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Background

O Compressed image restoration: important and practical
problem:
B Compression is the most common cause of image degradation.

B Compression is indispensable in almost all visual communication
systems.

O Compressed image restoration is a non-trivial problem:
B Compression noises are signal-dependent.
B Far from being white and independent.
B Composite noises: blocking and ringing effects.
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JPEG Image Restoration

0 Problem Formulation
B Encoder: DCT

y,

q. =round(Y,/Q,), Y =Ty ———> 8x8 pixel block

quantization parameter DCT Coefficients

B Decoder: the quantization bin (g-bin) constraint

g.Q <Y <(q,+1)Q,i=12,---,64.
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Hard Decoding vs. Soft Decoding

O Hard Decoding

B Reconstruct DCT coefficients using the g
centers of assigned quantization bins.

O Soft Decoding

B Find the most probable signal WITHIN
the set of quantization bin constraints.
B Signal priors is used for aid
- Laplacian [Lam and Goodman, TIP00]

- Local/non-local similarity zakhor, Tcsvraz]
[Zhai et al., TCSVT'08, TMM08] [ Zhang et al., TIP'14]

- Total Variation [gredies, SIAM J. Img. Sci'12]
- SparSity [Jung et al., SPIC’12] [Liu et al., CVPR’'15, TIP’16 ]
- Sparsity + TV [changetal. TsP'15]

- Low-rank Prior [zhao et al., TCSVT'16][Zhang et al,
TIP'16]
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Related Work of Graph-based Image
Restoration and Enhancement

0 Denoising [Hu et al., MMSP’14, ICIP’14], [Pang et al. APSIPA'14,
ICASSP’15]

0 Super-resolution [Mao et al., GlobalSIP’13, 3DTV’14]
0 Dequantization [Liu et al, ICIP’15][Hu et al.,SPL’16]
[0 Deblurring [Kheradmand and Milanfar, TIP’14]

O Bit-depth Enhancement [wan et al., TIP’16]

O Joint Denoising and Contrast Enhancement [Liuetal.,
ICASSP’15]
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MAP Formulation

O Maximum a posterior (MAP):

Coding block
y

x* = argmaxp (x| q)

= argmaxp (q | x) p(x).

X

unit patch to process x

overlapped patches are
estimated together

O The likelihood is defined as:

0 o.w.

y = Mx plq [ %) = { 1 if round(TMx/Q) = q

O patch surrounds block .
O x is the basic processing unit ~ AMAP formulation becomes
x* = arg max p(x).

s.t. qQ < TMx < (q+1)Q
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Laplacian Prior

O Q-bins: constrain the search space of individual DCT coefficients
O Laplacian Prior: states the probability density function of individual

DCT coefficients 14
PL(Y;) = 5 exp(—p; |Yil) |
[Lam and Goodman, TIP’00]

" U O O O G l MMSE Formulation

A4 Ll Ll (a:+1)Q:
R LI n*:argmion/ (Y = Y;)? PL(Y;) dYi.
B O O U O Y Jq:Qi 5
i L 11 1 1 1 | %m closed-form Solution

400 1L L . .
l ) Y R G T l Y-*:(QiQi"‘l«Li)e{#}_((qz’+1)Qi+Hi)€{ i 1}
R () (e '

For higher frequencies, the Laplacian parameter is larger;
l.e., the distribution is sharper and more skewed to 0.
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Laplacian Prior

O Advantage
B closed-form MMSE solution
B smaller expected squared error than a MAP solution

O Limitation
B can only be used to recover code blocks separately
B cannot handle block artifacts that occur across adjacent blocks

0 Solution

B We turn to employ the sparsity prior at a larger patch level x.
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Sparsity Prior

O Sparse Signal Model
x;(I)a {\ '3
over-complete dictionary  sparse code

O Sparse Coding

o = argmin [x — ®a|? + Alla,,
(84

B orthogonal matching pursuit (OMP) [Cai and Wang, TIT'11]
B computational complexity is linear with the size of dictionary

O Sparsity Prior

Ps(x) o< exp(—=A||al|y)-
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Sparsity-based Soft Decoding

. 2
{Tlan} [x — Pal; + A ||a||0 ;
s.t. qQ < TMx < (q+1)Q

O Step 1-Initial Estimation: The Laplacian prior is used to get an initial
estimation of x.

O Step 2—-Sparse Decomposition:
a®) = argmin || x®) — ®a, + A lal|,
O Step 3—Quantization Constraint:

.
9

x(t+1) = arg min |x — <I'a(t)|
s.t. qQ < TMx < (q+1)Q

Lemma 1: The sparsity-based soft decoding
algorithm converges to a local minimum.
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Limitation of Small KSVD Dictionary

O Complexity linearly increases with the size of dictionary.
O In practice, a just reasonable over-complete dictionary is used.
O KSVD Dictionary Training

N
min Z % — <I>az-||§ + Alleilfo;
=1

@,{az} ’L/

Training pixel patch Parsavel’s theorem
DCT patch X; = T'x;

\ ) 4 pre-set sparsity limit
N /

i X — T'®al?. st. lloull. < K
@1’,1{121%};” i az“z) 3 ” 71”0—

We analyze the behavior of dictionary
learning in frequency domain
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Limitation of Small KSVD Dictionary

When K = 1, dictionary learning becomes
vector quantization (VQ) design problem

B Selecting M atoms is analogous to designing M partitions

R=UMY_ R, R;NR;=0,Vi#j
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Limitation of Small KSVD Dictionary i 7

When K = 1, dictionary learning becomes
vector quantization (VQ) design problem

B Selecting M atoms is analogous to designing M partitions

R=UY_R,, R,NR;=0,Yi#j

J
u_.LLJLL L1
B \When N tends to infinite: A4 Lol
1.111 Lo
Z/ ” . W OO S |
min XT¢|| ()dXiLLlill
{m} .’ 4oLl
Expected square error 1 1 1 1 11
| U S B !

—_——— — — —

a product of Laplacian distributions for individual DCT frequencies
* low frequencies: decay slowly
* high frequencies: more skewed and concentrated around zero
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Limitation of Small KSVD Dictionary

R O When the number of atoms is small

B quantization is coarser for large
magnitude in AC than DC

—Fe
— x;vlagm ude : : :
When the dictionary @ is small, the
Ko o & 1 1 sparsity prior is difficult to recover
IR Q __i_@ large magnitude of high DCT
&: o frequencies.
et O When the dictionary is large enough
. R nhae B B quantization for large magnitude in
high frequency is sufficiently fine.
lllustration of product VQ for DC and AC frequencies When the dictionary Dis |arge

enough, the sparsity prior can
recover large magnitude of high DCT
frequencies well.
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Empirical Observation

155

O Mean Frequency i
A | smsmnensnssimmmsvasmunsnn Gmanss . ’ .
M n 2 14 ‘
1 2 !
MF = — E E fiY:2(m) g1
M L; 13+ &
m=1 i= H
=125
DCT coefficient g8
of atom " : , i ; , ,
1000 2000 3000 4000 5000 6000 7000
Dictionary Size
: : : ' : ,.;
2 e e pr i
) : P
K2 : 1’ :
OZ‘) ‘,-4/
o [ J i :
272k ./‘.... SO U S—
¥
/
/
27145}/
’
¥ | ‘
27.1 1 i 1 f 1 J
1000 2000 3000 4000 5000 6000 7000
Dictionary Size

ICME2016 Tutorial



Empirical Observation

O Mean Frequency o -
1 M n z 1.4_ oo
2 8 !
MF =23 ) fiYe(m) |
m:7/ \ 512.5 - :
e DCT coefficient 12” )

When dictionary is small, the mean frequency of w0 7w

~atoms is low, the sparsity prior cannot recover high
2738 DCT frequencies well.
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Three Priors Complement Each Other

provides initial solution to
compute code vector

Provides an initial estimation
for graph construction

remove block
artifacts

Graph-signal
Smoothness Prior

Sparsity Prior

restore high DCT frequencies
when dictionary is small
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Graph-signal Smoothness Prior

O Graph Laplacian Regularizer

xTLx = % Z (2 — x;)°W; |:> Pg(x) o exp (—Aox’ Lx)
(i,j)€€&
O Different graph Laplacian matrixes
B Combinatorial graph Laplacian: L=D - W
B Symmetrically normalized graph Laplacian: £,, = D~Y2LD~!/2
B Random walk graph Laplacian: £, = D™'L
B Doubly stochastic graph Laplacian: £, = I-C~Y/2wWC~1/2

Combinatorial Yes Yes
Symmetrically Normalized  Yes No
Random Walk No Yes
Doubly Stochastic Yes Yes

ICME2016 Tutorial  [Kheradmand and Milanfar, TIP'14]



Graph-signal Smoothness Prior

O Graph Frequency Interpretation
B FEigen decomposition: L = UAU7T
« eigenvalues carry the notion of frequency
B Graph Fourier transform: F = UT>a = Fx |
m We get

xTLx = aTAa = S a2 S N
k

O Minimizing x Lx will suppress high graph frequencies and
preserve low graph frequencies.

B X is smoothened with respect to the graph

B PWS signals can be well approximated by low graph frequencies
for appropriately constructed graphs. [Huetal., MMSP’14, ICIP’14]

B Discontinuities inside PWS signals translate to high DCT
frequencies.
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Why Graph Prior Works Welli

for PWS Signals?

O Spectral clustering: given a similarity graph, separate its vertices into
two subsets of roughly the same size via spectral graph analysis.

0 Normalized cut (Ncut)  [shiand Malik, TPAMI'00]

PWC(!
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Relaxed solution of Ncut!
- ~N
_ VTﬁnV T
min ——=——, s.t. v- vy =0
v viv
N Y,

v = D?f
V1 = D1/21

/
NP-hard! . -
min Ncut (A, B) min s T FTLf R
where |:> min ————, s.t. £ D1 =0
f T d vol%A) if ieA e
N [fl’ - ,fn] . fz B voT(lB) if ieB



Interpretation from the Perspective of
Spectral Clustering

Rayleigh quotient <:| VL, v .
with respect to £» min —z—) st vivy =0

O v, minimizes the objective, since v¥L,v; =1TL1 =0
B v, is the first eigenvector of L,

O v is orthogonal to v, , according to Rayleigh quotient, the solution
is the second eigenvector of L,

The second eigenvector v, of L, is a relaxed
solution to the Ncut problem, which is PWS;
if the solution becomes exact, then v, is PWC.

O Low graph frequencies of £, thus are suitable to compactly
represent PWS signals.
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Random Walk Graph Laplacian

O The first eigenvector of £,,, vi := DY/21 | is not a constant
vector =2 L, does not have DC component - not
suitable for filtering natural images.

O Matrix similarity transformation’

_ _ Random walk graph
L, :=D7'2L,D'? =D 'L :> Laplacian!

O L. has the left eigenvectors vTD!/2
VIDY2L, = AVIDY2 L, =VAVT
O GFT using the left eigenvectors
B =VTD!/2x

Thttps://en.wikipedia.org/wiki/Matrix_similarity
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Random Walk Graph Laplacian

O However, L, is asymmetric, there is no clear interpretation in
graph frequency domain of x!' L, x.

O We use LI L, instead, and can derive:

[XTE?T[,TX = (x'DY2£,) D! (EnDl/Qx)}

ﬂ ~ = L,D'?x

[XT[,;‘FETX = 'yTD_lﬁyJ

d

[7T7 <~ATD 1y < 7T’Y}E> [(d;iln)'yTﬂ

dmax o dmin
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Random Walk Graph Laplacian

7'y =x"D2VAVIVAVTD*x
=B A’B =) i} Br.
k

O We have a graph frequency interpretation of our Left Eigenvector
Random-walk Graph Laplacian (LERaG) (d_i )v7~:

high frequencies of random walk graph Laplacian
are suppressed to restore smooth signal x

O The proposed regularizer can be efficiently computed as:

[(d;iln)v’fv = xT(d;jn)LD—le}

Only adjacency matrix is involved, no

need to compute other matrix
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Advantages of the Proposed
Graph Laplacian

O Compared with combinatorial graph Laplacian

Our Laplacian is based on random walk graph Laplacian (normalized),
therefore, it is insensitive to the degrees of graph vertices.

O Compared with normalized graph Laplacian

Our Laplacian can efficiently filter constant signals, thus is suitable for
image filtering.

O Compared with doubly stochastic graph Laplacian

Our Laplacian can be computed simply.
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Analysis of Ideal Piecewise
Constant Signals

O 1D Piecewise constant (PWC) signal I oo
A

O A full-connected graph is built @
A, O0ix (n—1) ] o B, le(n—l)]

W —
{ On—t)xt  An—i

O(n—l)xl Bn—l

O The first eigenvector v; = D1/21
O The second eigenvector V2
{ 1/1(1 — 1)1/2 if1§i§l|:> PWC
—1/(n—=Dn—-1-1D)Y2 ifi<i<n
0 We can see that D/2x = q;v{ + asvs

V2,4 =

cil(l—1)+co(n—0)(n—1-1) 0 — (c1 —e)l(l—1)(n—D(n—-1-1)
(n—0)(n—-1-1)+1(-1) T =D —1—-1D+1—1)
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Analysis of Ideal Piecewise
Constant Signals

~

" Given an ideal two-piece PWC signal x, D'?x
can be represented exactly using the first two
eigenvectors of L corresponding to eigenvalue

0, hence LERaG evaluates to 0. y

O D!/2x is a ideal low-pass given eigenvectors of £,
O There is no penalty for LERaG.
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Analysis of Piecewise
Smooth Signals

A
O 1D piecewise smooth (PWS) signal: I m
A

O A full-connected graph is built }
"‘__::::::415

O The normalized graph Laplacian L,, is still block-diagonal
0 The second eigenvector va

i D2 . .
— if 1 <<
= 3=1 24, Roughly PWS
V2, = { D12 |:> oughly
i ifl<i<n
\ 3:l+1 NEW!

O D!/2x is also roughly PWS: D/2x ~ ai1vy + asvs
O There is a small penalty of LERaG.
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Analysis of Ideal Piecewise
Smooth Signals

—4— Original data —4&— Original data

6~ fC--Reconsh'uctionbyGFT___ﬁ 6~ —4&-- Reconstruction by DCT
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Soft Decoding via Priors Mixture

O The objective function

arg min ||x — <I>a||§ + Aleg + AexT(d i, )LD~ Lx,

min
{x,a}

s.t. qQ <X TMx < (q+1)Q

B A1is fixed

B We adaptively increase A2 if g-bin indices q indicate the
presence of high DCT frequencies in target x.

O Optimization
B [aplacian prior provides an initial estimation;

B Fix x and estimate a;
B Fix a and estimate x.
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Experimental Results

0 Compared methods
B BM3D: well-known denoising algorithm

B KSVD: with a large enough over-complete dictionary (100x4000);
our method uses a much smaller one (100x400).

B ANCE: non-local self similarity [Zhang et al. TIP14]
DicTV: Sparsity + TV  [Chang et al, TSP15]
B SSRQC: Low rank + Quantization constraint [Zhao et al. TCSVT16]
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PSNR and SSIM Evaluation

QUALITY COMPARISON WITH RESPECT TO PSNR (IN DB) AND SSIM AT QF =40

Tinages JPEG BM3D [38] KSVD (8] ANCE [18] DicTV [3] SSRQC [20] Ohuirs

PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR SSIM

Butterfly 29.97 | 0.9244 31.35 | 0.9555 31.57 | 0.9519 31.38 | 0.9548 31.22 | 0.9503 32.02 | 0.9619 32.87 | 0.9627

Leaves 30.67 | 0.9438 32.55 | 0.9749 33.04 | 09735 32,74 | 0.9728 3245 | 09710 32,13 | 0.9741 3442 | 0.9803
Hat 32.78 | 0.9022 33.89 | 0.9221 33.62 | 09149 33.69 | 09169 33.20 | 0.8988 34,10 | 0.9237 34.46 | 0.9268
Boat 3342 | 09195 34.77 | 0.9406 34.28 | 0.9301 34.64 | 0.9362 26.08 | 0.7550 33.88 | 0.9306 34.98 | 0.9402
Bike 28.98 | 0.9131 29.96 | 0.9356 30.19 | 0.9323 3031 | 0.9357 29.75 | 0.9154 30.35 | 0.9411 31.14 | 0.9439

House 35.07 | 0.8981 36.09 | 0.9013 36.05 | 0.9055 36.12 | 0.9048 35.17 | 0.8922 36.49 | 0.9072 36.55 | 0.9071

Flower 31.62 | 09112 32.81 | 0.9357 32.63 | 0.9271 32.67 | 09314 31.86 | 0.9084 33.02 | 0.9362 33.37 | 09371

Parrot 34.03 | 0.9291 3492 | 0.9397 3491 | 0.9371 35.02 | 0.9397 3392 | 0.9227 35.11 | 0.9401 35.32 | 0.9401

Pepper512 3421 | 0.8711 3494 | 0.8767 3489 | 0.8784 3499 | 0.8803 3424 | 0.8639 35.05 | 0.8795 35.19 | 0.8811

Fishboat512 3276 | 0.8763 33.61 | 0.8868 33.36 | 0.8809 33.60 | 0.8861 32.53 | 0.8496 33.68 | 0.8859 33.73 | 0.8871

Lena512 35.12 | 0.9089 36.03 | 0.9171 35.82 | 09146 36.04 | 09177 34.85 | 0.8986 36.09 | 0.9187 36.11 0.9191

Airplane512 33.36 | 0.9253 34.38 | 0.9361 34.36 | 0.9341 34.53 | 0.9358 33.75 | 09134 35.81 | 0.9355 36.07 | 0.9439

Bike512 2943 | 0.9069 30.47 | 0.9299 30.66 | 0.9258 30.71 | 0.9298 30.05 | 0.9043 32.26 | 0.9372 32.55 | 0.9387

Statue512 3278 | 0.9067 33.61 | 09188 33.55 | 09149 33.55 | 0.9193 32.53 | 0.8806 34.88 | 0.9249 3495 | 0.9273

Average || 3244 | 09097 || 33.52 | 09264 || 3350 | 0.9229 || 3357 | 09258 || 3225 | 0.8945 || 3391 | 09283 || 3441 | 0.9311
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Subjective Quality Evaluat
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(¢) SSRQC (25.31,0.8764) () Proposed (25.82.0.8861)

(d) DicTV (23.42,0.8176)
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Other Comparison

O Computation complexity comparison

Average 373.35 209.71 307.43 39.53 70.32 143.73
O Comparison with other graph regularizers

Images Combinatorial | Normalized | Doubly Stochastic | LERaG
Butterfly 25.42 24.70 25.15 2557
Leaves 24.99 24.54 24.84 25.17

Hat 27.53 27.42 27.43 27.56

Boat 26.99 26.94 26.98 26.99

Bike 23.12 23.01 23.09 23.17
House 29.87 29.83 29.86 29.89
Flower 25.84 25.78 25.82 25.87
Parrot 219 27.95 271.97 28.02
Average 26.46 26.27 26.39 26.53
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Conclusion

O We propose a new graph-signal smoothness prior based
on left eigenvectors of the random walk graph Laplacian.
B with desirable image filtering properties

B can recover high DCT frequencies of piecewise smooth signals
well

B can be used in other image restoration or general GSP tasks

O We combine the Laplacian prior, sparsity prior and our new
graph-signal smoothness prior into an efficient JPEG
images soft decoding algorithm.
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Thanks! Any Question?

xmliu.hit@gmail.com
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