
Random Walk Graph Laplacian based Smoothness 
Prior for Soft Decoding of JPEG Images

Xianming Liu

ICME2016 Tutorial

http://homepage.hit.edu.cn/pages/xmliu
http://arxiv.org/abs/1607.01895



ICME2016 Tutorial

Overview
 Background
 Popular Priors
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Background
 Compressed image restoration: important and practical 

problem:
 Compression is the most common cause of image degradation.
 Compression is indispensable in almost all visual communication 

systems.

 Compressed image restoration is a non-trivial problem:
 Compression noises are signal-dependent. 
 Far from being white and independent.
 Composite noises: blocking and ringing effects.
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JPEG Image Restoration
 Problem Formulation

 Encoder:

 Decoder: the quantization bin (q-bin) constraint
Q Y ( 1)Q , 1, 2, ,64.i i i i iq q i    

(Y / Q ),    =i i iq round Y Ty
DCT Coefficients

8x8 pixel block

quantization parameter

DCT 
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Hard Decoding vs. Soft Decoding
 Hard Decoding 
 Reconstruct DCT coefficients using the 

centers of assigned quantization bins.
 Soft Decoding
 Find the most probable signal WITHIN

the set of quantization bin constraints.
 Signal priors is used for aid

- Laplacian [Lam and Goodman, TIP’00]
- Local/non-local similarity [Zakhor, TCSVT’92] 

[Zhai et al., TCSVT’08, TMM’08] [ Zhang et al., TIP’14]
- Total Variation [Bredies, SIAM J. Img. Sci’12]
- Sparsity [Jung et al., SPIC’12] [Liu et al., CVPR’15, TIP’16 ]
- Sparsity + TV [Chang et al. TSP’15]
- Low-rank Prior [Zhao et al., TCSVT’16][Zhang et al, 

TIP’16]
5

JPEG Soft decoding

JPEG Soft decoding5



ICME2016 Tutorial

Related Work of Graph-based Image 
Restoration and Enhancement
 Denoising [Hu et al., MMSP’14, ICIP’14], [Pang et al. APSIPA’14, 

ICASSP’15]
 Super-resolution  [Mao et al., GlobalSIP’13, 3DTV’14]
 Dequantization [Liu et al, ICIP’15][Hu et al.,SPL’16]
 Deblurring [Kheradmand and Milanfar, TIP’14]
 Bit-depth Enhancement  [Wan et al., TIP’16]
 Joint Denoising and Contrast Enhancement  [Liu et al., 

ICASSP’15]
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MAP Formulation
Maximum a posterior (MAP):

The likelihood is defined as:

MAP formulation becomes patch surrounds block
 x is the basic processing unit
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 MMSE Formulation

 Closed-form Solution

Laplacian Prior
 Q-bins: constrain the search space of individual DCT coefficients
 Laplacian Prior: states the probability density function of individual 

DCT coefficients

For higher frequencies, the Laplacian parameter is larger; 
i.e., the distribution is sharper and more skewed to 0.  

[Lam and Goodman, TIP’00]
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Laplacian Prior
 Advantage

 closed-form MMSE solution
 smaller expected squared error than a MAP solution

 Limitation
 can only be used to recover code blocks separately
 cannot handle block artifacts that occur across adjacent blocks

 Solution
 We turn to employ the sparsity prior at a larger patch level x.
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Sparsity Prior
 Sparse Signal Model

 Sparse Coding

 orthogonal matching pursuit (OMP) [Cai and Wang, TIT’11]
 computational complexity is linear with the size of dictionary

 Sparsity Prior

over-complete dictionary sparse code
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Sparsity-based Soft Decoding

 Step 1–Initial Estimation: The Laplacian prior is used to get an initial 
estimation of x.

 Step 2–Sparse Decomposition:

 Step 3–Quantization Constraint:

Lemma 1: The sparsity-based soft decoding 
algorithm converges to a local minimum.
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Limitation of Small KSVD Dictionary
 Complexity linearly increases with the size of dictionary.
 In practice, a just reasonable over-complete dictionary is used.
 KSVD Dictionary Training

Training pixel patch Parsavel’s theorem
DCT patch

pre-set sparsity limit

We analyze the behavior of dictionary 
learning in frequency domain
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Limitation of Small KSVD Dictionary

 Selecting M atoms is analogous to designing M partitions

When K = 1, dictionary learning becomes
vector quantization (VQ) design problem
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Limitation of Small KSVD Dictionary

 Selecting M atoms is analogous to designing M partitions

 When N tends to infinite:

When K = 1, dictionary learning becomes
vector quantization (VQ) design problem

a product of Laplacian distributions for individual DCT frequencies
• low frequencies: decay slowly
• high frequencies: more skewed and concentrated around zero

Expected square error
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 When the number of atoms is small
 quantization is coarser for large 

magnitude in AC than DC

Limitation of Small KSVD Dictionary

Illustration of product VQ for DC and AC frequencies

 When the dictionary is large enough
 quantization for large magnitude in 

high frequency is sufficiently fine.

When the dictionary Φ is small, the 
sparsity prior is difficult to recover 

large magnitude of high DCT 
frequencies.

When the dictionary Φ is large 
enough, the sparsity prior can 

recover large magnitude of high DCT 
frequencies well.



ICME2016 Tutorial

Empirical Observation
Mean Frequency

DCT frequency DCT coefficient
of atom

1000 7000
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Empirical Observation
Mean Frequency

DCT frequency DCT coefficient
of atom

1000 7000
When dictionary is small, the mean frequency of 

atoms is low, the sparsity prior cannot recover high 
DCT frequencies well.
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Three Priors Complement Each Other
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Graph-signal Smoothness Prior
 Graph Laplacian Regularizer

 Different graph Laplacian matrixes
 Combinatorial graph Laplacian:
 Symmetrically normalized graph Laplacian:
 Random walk graph Laplacian:
 Doubly stochastic graph Laplacian:

Graph Laplacian Symmetric DC eigenvector
Combinatorial Yes Yes
Symmetrically Normalized Yes No
Random Walk No Yes
Doubly Stochastic Yes Yes

[Kheradmand and Milanfar, TIP’14]
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Graph-signal Smoothness Prior
 Graph Frequency Interpretation

 Eigen decomposition:                       
• eigenvalues carry the notion of frequency

 Graph Fourier transform:                
 We get

 Minimizing          will suppress high graph frequencies and 
preserve low graph frequencies. 
 x is smoothened with respect to the graph
 PWS signals can be well approximated by low graph frequencies 

for appropriately constructed graphs. 
 Discontinuities inside PWS signals translate to high DCT 

frequencies.
[Hu et al., MMSP’14, ICIP’14]
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Why Graph Prior Works Well 
for PWS Signals? 

 Spectral clustering: given a similarity graph, separate its vertices into 
two subsets of roughly the same size via spectral graph analysis.

 Normalized cut (Ncut)    [Shi and Malik, TPAMI’00]

NP-hard!

Relaxed solution of Ncut!

where

PWC!
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Interpretation from the Perspective of 
Spectral Clustering

 v1 minimizes the objective, since
Rayleigh quotient 
with respect to 

 v1 is the first eigenvector of 
 v is orthogonal to v1 , according to Rayleigh quotient, the solution 

is the second eigenvector of 
The second eigenvector v2 of Ln is a relaxed 

solution to the Ncut problem, which is PWS; 
if the solution becomes exact, then v2 is PWC.

 Low graph frequencies of      thus are suitable to compactly 
represent PWS signals.
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 The first eigenvector of     ,                  , is not a constant 
vector   does not have DC component   not 
suitable for filtering natural images.

Matrix similarity transformation1
Random walk graph 

Laplacian!
 has the left eigenvectors

Random Walk Graph Laplacian

 GFT using the left eigenvectors

1https://en.wikipedia.org/wiki/Matrix_similarity
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Random Walk Graph Laplacian
 However,      is asymmetric, there is no clear interpretation in 

graph frequency domain of              . 
 We use          instead, and can derive:
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Random Walk Graph Laplacian

 We have a graph frequency interpretation of our Left Eigenvector 
Random-walk Graph Laplacian (LERaG)                 :    

high frequencies of random walk graph Laplacian
are suppressed to restore smooth signal x

 The proposed regularizer can be efficiently computed as:    

Only adjacency matrix is involved, no 
need to compute other matrix
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Advantages of the Proposed 
Graph Laplacian
 Compared with combinatorial graph Laplacian

 Compared with normalized graph Laplacian

 Compared with doubly stochastic graph Laplacian

Our Laplacian is based on random walk graph Laplacian (normalized), 
therefore, it is insensitive to the degrees of graph vertices.

Our Laplacian  can efficiently filter constant signals, thus is suitable for 
image filtering.

Our Laplacian can be computed simply.
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Analysis of Ideal Piecewise 
Constant Signals
 1D Piecewise constant  (PWC) signal
 A full-connected graph is built

 The first eigenvector
 The second eigenvector 

We can see that  
PWC
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Analysis of Ideal Piecewise 
Constant Signals

 is a ideal low-pass given eigenvectors of 
 There is no penalty for LERaG.

Given an ideal two-piece PWC signal x, D1/2x
can be represented exactly using the first two 

eigenvectors of Ln corresponding to eigenvalue 
0, hence LERaG evaluates to 0.
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Analysis of Piecewise 
Smooth Signals
 1D piecewise smooth (PWS) signal:
 A full-connected graph is built

 The normalized graph Laplacian       is still block-diagonal
 The second eigenvector 

 is also roughly PWS:
 There is a small penalty of LERaG.

Roughly PWS
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Analysis of Ideal Piecewise 
Smooth Signals
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Soft Decoding via Priors Mixture
 The objective function

 λ1 is fixed
 We adaptively increase λ2 if q-bin indices q indicate the 

presence of high DCT frequencies in target x.
 Optimization

 Laplacian prior provides an initial estimation;
 Fix x and estimate α;
 Fix α and estimate x.
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Experimental Results

 Compared methods
 BM3D: well-known denoising algorithm
 KSVD: with a large enough over-complete dictionary (100x4000); 

our method uses a much smaller one (100x400).
 ANCE: non-local self similarity  [Zhang et al. TIP14]
 DicTV: Sparsity + TV     [Chang et al, TSP15]
 SSRQC: Low rank + Quantization constraint  [Zhao et al. TCSVT16]
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PSNR and SSIM Evaluation
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QF-PSNR Evaluation
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Subjective Quality Evaluation
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Subjective Quality Evaluation
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Other Comparison

TIME BM3D KSVD ANCE DicTV SSRQC Proposed
Average 373.35 209.71 307.43 39.53 70.32 143.73

 Computation complexity comparison

 Comparison with other graph regularizers
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Conclusion
We propose a new graph-signal smoothness prior based 

on left eigenvectors of the random walk graph Laplacian.
 with desirable image filtering properties
 can recover high DCT frequencies of piecewise smooth signals 

well
 can be used in other image restoration or general GSP tasks

We combine the Laplacian prior, sparsity prior and our new 
graph-signal smoothness prior into an efficient JPEG 
images soft decoding algorithm.
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Thanks! Any Question?
xmliu.hit@gmail.com


