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Introduction to PWS Image Denoising

• Limitations of current sensing technologies 

- acquired PWS images are often corrupted by non-negligible acquisition noise.

• Denoising is an inverse imaging problem.

• Signal prior is key to inverse imaging problems!

• Depth images are PWS, self-similar.

noise

desired signal

observation vxy 
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• Local methods (e.g., bilateral filtering)

• Nonlocal image denoising

Buades et al, "A non-local algorithm for image denoising," CVPR 2005

- Assumption: nonlocal self-similarity

• Dictionary learning based

Elad et al, "Image denoising via sparse and redundant representation over 

learned   

dictionaries," TIP 2006.

- represent a signal by the linear combination of a few atoms out of a dictionary

Other related works

- Huhle et al, “Robust non-local denoising of colored depth data,”  CVPR Workshop 

2008

- Tallon et al, “Upsampling and denoising of depth maps via  joint segmentation,” 

EUSIPCO 2012

Existing Image Denoising Methods
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Local Piecewise SmoothnessNonlocal self-similarity

unify in GFT domain 

Challenges Our method                

1. Adapt to nonlocal statistics  --- adapt to nonlocal statistics via nonlocal self-similarity

2. Characterize PWS                --- characterize PWS via GFT representation

+ learn GFT dictionary efficiently

Key Idea in Non-local GFT
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Algorithm:

1. Identify similar patches, compute avg patch.

（self-similarity）

2. Given avg patch, use Gaussian kernel to 

compute weights between adjacent pixels.

3. Compute graph Fourier transform (GFT).

4. Given GFT, soft thresholding on transform coeff. 

for sparse representation.

7[1]  W. Hu, X. Li, G. Cheung, O. Au, "Depth Map Denoising using Graph-based Transform and Group Sparsity," IEEE International 

Workshop on Multimedia Signal Processing, Pula (Sardinia), Italy, October, 2013. (Top 10% paper award.)





N

i

i

N

i

i

1
0

1

2

2i
,U

Uymin 


common GFT from avg. patch

code vector for observation i

observation i

NL-GFT Algorithm



Justification of Sparsity Prior

• GFT domain sparsity prior in objective function:

• ”Argument”:

• GFT approximates KLT if statistical model is GMRF and each graph 

weight captures correlation of 2 connected pixels [2, 3].

• Underlying “causes” of PWS signals are few; PWS signal can be 

sparsely represented in GFT domain [4, 5].

8







K

i

i

K

i

ii
x

xxy
i 1

0
1

2

2,
min 

[2] C. Zhang and D. Florencio, “Anaylzing the optimality of predictive transform coding using graph-based models,” in IEEE Signal 

Processing Letters, vol. 20, NO. 1, January 2013, pp. 106–109.

[3] W. Hu, G. Cheung, A. Ortega, O. Au, “Multi-resolution Graph Fourier Transform for Compression of Piecewise Smooth Images,” 

IEEE Transactions on Image Processing, January 2015.

[4] G. Shen, W.-S. Kim, S.K. Narang, A. Ortega, J. Lee, and H. Wey, “Edge-adaptive transforms for efficient depth map coding,” in IEEE

Picture Coding Symposium, Nagoya, Japan, December 2010.

[5] W. Hu, G. Cheung, X. Li, O. Au, “Depth Map Compression using Multi-resolution Graph-based Transform for Depth-image-based 

Rendering,” IEEE International Conference on Image Processing, Orlando, FL, September 2012.



• Setup:

- Test Middleburry depth maps: Cones, Teddy, Sawtooth

- Add Additive White Gaussian Noise 

- Compare against Bilateral Filtering (BF), Non-Local Means Denoising (NLM) 

and Block-Matching 3D (BM3D)

• Results

– Up to 2.28dB improvement over BM3D.

NLGFT BM3D

NLM BF

Experimental Results (1)
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Outline (Part II)

• Image Restoration using GSP Tools

• Image Denoising

• Sparsity Prior

• Smoothness Prior

• Soft Decoding of JPEG Compressed Images

• Joint Denoising / Contrast Enhancement 
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• Image denoising—a basic restoration problem:

• It is under-determined, needs image priors for regularization:

• Graph Laplacian regularizer: should be small for target patch 

• Many works use Gaussian kernel to compute graph weights [1, 6]:

is some distance metric between pixels i and j

Motivation (I)

 z u eobservation noise

desired signal

2

2
min   prior( ) 

u
z u u

fidelity term
prior term

u
T( )S u u LuG

 L D A

12

dist( , )i j

graph Laplacian matrix

[6] D. Shuman et al., “The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and 

other irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.
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approximate

discrete graph continuous manifold

Motivation (II)
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• However…

a. Why is  a good prior?

b. How to design the optimal             for restoration?

c. performs particularly well on PWS images, why?

T( )S x u LuG

T
u Lu

• We answer these basic questions by viewing:

• discrete graph as samples of high-dimensional manifold. 

[7]  Jiahao Pang, Gene Cheung, Antonio Ortega, Oscar C. Au, "Optimal Graph Laplacian Regularization for Natural Image Denoising," IEEE 

International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, April, 2015.

[8]  Jiahao Pang and Gene Cheung, “Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain,” arXiv

preprint, arXiv:1604.07948, 2016.

T
u Lu



Our Contributions

14

1. We show                          converges to a continuous functional      , 

analysis of       explains the mechanism of             for inverse imaging

T( )S u u uLG
S

A continuous functional
for regularization

Graph Laplacian 
regularizer SG S

converge

Optimal regularizer  
Non-local self-similarity and 

MMSE formulation
obtain SG

2. We derive the optimal graph Laplacian regularizer for denoising, which is 

discriminant for small noise and robust when very noisy.
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S

T
u Lu

3. We interpret graph Laplacian regularization as anisotropic diffusion, show 

that it not only smooths but may also sharpens the image, promote 

piecewise smooth images



• Graph for image restoration

• Each pixel corresponds to a vertex in a graph (denote # of pixels as      ).

• Regard the image as a signal defined on a weighted graph.

• With proper graph configuration, construct filter for image (graph signal) 

using prior knowledge (i.e., smooth on the graph).

e.g., graph of a 5×5 patch,

(not necessarily be a grid graph)

M

Graph-Based Image Processing
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Continuous Domain Discrete Domain

Obtain continuous 

functional ( )S u

Choose the continuous

exemplar functions 1{ }N

n nf 

SAMPLE

Get metric space

on point-by-point basis

2 2R G Compute the weights 

and Laplacian M MR L

Sample            to obtain

the discrete 1{ }N

n nf
1{ }N

n nf 

Graph Laplacian 

Regularizer ( )S uG

CONVERGE

• Different exemplars lead to different regularization behavior!1{ }N

n nf 

Road Map

ICME'16 Tutorial 07/11/2016 16



• First, define:

• 2D domain

—shape of an image patch

•

— uniformly distributed

random samples on     ,

pixel locations in our work

2R

 T [ ] | ,1i i i iyx i M     s s



M

Functional

( )S u

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1{ }N

n nf1{ }N

n nf 

Exemplars

Regularizer

( )S uG

converge

Roadmap

• (Freely) choose      continuous functions

called exemplar functions, for example

• intensity for gray-scale image  (          )

• R, G, B channels for color image  (           )

( , ) : ,  1nf x R n Ny   

N

1N 

3N 

Graph Construction (I)
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• For each sample          ,  define a length vector

• Build a graph      with       vertices; each sample             has a 

vertex 

T

1 2[ ( ) ( ) ( )]i Ni i i v f f f

i s

iV

G i s

N

M

• Sampling       at positions in      gives

discretized exemplar functions

T

1 1 2 2[ ( , ) ( , ) ( , )]n n n n MMf x y f x y f x y f

nf  N

Graph Construction (II)
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( )S u

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1{ }N

n nf1{ }N

n nf 

Exemplars

Regularizer

( )S uG

converge

Roadmap



• Weight between vertices      andiV jV

( ) ( )ij i j ijw d  

2
2

2ij i jd  v v

“Distance” between two vertices

1
( )i ij

M

j
d 




degree before normalization

normalization factor 

• is an r-neighborhood graph:

no edge connecting two vertices with distance greater than

G
r

Thresholded Gaussian kernel
2

2
exp

2
,

( )

otherwise0

d
d

d
r



  
   

   



Graph Construction (III)
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Functional

( )S u

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1{ }N

n nf1{ }N

n nf 

Exemplars

Regularizer

( )S uG

converge

Roadmap



• — -th entry is        

— diagonal entry is

unnormalized Graph LaplacianA ijw( , )i j

D
1 ij

m

j
w

  L D A

• Our graph      is very general

• e.g., one can derive that the popular 

2D grid graph is a special case of ours

G

• — graph Laplacian regularizerT( )S u u LuG

• is a continuous image

— discrete version of 

( , ) :u x y R
T

1 1 2 2[ ( , ) ( , ) ( , )]M Mu x y u x y u x y u ( , )u x y

Graph Construction (IV)
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Functional

( )S u

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1{ }N

n nf1{ }N

n nf 

Exemplars

Regularizer

( )S uG

converge

Roadmap
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• The continuous counterpart of       is a 

functional       for image on domain

is the gradient of

 
2 1

T 1( ) detS u u u d
 






   G G s

T[  ]x yu u u    u

SG
S 

Convergence of the Graph Laplacian Regularizer (I)

[9] H. Knutsson, C.-F. Westin, and M. Andersson, “Representing local structure using tensors ii,”

in Image Analysis. Springer, 2011, vol. 6688, pp. 545–556.

• is a 2-by-2 matrix-valued function:

 

 
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




   
   
   
 


 

 
G

Structure tensor [9] of the

gradients                       1{ ( , )}N

n nx yf 

G

• is computed from                on a point-by-point basis G 1{ }N

n nf 

21
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• Theorem : convergence of       to      

“~” means there exist a constant

such that equality holds.

2) neighborhood       shrinks

SG

1) number of samples  increases

S

M

Convergence of the Graph Laplacian Regularizer (II)

[10] M. Hein, “Uniform convergence of adaptive graph-based regularization,” in Learning Theory. Springer, 2006, pp. 50–64.

• With results of [10], we proved it by viewing a graph as proxy of an

-dimensional Riemannian manifold

Vertex Coordinate on Ω Coordinate on N-D manifold

N

iV  ,i i iyxs
T

1 2[ ( ) ( ) ( )]i Ni i i v f f f

   
0

lim ~
M
r

S S u



uG

r
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• converges to      , with      , any new insights we gain on      ??

• Inspect the equations carefully…

• 3 observations:

• measures length of          in a metric space built by      !

• The eigen-space of       reflects dominant directions of 

• integrates the norm of gradient

23

Interpretation of Graph Laplacian Regularizer (I)

SG S
SGS

T 1u u G u

G

G

1{ }N

n nf 

S

T( )S u u LuG
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Green dots are 1{ }N

n nf 

Justification of Graph Laplacian Regularizer (II)

• Metric space defined by      ?

• At a certain location            on the image

𝜕𝑥

𝜕𝑦

𝑙
𝑂

G

l: dominant direction,

eigenvector corresponds to

the largest eigenvalue of         G

Ellipses are contours (isolines),

reflects how concentrate 1{ }N

n nf 

( , )x y
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Justification of Graph Laplacian Regularizer (III)

• The 2D metric space provides a clear picture of what signals are 

being discriminated and to what extent, on a point-by-point basis in 

the continuous domain.

• Both (a)(b) are correct, but (b) is more discriminant,

(c) is discriminant but incorrect

• Lesson: when ground-truth is unknown, one should design a 

discriminant metric space only to the extent that estimates of 

ground-truth are reliable!

𝜕𝑥

𝜕𝑦

𝑙

𝑂

(a)

𝜕𝑥

𝜕𝑦

𝑙
𝑂

(b)

𝜕𝑥

𝜕𝑦

𝑙

𝑂

(c)

ground-truth
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• On patch     , gradient at pixel     is      .

• For a                     noisy patch               , identify            similar patches 

on the noisy image, the      patches               form a cluster

26

Noise Modeling in Gradient Domain

M M

2

2 2 2

11
exp

2
( | )

2
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g g
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 
   






g g g g

1K 
1

0{ }K

k k



zK

• Drop superscript   ,  model the noisy gradients               as

kz i
( )i

kg

1

0{ }K

k k



g

,0 1k k k K   g g e

Unknown ground-truth
Noise term, follows 2D Gaussian 

with zero-mean and covariance

• PDF of      given ground-truth     (likelihood) is simply

2

g I

kg g

i

0

MRz
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• We first establish an ideal metric space assuming we 

know ground truth:

It is discriminant to

, smaller      makes the space more skewed

27

Seeking for the Optimal Metric Space (I)

g

T( )I  G g gg I

g

𝜕𝑥

𝜕𝑦

𝑙
𝑂

g

• With noisy gradients               seek for the optimal metric space

0 

1

0{ }K

k k



g

(1)


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• Intuition: If noise       is small,            dominates and       is discriminant;

if       is large,                     dominates,        defaults to Euclidean space!

• Assume the prior            is a 2D Gaussian with covariance          , then derive

where the “ensemble” mean       and variance        are

28
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Seeking for the Optimal Metric Space (II)
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• With               , compute the optimal graph Laplacian

• The structure of                                              allows us to assign            

exemplar functions, such that they lead to the optimal metric space:

29

2

1 ( ) · ii x  f
・

• and             correspond to the term                     in

2

2 ( ) · ii y  f
・

1 ( )if
・

3N 

3 2

1

02

1
k

g p

K

kK  







f z

・

2 ( )if
・ 2( )  I G

・

• leads to the term          in 
3 ( )if
・ T

gg G
・

From Metric Space to Graph Laplacian

— Spatial

— Intensity
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• Our denoising problem is

30

• Continuous counterpart is

where 

Graph Laplacian Regularization as Anisotropic Diffusion
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2 T

2
arg min  ·  

u

u z u u Lu
・

2 T

0arg min ·
u

u u z u ud
 

     D s
・

• Equivalent to marching      forward in time using tensor diffusion

with step size    and tensor diffusivity 

0z

  0div ,  ( , )) (0t u u t zu    D s s

 D

 
2 1

1 det
 

D G G

• Differentiate with respect to      and equate it to zerou

 *

0

* div uzu  D



• Assuming small noise, with                                      , tensor diffusion is 

simplified as

where diffusivity is a scalar                                      and constant

It is called the Perona-Malik diffusion

31

Graph Laplacian Regularization as P-M Diffusion (I)
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• Denote                                                 , diffusion scheme rewritten as

decomposed as two independent diffusion processes.

 2

2
div ( )t uu u   G

T
2( )   G gg I

・

1.5
2

2

22
( ) 1

u
u








 
   
 
 G

2   G

2 2 2
( ) ( )J u u u   

 2

2 2
( ) ( )t u uu u J u       G



• A closer look..

: direction perpendicular to
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 2

2 2
( ) ( )t u uu u J u       G

Denote a diffusion 

process along edges
Denote a diffusion 

process across edges

Diffusivity along edges Diffusivity across edges

  : direction parallel tou u

• Along edges: forward diffusion, i.e., smoothing, as 

1.5
2

2

22
) 1 0(

u
u








 
   
 
 


G

Graph Laplacian Regularization as P-M Diffusion (II)



• Across edges: forward-backward diffusion, define
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 2

2 2
( ) ( )t u uu u J u       G

Denote a diffusion process across edges

Diffusivity across edges
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Graph Laplacian Regularization as P-M Diffusion (III)

2(1 )T   G

If 1 

2
0u JT    , forward diffusion

2
0u JT    , no diffusion

2
0u JT    , backward diffusion (sharpening)

If           , becomes a discretization of TV1 

If           , forward diffusion to smooth the image1 

• Not only smooth but also sharpen images→PWS



• We develop an iterative patch-based algorithm

• Optimal Graph Laplacian Regularization (OGLR) for denoising

• Step 1: Search for similar patches

• Step 2: Compute the optimal graph Laplacian

• Step 3: Patch-based denoising

• Step 4: Denoised image aggregation

• Corruption model: i.i.d. Additive White Gaussian Noise (AWGN)

• Measurements: PSNR (in dB), SSIM

• Natural images..

• Test images: Lena, Barbara, Peppers, Mandrill

• Compared with state-of-the-arts: K-SVD, BM3D, PLOW

34

Experimentation (I)
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Experimentation (II)

• Objective results

K-SVD: PSNR BM3D: PSNR

K-SVD: SSIM BM3D: SSIM

PLOW: PSNR OGLR: PSNR

PLOW: SSIM OGLR: SSIM

0.3 dB better than BM3D!
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Experimentation (III)

• Subjective comparisons (             )40 I

Original Noisy, 16.48 dB K-SVD, 26.84 dB

BM3D, 27.99 dB PLOW, 28.11 dB OGLR, 28.35 dB

ICME'16 Tutorial 07/11/2016



37

Experimentation (IV)

• Objective results BM3D: PSNR NLGBT: PSNR OGLR: PSNR

BM3D: SSIM NLGBT: SSIM OGLR: SSIM

• Piecewise smooth images..

• Test images: Cones, Teddy, Art, Moebius, Aloe

• Compared with state-of-the-arts: BM3D, NLGBT

1.6 dB better than NLGBT!
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Experimentation (V)

• Subjective comparisons (             )30 I

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB
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Summary of Image Denoising via Graph Smoothness Prior

• Inverse imaging problems are ill-posed; we use graph Laplacian regularizer

as image prior

• Graph Laplacian regularizer converges to a continuous functional, analysis 

of the functional explains the mechanisms and implications of graph 

Laplacian regularizer

• We describe a methodology to derive the optimal edge weights given 

nonlocal noisy gradient observations

• By interpreting graph Laplacian regularization as anisotropic diffusion, we 

show that it not only smooth images but may also sharpen images, 

promoting piecewise smooth results

• Our algorithm performs competitively with state-of-the-art methods for 

natural images, and out-perform them for piecewise smooth images
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Outline (Part II)

• Image Restoration using GSP Tools

• Image Denoising

• Sparsity Prior

• Smoothness Prior

• Soft Decoding of JPEG Compressed Images
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