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Abstract—Learning of a binary classifier from partial labels
is a fundamental and important task in image classification.
Leveraging on recent advance in graph signal processing (GSP), a
recent work poses classifier learning as a graph-signal restoration
problem from partial observations, where the ill-posed problem is
regularized using a graph-signal smoothness prior. In this paper,
we extend this work by using the same smoothness prior to refine
the underlying similarity graph also, so that the same graph-
signal projected on the modified graph will be even smoother.
Specifically, assuming an edge weight connecting two vertices i
and j is computed as the exponential kernel of the weighted
sum of feature function differences at the two vertices, we find
locally “optimal” feature weights via iterative Newton’s method.
We show that the conditioning of the Hessian matrix reveals
redundancy in the feature functions, which thus can be eliminated
for improved computation efficiency. Experimental results show
that our joint optimization of the classifier graph-signal and the
underlying graph has better classification performance then the
previous work and spectral clustering.

I. INTRODUCTION

Semi-supervised learning—the learning of a classifier from
partially available labels—is an important task in image clas-
sification. Labels are often only partially available in many
practical settings such as social media like Facebook and
Instagram, where user-generated content (UGC) like selfies
is growing rapidly, but labeling of this vast content into
meaningful categories requires costly human labor.

Leveraging on recent advances in graph signal processing
(GSP) [1], in one recent work [2] the authors pose binary
classifier learning as a graph-signal restoration problem from
partial observation, where a signal sample xi at vertex i takes
on binary value {−1, 1} to denote event class for this vertex.
The ill-posed problem is regularized using a graph-signal
smoothness prior: an assumption that the desired signal x is
smooth with respect to an underlying similarity graph G with
respective vertex and edge sets V and E . The graph-signal
smoothness prior has been used successfully in many signal
restoration problems, such as denoising [3–5], interpolation
[6–8], bit-depth enhancement [9] and JPEG de-quantization
[10, 11]. Simulation results in [2] for two image datasets
with varying amount of label noise show that the constructed
graph-based classifier outperforms two competing learning
approaches in the literature noticeably.

Extending on [2], in this paper, using the same smoothness
prior we refine the underlying graph also, so that the regu-

larization term computed using the same graph-signal x will
result in an even smaller value. The key idea is the following.
Partial labels provide crucial information to restore the target
graph-signal (classifier), but surely the same information can
be used to improve the similarity graph also, if the labels
are inconsistent with the graph, and the graph is deemed
less trustworthy than the labels. This is often the case in
practice, where the labels are collected painstakingly from
domain experts, while similarity graphs are constructed in
an ad-hoc manner, e.g., edge weights are computed using
feature functions selected a priori without understanding of
their effects on eventual classification performance. Note that
this ability to improve similarity graphs using partial labels is
not possible in unsupervised learning, where techniques like
spectral clustering [12] are tasked to partition graph vertices
into two clusters with no label information, and thus must rely
solely on the accuracy of the underlying graph.

Specifically, using the same graph-smoothness objective
function as [2], we compute locally optimal feature weights
iteratively using the Newton’s method [13]. We show that
the conditioning of the Hessian matrix reveals redundancy
in the feature functions, which thus can be eliminated for
improved computation efficiency. Experimental results show
that out joint optimization of classifier graph-signal and the
underlying graph has better classification performance than
[2] and spectral clustering.

The outline of the paper is as follows. We review ba-
sic GSP concepts in Section II. In Section III, we pose
classifier learning as a graph-signal restoration problem, and
then formulate the graph learning problem using the same
objective. We discuss also how the Newton’s method can be
used to compute locally optimal weights. Finally, we present
experimental results and conclusion in Section IV and V,
respectively.

II. SMOOTHNESS OF GRAPH-SIGNALS

A. Preliminaries

GSP is the study of signals on structured data kernels
described by graphs [1]. We focus on undirected graphs
with non-negative edge weights. A weighted undirected graph
G = {V, E ,W} consists of a finite set of vertices V with
cardinality |V| = N , a set of edges E connecting vertices,
and a weighted adjacency matrix W. W is a real N × N



symmetric matrix, where wi,j ≥ 0 is the weight assigned to
the edge (i, j) connecting vertices i and j, i 6= j.

Given G, the degree matrix D is a diagonal matrix whose
i-th diagonal element Di,i = ΣNj=1wi,j . The combinatorial
graph Laplacian L (graph Laplacian for short) is then:

L = D−W (1)

Because L is a real symmetric matrix, there exists a set of
eigenvectors φi with corresponding real eigenvalues λi that
decompose L, i.e.,

ΦΛΦT =
∑
i

λiφiφ
T
i = L (2)

where Λ is a diagonal matrix with eigenvalues λi on its
diagonal, and Φ is an eigenvector matrix with corresponding
eigenvectors φi as its columns. L is positive semi-definite
[1], i.e. xTLx ≥ 0, ∀x ∈ RN , which implies that the
eigenvalues are non-negative, i.e. λi ≥ 0. The eigenvalues can
be interpreted as frequencies of the graph. Hence any signal x
can be decomposed into its graph frequency components via
ΦTx, where αi = φTi x is the i-th frequency coefficient. ΦT

is called the graph Fourier transform (GFT).

B. Smoothness of Graph-signals

We next define the notion of “smoothness” for graph-
signals. xTLx captures the total variation of signal x with
respect to graph G in l2-norm:

xTLx =
1

2

∑
(i,j)∈E

wi,j (xi − xj)2 (3)

In words, xTLx is small if connected vertices xi and xj have
similar signal values for edge (i, j) ∈ E , or if the edge weight
wi,j is small.

xTLx can be expressed in terms of graph frequencies λi:

xTLx =
(
xTΦ

)
Λ
(
ΦTx

)
=
∑
i

λiα
2
i (4)

Thus a small xTLx also means that the energy of signal x is
mostly concentrated in the low graph frequencies.

(a) line graph

W =

 0 1 0
1 0 1
0 1 0

 D =

 1 0 0
0 2 0
0 0 1


(b) adjacency and degree matrices

Fig. 1: Example of a line graph with three nodes and edge weights
1, and the corresponding adjacency and degree matrices W and D.

Fig. 1 shows an example of a graph G with three vertices,
and the corresponding weighted adjacency matrix W and
degree matrix D. The combinatorial graph Laplacian L in this
case is:

L =

 1 −1 0
−1 2 −1
0 −1 1

 (5)

Fig. 2: Example of a constructed graph G for binary-event classifi-
cation with two features f1 and f2. A linear SVM would dissect the
space into two for classification.

III. PROBLEM FORMULATION

A. Problem Definition

Given partially observed labels y ∈ {−1, 1}M , we seek to
recover a graph-signal x ∈ {−1, 1}N , M � N , to correctly
label the remaining N−M media events. Denote by D a M×
N binary matrix, Di,j ∈ {0, 1}, that selects M entries from
x that correspond to observed labels in y. Our optimization
seeks the smoothest signal x with respect to graph Laplacian
L such that x agrees with observation y:

min
x

xTLx, s.t. Dx = y (6)

Fig. 2 shows an example of a graph in a 2-dimensional
features space. We see that the vertices cluster into two groups
corresponding to event 0 and 1 in the feature space, and thus
partial labels will propagate correct information to neighboring
missing labels via the smoothness prior.

We can equivalently solve the Lagrangian relaxed version
of (6) using Lagrange multiplier λ:

min
x

xTLx + λ‖Dx− y‖22 (7)

Variant of this optimization has already been proposed in [2].
The key observation in this work is that the graph-signal

smoothness prior can in turn be used to improve the con-
struction of the similarity graph, resulting in an even smaller
smoothness objective. Assume that edge weight wi,j connect-
ing vertices i and j is computed using K pre-selected feature
functions fk( ) evaluated at i and j and a Gaussian kernel, as
done in [3–11]:

wi,j = exp

{
−

K∑
k=1

ck (fk(i)− fk(j))
2

}
(8)

where ck are the feature weights that determine the relative
importance of the K feature functions. We can now optimize
c = [c1, . . . , cK ]T formally using the same smoothness prior:

min
c

xTLcx, s.t. cT1 ≤ C (9)

where constraint cT1 ≤ C is necessary to prevent the trivial
solution when ck = ∞ and xTLx = 0. Note also that graph
Laplacian Lc is implicitly a function of c that determines edge
weights wi,j , hence the subscript.



We write the Lagrangian relaxed version as follows:

min
c
g(c) = xTLcx + µ cT1 (10)

where µ > 0 is selected large enough so that cT1 ≈ C.

B. Newton’s Descent Method

There are no closed-form solutions for (10). To solve it, we
can employ the Newton’s method [13] to iteratively converge
to a locally optimal solution:

ct+1 = ct −
(
∇2g(ct)

)−1∇g(ct) (11)

where ct is the solution at iteration t, ∇g(ct) and ∇2g(ct)
are respectively the gradient vector and Hessian matrix of
g(c) evaluated at ct. Clearly (11) is computationally feasible
only if Hessian ∇2g(ct) is invertible, i.e., it does not contain
eigenvalue 0. We will address this issue shortly.

To simplify notation, we define the following terms:

φk(i, j) = (fk(i)− fk(j))
2 (12)

δ(i, j) = (xi − xj)2 (13)

The p-th entry in the gradient vector ∇g(c) is:

d g(c)

d cp
=

∑
(i,j)∈E

e−
∑K

k=1 ckφk(i,j)(−1)φp(i, j) δ(i, j) + µ

(14)
For the Hessian matrix ∇2g(ct), the p-th diagonal entry is:

d2 g(c)

d c2p
=

∑
(i,j)∈E

e−
∑K

k=1 ckφk(i,j)φ2p(i, j) δ(i, j) (15)

The (p, q)-th off-diagonal entry in ∇2g(ct) takes a similar
form:

d2 g(c)

d cp cq
=

∑
(i,j)∈E

e−
∑K

k=1 ckφk(i,j)φp(i, j)φq(i, j) δ(i, j)

(16)
From (16) we see that the (p, q)-th entry is the same as

the (q, p) entry, and so Hessian matrix ∇2g(ct) is symmetric.
More importantly, we show next that ∇2g(ct) is invertible
only if the feature functions fk(i) are linearly independent, so
that the Newton’s method (11) can be used to solve (10).

Lemma 3.1: ∇2g(ct) has eigenvalue 0 if feature functions
fk(i) are linearly dependent.

Proof: We will prove by contradiction. Without loss of
generality, suppose a feature fp+1(i) is a linear combination
of p previous features; i.e., φp+1(i, j) =

∑p
k=1 akφk(i, j).

Suppose Hessian ∇2g(ct) does not contain eigenvalue 0. The
p+ 1-th row of Hessian ∇2g(ct) has off-diagonal entry (p+
1, q) equals to∑

(i,j)∈E

e−
∑K

k=1 ckφk(i,j) δ(i, j)φq(i, j)

p∑
k=1

akφk(i, j) (17)

The diagonal term (p + 1, p + 1) of Hessian ∇2g(ct) will
be a special case of (17), where φq(i, j) = φp+1(i, j) =∑p
k=1 akφk(i, j).

One can now verify that the p+1-th row of Hessian∇2g(ct)
is exactly the same as a linear combination of the first p
rows using weight ak for the k-th row. A matrix with linearly
dependent rows implies that the matrix has eigenvalue 0. A
contradiction.

The lemma means that the Hessian ∇2g(ct) is invertible if
each feature function fk(i) is innovative, i.e., it provides new
information for classification and thus is not a simple linear
combination of other features. This tends to be the case when
features are selected carefully [14].

The corollary of the lemma is that the conditioning of
Hessian ∇2g(ct) is actually informative in checking if current
feature functions fk(i)’s are redundant and can be removed.
In fact, an eigenvalue close to 0 would imply that there exists
one or more feature functions that are minimally useful in
providing new information for classification. Given that the
cost of computing a feature function for all vertices in a large
graph can be significant, using the smallest innovative set of
feature functions can reduce the computation cost.

After a new set of feature weighs ct+1 has been computed
using (11), the optimal graph-signal x given the graph can
be solved again via (7). The procedure repeats until both the
signal x and the feature weights c converge.

IV. EXPERIMENTATION

A. Experiment Setup
We tested our proposal against two schemes: i) the classifi-

cation by thresholding the result of (7) without optimizing the
graph as done in [2], and ii) spectrum clustering [12] using
the optimized graph. As spectrum clustering only clusters the
samples into groups, we manually attempted the two possible
ways to label the groups, and chose the one with the lower
error rate. The experiment was conducted on two different
data sets. The first one was skin segmentation data set1,
which uses the RGB values of colors as features and labels the
colors indicating whether they are possible for human skin. By
using the above information, we can achieve a fast preliminary
skin segmentation for an image. Example of this fast skin
segmentation method from the dataset [15] is shown in Fig. 3.
A subset of 2000 samples was used in our experiment, and
each sample contained the RGB value as three features.

(a)Input image (b)Result image

Fig. 3: Example of skin segmentation by color, the white area
in the result image corresponds to possible skin area.

The second dataset was pima indians diabetes
dataset2, which predicts health condition: whether the indi-
vidual is a diabetes patient, based on her health indicators.

1https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
2https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes



TABLE I: Classification accuracy in Skin Segmentation data
set

training set size 600 300
proposed method 93.06% 89.24%

without optimizing graph 91.23% 85.67%
spectrum clustering 60.23% 62.56%

TABLE II: Classification accuracy in Pima Indians Diabetes
data set

training set size 200 100
proposed method 71.81% 68.13%

without optimizing graph 68.78% 65.34%
spectrum clustering 65.31% 63.95%

The dataset contains 768 samples, each corresponds to a Pima
Indian female, and eight of their health indicators, such as
diastolic blood pressure, triceps skin fold thickness and body
mass index are recorded as features. For both datasets, we
randomly selected a subset as training set and interpolated the
rest for validation.

B. Experimental Results

The experiment results for the skin segmentation
dataset are shown in Table I. The results show that the
optimization of the graph improves the classification results
by 1.83% when we have 600 samples in the training set and
3.57% when only 300 samples are used for training. Second,
we observe the limitation of spectrum clustering, which does
not utilize observed labels, when applied to classification
problems. Similar trends are observed from the results for
pima indian diabetes dataset, shown in Table II.

We also tested the convergence speed of our proposed
Newton-method-based graph optimization against gradient de-
scent optimization [13]. The iteration numbers needed to reach
convergence are listed in Table. III. We observe that Newton’s
method can reach convergence faster than gradient descent
in our application. During the experimentation, we did not
observe any Hessian matrix with eigenvalue 0 or close to 0,
which means that the feature functions were all innovative and
the Hessian invertible.

V. CONCLUSION

Learning of a graph-based binary classifier from a similarity
graph and partial labels has been studied in a recent work [2]
that formulates a graph-signal restoration problem, regularized
using a graph-signal smoothness prior. In this paper, we use the
same graph-signal smoothness prior to improve construction

TABLE III: the number of iterations of Newton’s method and
gradient descent in graph optimization

Newton’s Method Gradient Descent
Skin/600 5 8
Skin/300 6 10
Pima/200 6 8
Pima/100 8 13

of the similarity graph as well, so that the graph-signal regu-
larization term computed on the same graph-signal will result
in an even smaller value. Assuming that an edge weight wi,j
is computed using a Gaussian kernel of the linear combination
of feature function differences evaluated at vertices i and j,
we propose to compute locally optimal feature weights via
Newton’s method. We show that the Hessian matrix is not
invertible if the feature functions are linearly dependent; the
corollary is that the conditioning of the Hessian can be used
as a criteria to eliminate redundant or minimally useful feature
functions to reduce complexity. Experimental results show that
our joint optimization of the graph-based classifier and the
similarity graph can lead to better classification performance
compared to [2] and spectral clustering.
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