies λi:

xTLx =
(
xTΦ

)
Λ
(
ΦTx

)
=
∑
i

λiα
2
i (4)

Thus a small xTLx also means that the energy of signal x is mostly
concentrated in the low graph frequencies.

(a) line graph

W =

 0 1 0
1 0 1
0 1 0

 D =

 1 0 0
0 2 0
0 0 1


(b) adjacency and degree matrices

Fig. 1. Example of a line graph with three nodes and edge weights
1, and the corresponding adjacency and degree matrices W and D.

Like TGV, we can also define a higher-order notion of smooth-
ness. Specifically, L is related to the second derivative of continuous
functions [2], and so Lx computes the second-order difference on
graph-signal x. As an illustrative example, a 3-node line graph with
edge weight wi,j = 1, shown in Fig. 1, has the following graph
Laplacian:

L =

 1 −1 0
−1 2 −1
0 −1 1

 (5)

Using the second row L2,: of L, we can compute the second-order
difference at node x2:

L2,:x = −x1 + 2x2 − x3 (6)

On the other hand, the definition of second derivative2 of a func-
tion f(x) is:

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
(7)

We see that (6) and (7) are computing the same quantity in the limit.

2https://en.wikipedia.org/wiki/Second derivative

Fig. 2. Example of a constructed graph G for binary-event classifica-
tion with two features h(1) and h(2). A linear SVM would dissect
the space into two for classification.

Hence if Lx is small, then the second-order difference of x is
small, or the first-order difference of x is smooth or changing slowly.
In other words, the gradient of the signal is smooth with respect to
the graph. We express this notion by stating that the square of the
l2-norm of Lx is small:

‖Lx‖22 = xTLTLx = xTL2x =
∑
i

λ2
iα

2
i (8)

where (8) is true since L is symmetric by definition.

4. PROBLEM FORMULATION

4.1. Graph Construction

In a semi-supervised learning scenario, we assume that a set of train-
ing samples of size N1 with possibly noisy binary labels (i.e., two-
event classification) are available, and we are tasked to classify N2

additional test samples. Denote by x the length-N vector of ground
truth binary labels, where xi ∈ {−1, 1} and N = N1 + N2. Sim-
ilarly, denote by y the length-N1 vector of observed training labels,
where yi ∈ {−1, 1}.

We first construct a graph to represent allN samples. Each sam-
ple is represented as a vertex on the graph G and has an associated
set of M features hi(m), 1 ≤ m ≤ M . Given available features,
we can measure the similarity between two samples i and j and com-
pute the edge weight wi,j between vertices i and j in the graph G as
follows:

wi,j = exp

(
−
∑M
m=1 cm (hi(m)− hj(m))2

σ2
h

)
(9)

where σh is a parameter and cm is a correlation factor that evaluates
the correlation between feature hi(m) of N1 samples and the sam-
ples’ labels yi. In words, (9) states that two sample vertices i and j
has edge weight wi,j close to 1 if their associated relevant features
are similar, and close to 0 if their relevant features are different. This
method of graph construction is very similar to previous works on
graph-based classifiers [8, 9, 10, 11].

For robustness, we connect all vertex pairs i and j in the vertex
set V , resulting in a complete graph. Empirical results show that a
more connected graph is more robust to noise than a sparse graph.
An example constructed graph is shown in Fig. 2, where each sample
i has two features hi(1) and hi(2). Two samples i and j with similar
relevant features will have a small distance in the feature space and
an edge weight wi,j close to 1. A linear SVM would divide the
feature space into two halves for a two-event classification. Having
defined edge weights wi,j , the graph Laplacian L can be computed
as described in Section 3.1.



4.2. Label Noise Model
To model label noise, we adopt a uniform noise model [1], where
the probability of observing yi = xi, 1 ≤ i ≤ N1, is 1 − p, and p
otherwise; i.e.,

Pr(yi|xi) =

{
1− p if yi = xi
p o.w. (10)

Hence the probability of observing a noise-corrupted y given
ground truth x is:

Pr(y|x) = pk(1− p)N1−k

k = ‖y −Dx‖0 (11)

where D is a N1 ×N binary matrix that selects the first N1 entries
from length-N vector x. (11) serves as the likelihood or fidelity term
in our MAP formulation.

4.3. Graph-Signal Prior
For signal prior Pr(x), following the discussion in Section 3.2 we
assume that the desired signal x and its gradient are smooth with
respect to a graph G with graph Laplacian L. Mathematically, we
use the Gaussian kernel to define Pr(x):

Pr(x) = exp

(
−xT L x

σ2
0

)
exp

(
−xT L2 x

σ2
1

)
(12)

where σ0 and σ1 are parameters. One can interpret (12) as an exten-
sion of TGV [3] to the graph-signal domain.

We interpret the two smoothness terms in the context of binary-
event classification. We know that the ground truth signal x is in-
deed piecewise smooth; each true label xi is binary, and labels of
the same event cluster together in the same feature space area. The
signal smoothness term in (12) promotes piecewise smoothness in
the reconstructed graph-signal x̂, as shown in previous graph-signal
restoration works [13, 14, 18], and hence is an appropriate prior here.

Recall that the purpose of TGV [3] is to avoid over-smoothing
a ramp (linear increase / decrease in pixel intensity) in an image,
which would happen if only a total variation (TV) prior is used. A
ramp in the reconstructed signal x̂ in our classification context would
mean an assignment of label other than −1 and 1, which can reflect
the confidence level in the estimated label; e.g., a computed label
x̂i = 0.3 would mean the classifier has determined that event i is
more likely to be 1 than −1, but the confidence level is not high.
By using the gradient smoothness prior, one can promote the appro-
priate amount of ambiguity in the classification solution instead of
forcing the classifier to make hard binary decisions. As a result, the
mean square error (MSE) of our solution with respect to the ground
truth labels is low.

4.4. Objective Function
We can now combine the likelihood and signal prior together to de-
fine an optimization objective. Instead of maximizing the posterior
probability Pr(x|y) ∝ Pr(y|x)Pr(x), we minimize the negative
log of Pr(y|x)Pr(x) instead:

− logPr(y|x)Pr(x) ∝ − logPr(y|x)− logPr(x) (13)

The negative log of the likelihoodPr(y|x) in (11) can be rewrit-
ten as:

− logPr(y|x) = k (log(1− p)− log(p))︸ ︷︷ ︸
γ

−N1 log(1− p) (14)

Because the second term is a constant for fixed N1 and p, we can
ignore it during minimization.

Together with the negative log of the prior Pr(x) in (12), we
can write our objective function as follows:

min
x
‖y −Dx‖0 γ + σ−2

0 xT L x + σ−2
1 xT L2 x (15)

5. ALGORITHM DEVELOPMENT

5.1. Iterative Reweighted Least Square Algorithm

To solve (15), we employ the following optimization strategy. We
first replace the l0-norm in (15) with a weighted l2-norm:

min
x

(y −Dx)TU(y −Dx)γ + σ−2
0 xT L x + σ−2

1 xT L2 x

(16)
where U is aN1×N1 diagonal matrix with weights u1, . . . , uN1 on
its diagonal. In other words, the fidelity term is now a weighted sum
of label differences: (y−Dx)TU(y−Dx) =

∑N1
i=1 ui(yi−xi)

2.
The weights ui should be set so that the weighted l2-norm

mimics the l0-norm. To accomplish this, we employ the iterative
reweighted least square (IRLS) strategy [4], which has been proven
to have superlinear local convergence, and solve (16) iteratively,
where the weights u(t+1)

i of iteration t + 1 is computed using
solution x(t)i of the previous iteration t, i.e.,

u
(t+1)
i =

1

(yi − x(t)i )2 + ε
(17)

for a small ε > 0 to maintain numerical stability. Using this weight
update, we see that the weighted quadratic term (y −Dx)TU(y −
Dx) mimics the original l0-norm ‖y −Dx‖0 in the original objec-
tive (15) when the solution x converges.

5.2. Closed-Form Solution per Iteration
For a given weight matrix U, it is clear that the objective (16) is a
unconstrained quadratic programming problem with three quadratic
terms. One can thus derive a closed-form solution by taking the
derivative with respect to x and equating it to zero, resulting in:

x∗ =
(
γDTUD + σ−2

0 L + σ−2
1 LTL

)−1

γDTUTy (18)

5.3. Initialization
It is clear that the IRLS strategy converges to a local minimum in
general, and thus it is important to start the algorithm with a good
initial solution x(0). To initialize x(0)i so that u(1)

i can be computed
using (17), we perform the following initialization procedure.

1. Initialize x by thresholding the solution of (18) with observed
y, using the identity matrix I as the weight matrix U:

xi =

{
1, x∗i > 0

−1, x∗i < 0.
(19)

2. Identify the entry xi that minimizes the signal smoothness
prior, i.e.,

i∗ = arg min
i

σ−2
0 xT−iL x−i + σ−2

1 xT−iL
2 x−i (20)

where x−i is the label vector x with i flipped (i.e. convert 1
into −1 or vice versa).



3. If x−i∗ results in a smaller objective function (15), set x to
x−i∗ and goto step 2. Otherwise stop.

The above initialization procedure exploits the fact that the
ground truth signal x contains binary labels, and thus each entry
xi deviates from noise-corrupted yi by at most 1. In subsequent
iterations, computed x will not be restricted to be a binary vector to
reflect confidence level, as discussed earlier.

5.4. Interpreting Computed Solution x̂

After the IRLS algorithm converges to a solution x̂, we interpret
the classification results as follows. We perform thresholding by a
predefined value τ on x̂ to divide it into three parts, including the
rejection option for ambiguous items

xi =


1, x∗i > τ

Rejection, −τ < x∗i < τ

−1, x∗i < −τ.
(21)

Note that a multiclass classification problem can be reduced to
multiple binary classification problems via the one-vs.-rest rule or
the one-vs.-one rule [19]. It can then be solved using our proposed
graph-based binary classifier successively.

6. EXPERIMENTATION

6.1. Experimental Setup

(a) female 1 (b) female 2 (c) male 1 (d) male 2

Fig. 3. Examples of images in gender classification dataset.

(a) face 1 (b) face 2 (c) non-face 1

Fig. 4. Examples of face and non-face images.

We tested our proposed algorithm against two schemes: i) a
more robust version of the famed Adaboost called RobustBoost3

that claims robustness against label noise, and ii) SVM with a RBF
kernel. The first dataset is a gender classification dataset consists
of 5300 images of the frontal faces of celebrities from FaceScrub
dataset 4, where half of them are male and the other half are female.
Example images from the dataset are shown in Fig. 3. We normalize
the face images to 400 × 400 pixels and extracted space LBP fea-
tures with a cell size of 25 × 25 pixels. To test the robustness of
different classification schemes, we randomly selected a portion of
images from the training set and reversed their labels. All the classi-
fiers were then trained using the same set of features and labels. The
test set was classified by the classifiers and the results are compared
with the ground truth labels. We also tested the same classifiers us-
ing the face detection dataset, which consists of 400 face images
from ORL face database provided by ATT Cambridge labs and 800
non-face images. We used half of the dataset (200 face images and

3http://arxiv.org/pdf/0905.2138.pdf
4http://vintage.winklerbros.net/facescrub.html

Table 1. Classification error and rejection rate in gender detection
for competing schemes under different training label errors (training
set: 1000/1000)

% label noise 5% 10% 15% 25%
Graph (σ−2

1 = 0) 0.07/1.59% 0.31/1.86% 1.42/3.60% 5.39/7.42%
Graph (σ−2

1 = 0.5) 0.00/1.86% 0.23/2.98% 0.80/5.67% 2.47/8.51%
Graph (σ−2

1 = 0.9) 0.00/2.30% 0.12/3.54% 0.49/6.73% 0.67/11.62%
RobustBoost 4.02% 6.06% 9.74% 24.57%
SVM-RBF 4.30% 7.84% 17.32% 40.43%

Table 2. Classification error and rejection rate in face / non-face
dataset for competing schemes under different training label errors
(training set: 300/300)

% label noise 5% 10% 15% 25%
Graph (σ−2

1 = 0) 0.00/0.48% 0.46/0.59% 0.86/0.87% 1.69/2.63%
Graph (σ−2

1 = 0.5) 0.00/0.82% 0.00/1.03% 0.00/1.85% 0.77/3.34%
Graph (σ−2

1 = 0.9) 0.00/0.91% 0.00/1.32% 0.00/2.41% 0.00/3.93%
RobustBoost 2.23% 3.13% 4.04% 13.76%
SVM-RBF 3.31% 5.39% 7.55% 30.68%

400 non-face images) as the training set and the other half as the test
set. See Fig. 4 for example images.

6.2. Experimental Results

The resulting classification error and rejection rate for different clas-
sifiers are presented in Table 1, where the percentage of randomly
erred training labels ranges from 5% to 25%. In the experiment,
we kept σ−2

0 constant and varied σ−2
1 to induce different rejection

rates. We observe that our graph-signal recovery scheme (graph)
achieved lower classification error when compared to RobustBoost
and SVN-RBF at all training label error rates. In particular, at 25%
label error rate, our proposal can achieve very low error rates of
5.39%, 2.47% and 0.67% at the cost of rejection rates of 7.42%,
8.51% and 11.62% respectively. In comparison, Robustboost and
SVM suffer from severe classification error rate of 24.57% and
40.43% respectively, which is much higher than the sum of error
and rejection rate observed in our proposal.

The results also show that by assigning a larger σ−2
1 , we can in-

duce a lower classification error rate at the cost of a slightly higher
rejection rate. In different applications, a user may define the de-
sired classifier performance as a weighted sum of classification error
and rejection rate, as done in [20]. Using our algorithm, a user can
thus tune σ−2

1 to adjust the preference of classification error versus
rejection rate.

The results for face detection dataset are shown in Table 2. We
observe similar trends where our proposed algorithm outperforms
RobustBoost and SVM-RBF significantly in classification error rate.

7. CONCLUSION

Due to the sheer size of user-generated content in social media, label
noise is unavoidable in the training data in a semi-supervised learn-
ing scenario. In this paper, we propose a new method for robust
graph-based classifier learning via a graph-signal restoration formu-
lation, where the desired signal (label assignments) and its gradi-
ent are assumed to be smooth with respect to a properly constructed
graph. We describe an iterative reweighted least square (IRLS) al-
gorithm to solve the problem efficiently. Experimental results show
that our proposed algorithm outperforms regular SVM and noisy la-
bel learning schemes in the literature noticeably.
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