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ABSTRACT
The observation of frequency folding in graph spectrum dur-
ing down-sampling for signals on bipartite graphs—analogous to
the same phenomenon in Fourier domain for regularly sampled
signals—has led to the development of critically sampled wavelet
filterbanks such as GraphBior. However, typical graph-signals live
on general graphs that are not necessarily bipartite. To decompose
a non-bipartite graph into a series of bipartite subgraphs so that
two-channel filterbanks can be applied iteratively, we propose a new
algorithm based on two criteria easily computed in the vertex do-
main aiming at compact signal representation in the wavelet domain.
Given that filterbanks have minimal frequency discrimination at 1,
the first criterion aims to minimize the multiplicity of mid graph
frequency 1. The second criterion aims to preserve the edge struc-
ture of the original graph, which may reflect correlations among
signal samples, so that a signal projected on approximated bipartite
subgraphs can nonetheless be well represented using low frequency
components. Experimental results show that our proposed bipartite
subgraph decomposition outperforms competing proposals in terms
of energy compaction.

Index Terms— graph signal processing, bipartite subgraph de-
composition, graph wavelet filterbanks

1. INTRODUCTION

One of the key problems in graph signal processing (GSP) [1] is the
design of critically sampled wavelets for graph-signals. Unlike regu-
larly sampled signals on 1D time line (e.g., audio) or on 2D grid (e.g.,
images), graph-signals typically live on structured graphs such as
social networks or wireless sensor networks, which reflect relation-
ships among nodes. Designing appropriate wavelet filters to account
for all these correlations is a difficult task. Towards this goal, one
recent contribution is GraphBior in [2], which are critically sampled
two-channel wavelet filterbanks, resulting in compact representation
of bipartite graph-signals. However, graph-signals typically live on
general graphs that are not necessarily bipartite.

In order to apply two-channel filterbanks on non-bipartite
graphs, [3] first decomposed the input graph into a series of
edge-disjoint bipartite subgraphs, and then applied filtering and
down-sampling separately on each subgraph. In [3], the decom-
position was accomplished using Harary’s algorithm [4]: for a
c-colorable graph, at each step the vertices are separated into two
independent sets according to the i-th bit of its color index, where
i = 1, 2, ..., dlog2 ce. Harary’s algorithm is adopted in many graph
wavelet implementations [2, 5]. Since the method performs graph
coloring first, the performance will depend largely on the coloring
algorithm. However, graph coloring is an NP-hard problem to solve
optimally [6] and NP-hard to approximate within n1−ε [7].

[8] proposed a decomposition called min-cut weighted max-cut
(MCWMC), claiming that a desired criterion of the decomposition is
to maximally separate the neighborhoods in each bipartite subgraph.
The authors also argued that the subgraphs should maximally retain
edges in the original graph to avoid isolated vertices that cannot be
filtered during wavelet transform. This approach assigns a weight
to each edge according to its influence in changing the neighbor-
hood structure, and then performs max-cut at each iteration. This
work discussed the relationship between graph decomposition and
the subsequent filtering operations, but did not analyze how its pro-
posed properties can affect the compactness of wavelet domain sig-
nal representation directly.

The state-of-the-art method is the maximum spanning tree
(MST) based down-sampling [9], which approximates the origi-
nal graph with a MST at each iteration in order to efficiently achieve
max-cut in the resulting subgraphs. Even though the method outputs
a bipartite subgraph decomposition, it actually aims at reconstruct-
ing the original signal from one set of vertices, so even if max-cut is
justified to minimize the linear interpolation error, it is not proved to
benefit signal decomposition.

In summary, a common problem among existing methods is the
lack of criteria directly related to compact signal representation to
guide bipartite subgraph decomposition. In contrast, in this paper
we develop two criteria that can be easily computed in the vertex
domain to guide a bipartite subgraph decomposition that leads to
compact signal representation in the graph wavelet domain. The first
criterion minimizes the multiplicity of mid graph frequency 1, where
a high-dimension subspace would lead to non-compact signal repre-
sentation at both low-pass and high-pass channels due to lack of fre-
quency discrimination at this cutoff frequency. The second criterion
preserves the edge structure of the original graph, which may reflect
correlations among signal samples, so that signal projected on ap-
proximated bipartite subgraphs can nonetheless be well represented
using low frequency components. Experimental results show that
our proposed bipartite subgraph decomposition outperforms com-
peting proposals in terms of energy compaction.

2. CRITICALLY SAMPLED WAVELET FILTERBANKS

Consider an undirected, weighted graph G = (V, E) composed of
a vertex set V of size N and an edge set E specified by (i, j, wi,j),
where i, j ∈ V , wi,j ∈ R+ is the edge weight between vertices
i and j. Thus a weighted graph can be characterized by its ad-
jacency matrix W with W(i, j) = wi,j . D denotes the diago-
nal degree matrix where entry di,i = Σjwi,j . Laplacian matrix
is defined as L = D −W, and the normalized form is given by
L = D−1/2LD−1/2 [10]. A graph signal is a mapping that assigns
a value to each vertex, denoted as f = [f1, . . . , fN ]T .
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Fig. 1: (a) Two-channel wavelet filterbank on bipartite graph; (b)
Kernels of H0,H1 in graphBior [2] with filter length of 19.

L has real eigenvalues {λi}i=1,2,...,N within range [0, 2] and
corresponding eigenvectors {uλi}i=1,2,...,N . The eigenvalues can
be interpreted as graph frequencies, and they form the spectrum of
the graph G [10], denoted as σ(L) = {λ1, ..., λN}. Then a spec-
tral domain filter H for graph signal can be defined in terms of the
spectral kernel h(λ).

A bipartite graph B = (L,H , E) is a graph whose vertices can be
divided into two disjoint sets L and H , such that each edge connects
a vertex in L to one in H . A graph is called c-colorable if each
vertex in a graph G can be assigned one of c colors, such that no
edge connects two vertices of the same color.

A two-channel wavelet filterbank on a bipartite graph decom-
poses a signal on the graph into low-pass and high-pass components
[3]. As shown in Fig. 1(a), Hi,Gi are the respective analysis and
synthesis wavelet filters. Down-sampling functions βL(n), βH(n)
keep only the signal samples in vertex set L and H respectively,
and subsequently the down-sampled signal is up-sampled to original
size by inserting zero at discarded vertices. Thus the overall output
is critically sampled, i.e., |L|+ |H| = N .

The “down-sample then up-sample” (DU) operation in the bi-
partite graph is shown in [11] to produce a graph-frequency spectral
folding phenomenon in DU signal, analogous to folding of Fourier
frequencies on regularly sampled signal. GraphBior fiterbanks [2]
exploit this observation to satisfy perfect reconstruction by design-
ing spectral filters Hi and Gi satisfying spectral-folding cancella-
tion and perfect reconstruction conditions. Note that λ = 1 is the
point where the kernels, hi(λ) and gi(λ), of Hi,Gi have the same
response as illustrated in Fig. 1(b) [2]. Thus at the mid-frequency
there is minimal energy discrimination, with equal amount of en-
ergy going to low- and high-pass. This lack of discrimination can be
found in regular filterbanks.

The above mentioned filterbanks are applicable only for bipar-
tite graphs. So given a general graph G = (V, E), [3] proposed
to first decompose it into k edge-disjoint bipartite subgraphs Bi =
(Li, Hi, Ei), defined on the same vertex set Li ∪Hi = V , and each
edge in G belongs to only one bipartite subgraphBi, i.e., Ei∩Ej = ∅,
i 6= j, ∪iEi = E . Then the filterbank is implemented separably
in k steps, restricting the operation to only one subgraph at each
step, similar to separable filter for images where filters in x- and
y-dimension are applied separately.

3. BIPARTITE SUBGRAPH DECOMPOSITION

We seek a bipartite subgraph decomposition G′ of the original non-
bipartite graph G that achieves compact representation of signals in
G projected to wavelet domain of G′. To accomplish this, we have
two criteria. First, we seek G′ with minimal mid-frequency multi-
plicity so as to minimize the dimension of subspace at λ = 1 where
the filterbanks have least energy discrimination. Second, assuming
that the edges E in G capture the intrinsic relations among vertices—
leading to low-frequency representation of signals in graph frequen-

cies of G [12]—we seek to maximally preserve edge structure in the
original graph during bipartite approximation. We will next discuss
how to obtain a bipartition satisfying these two criteria.

3.1. Bipartition with Minimum Mid-frequency Multiplicity

For purpose of compact representation in wavelet domain, G′ should
have minimal multiplicity of eigenvalue λ = 1. Specifically, when
λ = 1 has high multiplicity, leading to a high-dimension subspace
corresponding to this frequency, a large signal energy projected at
λ = 1 due to the high-dimension subspace will be extracted to both
low- and high-pass channels, jeopardizing the goal of compact rep-
resentation. However, if one fails to take this into account, the re-
sulting bipartite graph can have very high multiplicity at λ = 1, as
observed in real-world cases in Table 1. Hence it is critical to reduce
the multiplicity of λ = 1.

Given our approximated graph structure G′ is bipartite with par-
tition (V1,V2), we can rearrange the vertices in V1 to have smaller
indices than those in V2, so that W and D can be written as:

W =

[
0 W1,2

WT
1,2 0

]
, D =

[
D1 0

0 D2

]
.

The normalized Laplacian L can then be written as:

L =I−D−1/2WD−1/2 (1)

=I−

[
0 D

−1/2
1 W1,2D

−1/2
2

D
−1/2
2 WT

1,2D
−1/2
1 0

]
.

Eigenvector v = [v1; v2] for λ = 1 satisfies (L − I)v = 0:[
0 D

−1/2
1 W1,2D

−1/2
2

D
−1/2
2 WT

1,2D
−1/2
1 0

]
v = 0

Expanding the above, we get:{
W1,2v

′
2 = 0

WT
1,2v

′
1 = 0

,

where v′1 = D
−1/2
1 v1 and v′2 = D

−1/2
1 v2. Hence the multi-

plicity of λ = 1 is the sum of nullity of W1,2 and WT
1,2, i.e.

2 null(W1,2). So to reduce the multiplicity of λ = 1 for more com-
pact spectral decomposition, we minimize null(W1,2), or maximize
rank(W1,2). Obviously, a balanced bipartition is preferred, since
rank(W1,2) ≤ min{|V1|, |V2|}. Hence if an algorithm does not
balance the sizes of the two partitions, the multiplicity of λ = 1 will
be large as exemplified in Table 1.

Table 1: Multiplicity of λ = 1 for first level bipartite subgraph using
Harary’s decomposition algorithm.

Graph Number of vertices Multiplicity
Minnesota Traffic Graph 2642 428
Yale Coat of Arms [13] 1059 103

China Temperature Graph (Fig 3(a)) 208 32

3.2. Bipartition with Structure Preservation

The bipartite subgraph should well approximate the original graph,
because the original graph has edges consistent with the inter-node



correlation structure of typical signals on the graph, leading to sig-
nal smoothness with respect to the graph, and energy compaction of
signals in low graph frequencies only [12]. Both [8] and [9] propose
to approximate original graph through bipartition with max-cut, but
do not show how max-cut relates directly to compact signal repre-
sentation in wavelet domain.

Intuitively, edges in densely connected areas have less influence
on the overall graph structure than those in sparsely connected ar-
eas; removing an edge in a sparse area can lead to disconnected lo-
cal patches or even isolated vertices, weakening the effectiveness of
filtering. [8] shows similar concern about edge importance and ex-
perimentally validates this intuition, but its goal is to optimize neigh-
borhood separation in subgraphs and not to improve compact repre-
sentation. In the following, we will show how the Kullback-Leibler
divergence (KLD) [14] agrees with this intuition, and thus is a rea-
sonable metric that promotes compact representation.

We model the signal f on the original graph G as a Gaussian
random field (GRF), following the multivariate normal distribution,
denoted as f ∼ N (µ,Σ) where µ is the mean vector, and Σ is the
covariance matrix. The inverse covariance matrix (precision matrix)
is specified by the graph, written as Σ−1 = L + δI where 1/δ is in-
terpreted as the variance of DC component of f [15]. The bipartition
thus will generate a new graph specifying a new signal distribution,
so for compact representation, the distance between the two distri-
butions measured by KLD should be minimized.

To examine how the importance of an edge is affected by the
connection density, or in other words, the degrees of its connect-
ing nodes, we assume that the graph is unweighted, i.e., wi,j =
1, i, j ∈ V . We remove the edge connecting vertices i and j, then
the new graph R, with Laplacian matrix LR, specifies a new sig-
nal distribution NR(µR,ΣR) where µR is assumed to equal µ, and
Σ−1
R = LR + δI. The difference between N and NR is measured

by KLD:

DKL(N||NR) =
1

2

(
tr(Σ−1

R Σ) + (µR − µ)TΣ−1
R (µR − µ) (2)

−N + ln
( |ΣR|
|Σ|

))

=
1

2

(
tr(Σ−1

R Σ)− tr(Σ−1Σ)− ln |Σ−1
R Σ|

)
=

1

2

(
tr((LR − L)Σ)︸ ︷︷ ︸

A

− ln |(LR + δI)Σ|︸ ︷︷ ︸
B

)
. (3)

For illustration, we label the two vertices linked by the removed
edge as 1 and 2 with respective degrees d1 and d2, and denote the
edge as e1,2. In Σ, denote the variance of fi as σi, and covariance
between fi and fj as σi,j . In R, the degrees of the two vertices are
reduced to d1 − 1 and d2 − 1. So the first term in (3) is rewritten as:

A = tr((LR − L)Σ) = −(σ1 + σ2 − 2σ1,2). (4)

Similarly, the second term in (3) is rewritten as:

B = ln det
(
(LR + δI)Σ

)
= ln(b11 ∗ b22 − b12 ∗ b21) (5)

= ln
(
1− (σ1 + σ2 − 2σ1,2)

)
, (6)

where (5) follows from the fact that (LR+δI) differs from (L+δI)
only in the (i, j)th element, i, j ∈ {1, 2}, so that only the first and
second rows of matrix (LR + δI)Σ differ from (L + δI)Σ = I.

Hence its matrix determinant depends only on the upper-left four
elements bij , i, j ∈ {1, 2}. (3) can now be written as:

DKL(N||NR) = (7)
1

2

(
− (σ1 + σ2 − 2σ1,2)− ln

(
1− (σ1 + σ2 − 2σ1,2)

))
.

Note that the first row of (L + δI) multiplied by the first column of
Σ equals 1, so we have,

(d1 + δ)σ1 −
∑
i∈N1

σ1,i = 1, (8)

where N1 is the set of neighboring vertices for vertex 1. For clearer
illustration, assume that the covariances between the current vertex
and its neighbors are approximately same, i.e. σi,m ≈ σi,n,m, n ∈
Ni which is the normal case when the neighboring vertices are of
similar degrees. Then (8) becomes,

(d1 + δ)σ1 − d1σ1,2 ≈ 1. (9)

By definition (L + δI)Σ = I, whose first column is (L +
δI)[σ1, σ1,2, ..., σ1,N ]T = [1, 0, ..., 0]T , so by summing up the
array elements, we have δ1T [σ1, σ1,2, ..., σ1,N ]T = 1, i.e., δ(σ1 +∑N
i=2 σ1,i) = 1. Assume σ1 +

∑
i∈N1

σ1,i �
∑
i/∈{1, N1} σ1,i,

we have
δ(σ1 +

∑
i∈N1

σ1,i) ≈ 1. (10)

(9) minus (10) gives

σ1 ≈ (1 + δ)σ1,2. (11)

Similarly σ2 ≈ (1 + δ)σ1,2, so we have σ1 − σ1,2 = δ
1+δ

σ1 and
σ2 − σ1,2 = δ

1+δ
σ2, with which (7) can be written as,

DKL(N||NR) ≈ (12)
1

2

(
− δ

1 + δ
(σ1 + σ2)− ln

(
1− δ

1 + δ
(σ1 + σ2)

))
.

With (11), (9) becomes (d1
δ

1+δ
+ δ)σ1 ≈ 1. When vertex 1 has

many connections, i.e., d1 is large, then σ1 will be small. Then if
both vertices 1 and 2 are of relatively high degrees, then σ1 and σ2

will be small, resulting in a smaller DKL as can be seen from (12).
We see now that KLD indeed agrees with the intuition that an edge
at a densely connected area is less important than one in a sparsely
connected area. So given the Laplacian matrices of the two graphs,
the difference can be measured using KLD defined in (2), and to
preserve the structure of original graph, DKL need to be minimized.

3.3. Bipartite Subgraph Decomposition

While maximizing rank(W1,2) and minimizing DKL(N||NB)
both promote compact signal representation, optimizing one does
not necessarily imply optimizing the other one. An example to
illustrate this is the bipartition of the four-vertex graph in Fig. 2(a).
To achieve the maximum rank(W1,2) = 2, vertices 1 and 3 are
grouped in the same set as shown in Fig. 2(b), thus edges e1,3 and
e2,4 are removed, resulting in a relatively large DKL. However,
to minimize DKL, vertices 1 and 2 should be grouped together as
shown in Fig. 2(c), so that only edge e2,3 need to be removed, but
resulting in a low rank(W1,2) = 1. Hence both of the two criteria
need to be incorporated into a well-designed bipartition algorithm.

In particular, we design a heuristic algorithm for bipartite sub-
graph decomposition. For a given graph G, we build the bipartite
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Fig. 2: Trade-off between two criteria: (a) original graph; (b) bipar-
tition favoring rank; (c) bipartition favoring DKL.

graph B1 by adding the vertices one by one into two sets and remov-
ing the edges within each set. Specifically, for each connected com-
ponent, we start from one random vertex and put it in set 1, and use
the breadth-first search (BFS) [16] to explore other vertices1. To de-
cide which set a discovered vertex should be allocated, rank(W1,2)
and DKL are calculated assuming the vertex is allocated to set 1
or 2. We then choose the option with a higher rank(W1,2). If
rank(W1,2) are the same, the one with a smaller DKL will be
chosen. Note that the bipartite graph grows gradually as more ver-
tices are discovered, and the calculation of rank(W1,2) and DKL
is based on discovered vertices only. In addition, the two criteria are
combined in this way to avoid any weighting parameter, making the
algorithm simpler.

After the first-level bipartite graph B1 is obtained, its edges E1
are removed from G, which gives the updated G1 = (V, E − E1)
for bipartition in the next level. Then G is iteratively decomposed
into edge-disjoint bipartite subgraphs B1, . . . ,Bk up to k levels,
where k is decided by the chromatic number c, i.e. k = dlog2 ce.
The proposed bipartite subgraph decomposition is named Bipartite
Subgraph Decomposition Optimizing Mid-frequency and Structure
(MFS), and summed up in Algorithm 1.

Algorithm 1 Bipartite Subgraph Decomposition Optimizing Mid-
frequency and Structure

Input: graph G, decomposition level k
Output: edge-disjoint bipartite graphs B1,...,Bk

1: for i = 1:k do
2: Find connected components in G.
3: For each component, put the starting vertex in set 1.
4: Use breadth-first search to explore other vertices, and choose

the proper set by jointly comparing rank(W1,2) and DKL.
5: After all vertices are discovered, bipartite graph Bi is given.
6: Update G by removing edges in Bi.
7: end for

4. EXPERIMENTAL RESULTS

We now compare our proposed MFS algorithm with existing
schemes: Harary’s Decomposition [3], MCWMC algorithm [8],
and MST-based Construction of Bipartite Graph Multiresolution
(MST) [9]. China temperature graph [17] is used for testing, where
each vertex represents a weather station. Given the longitude and lat-
itude vectors, x and y, for all the vertices V , the graph is constructed
by connecting the vertices whose distance is under the threshold:

T =

√
(xmax − xmin)(ymax − ymin)

N
, (13)

where N is the vertex number. This results in a 6-colorable graph,
so a 3-level decomposition is needed. The signals are the monthly

1Alternatively using an exhaustive search increases complexity signifi-
cantly without bringing noticeable improvement in performance in our ex-
periments, thus BFS is adopted.

(a) (b)
Fig. 3: (a) China temperature graph; (b) monthly average tempera-
ture in Jan. 2010.

average temperature from Oct. 2009 to May. 2012; 32 datasets in
total. Fig. 3 shows this unweighted graph and its signal in Jan. 2010.

First, the graph is decomposed into three bipartite subgraphs by
each of the four algorithms. rank(W1,2) andDKL of the results are
shown in Table 2. Note that DKL is between the subgraph and the
corresponding updated original graph. It is clear that MFS outper-
forms the three existing methods in terms of producing the highest
rank(W1,2) and the smallest DKL in average.

Table 2: rank(W1,2) and DKL of each bipartition and average.
Harary’s MCWMC MST MFS

rank

Subgraph 1 88 92 77 100
Subgraph 2 73 63 36 87
Subgraph 3 20 9 13 38

Average 60.3 54.7 42 75

DKL

Subgraph 1 6.46 6.21 11.79 6.66
Subgraph 2 2.24 2.96 2.06 1.76
Subgraph 3 0 4.06 0.27 0

Average 2.90 4.41 4.71 2.81
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Fig. 4: Non-linear approximation curve.

After bipartition, we apply zeroDC graphBior [2] on the signal,
then we reconstruct the signal using the largest n% wavelet coef-
ficients, and the average SNR of 32 datasets are plotted in Fig. 4.
In addition, we compute average SNR gains of MFS over the three
other methods (calculated using G. Bjontegaard’s metric [18]). We
also induce different graphs by connecting vertices differently: i)
change the connecting threshold to 0.8T, 1.2T, 1.4T , ii) connect
each node to its k nearest neighbors, where k = 7, 8, 9. The av-
erage SNR gains for different resulting graphs are shown in Table
3. It is clear that MFS outperforms existing schemes in all these
different graphs as well.

Table 3: Average gain of MFS over competing schemes in SNR(dB)
for graphs with different connections.

T 0.8T 1.2T 1.4T k=7 k=8 k=9
Harary’s 1.65 1.43 0.82 0.82 0.76 0.64 1.34
MCWMC 1.35 0.74 1.17 1.24 1.56 1.62 2.06

MST 1.35 0.16 2.24 1.38 0.93 0.64 1.91
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