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Abstract

In free viewpoint video, a viewer can choose at will any camera angle or the so-called “virtual view” to observe a

dynamic 3D scene, enhancing his/her depth perception. The virtual view is synthesized using texture and depth videos

of two anchor camera views via depth-image-based rendering (DIBR). We consider, for the first time, collaborative

live streaming of a free viewpoint video, where a group of users may interactively pull and cooperatively share streams

of different anchor views. There is a cost to access the anchor views from the live source, a cost to “reconfigure” the

peer network due to a change in selected anchors during view switching, and a distortion cost due to the distance

of the virtual views to the received anchor views at users. We optimize the anchor views allocated to users so as to

minimize the overall streaming cost given by the access cost, reconfiguration cost and view distortion cost.

We first show that, if the reconfiguration cost due to view switching is negligible, the view allocation problem can

be optimally and efficiently solved in polynomial time using dynamic programming. For the case of non-negligible

reconfiguration cost, the problem becomes NP-hard. We thus present a locally optimal and centralized algorithm

inspired by Lloyd’s algorithm used in non-uniform scalar quantization. We further propose a distributed algorithm

with convergence guarantee, where each peer group independently makes merge-and-split decisions with a well-

defined fairness criteria. Simulation results show that our algorithms achieve low streaming cost due to its excellent

anchor view allocation.

I. INTRODUCTION

The advent of multiview imaging technologies means that videos from different viewpoints of the same 3D scene

can now be captured simultaneously by a system of multiple closely spaced cameras [1]. Furthermore, depth maps,

which measure the per-pixel distance between cameras and physical objects, can be captured directly through time-

of-flight (ToF) cameras [2], or indirectly through stereo-matching algorithms [3]. When the depth maps are available

at the camera viewpoints, virtual views can be synthesized during video playback using texture and depth maps
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of the closest sandwiched camera views (the so-called anchor views) via depth-image-based rendering (DIBR) [4].

The ability of users to synthesize and display any virtual view is called free viewpoint video. It enables a 3D visual

effect known as motion parallax: a viewer’s detected head movements can trigger correspondingly shifted video

views on his/her 2D display [5]. It is well known that motion parallax is the strongest cue in human’s perception

of depth in a 3D scene and enhances the immersive visual experience [6].

In live free viewpoint video streaming, texture and depth videos from multiple viewpoints in the same 3D scene

can be real-time encoded at a server into separate streams before delivery to interested users. The users can choose

to look at the recorded camera views or at virtual views arbitrarily positioned between the camera views.

We consider a collaborative peer-to-peer (P2P) sharing system where the users share their anchor views with each

other. Users may switch to any virtual viewpoints at will during their streaming session. Each of them obtains two

camera views as the left and right anchors by pulling either directly from the live streaming source, or indirectly

from the other users. As long as the virtual viewpoint of interest is in between a user’s two received anchor views,

he can use the same set of anchor views to synthesize the virtual viewpoint. However, if the viewpoint moves

outside the viewing range bounded by the two current anchor views (i.e., outside the anchor window), the user has

to obtain new anchor views so as to sandwich the virtual view. Given that the currently subscribed anchor views

need to be reselected to accommodate users’ newly chosen virtual views, the peer network needs to be reconfigured,

which may incur some overhead.

Figure 1 shows an example of our collaborative free viewpoint live streaming system. The live streaming source

encodes in real time all captured videos with different camera viewpoints of the 3D scene. Due to bandwidth and/or

cost constraints, the source transmits only a subset of these views (Views 5, 10 and 15 in the figure) to a pool

of clients for their sharing. Each client may interact with the free viewpoint video by choosing any viewpoint of

his/her interest at will over time. For example, at a particular instant client A is interested in virtual viewpoint 6.5

(labeled as A(6.5) in the figure). He obtains camera view 5 from the live source as the left anchor view, and camera

view 10 from Client B as the right anchor view, and then synthesizes viewpoint 6.5 given the anchor views 5 and

10. Client D gets anchor views 5 and 10 from A and B, respectively, to synthesize its virtual view of 8.5. It is

clear that all clients are getting two anchor views with their virtual viewpoints inside the anchor window. If Client

D is to switch to another virtual view, say 12.2, it has to replace its anchor view of 5 by 15, by pulling view 15

from Client C or F . On the other hand, if Client C is to switch to virtual view 7.1, it then has to pull the anchors

5 and 10 from the peer network (from Client A,B,D,E or F ) while C is to pull anchor view 15 directly from

the live source. For any of the two cases above, the peer network has to be reconfigured.

In this work we study the optimization of the total streaming cost in free viewpoint video streaming. The streaming

cost comprises the following three components:

Source access cost: There is an access cost associated with the transmission of an anchor view from the streaming

server to the client pool (due to, for examples, server bandwidth, server processing or computation, or network

bandwidth). The peers share with each other the anchor views pulled from the source to generate their virtual

viewpoints of interest. The sharing cost among the peers is considered to be negligible because the peers are
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Fig. 1: An example of collaborative live streaming for a free viewpoint video.

within the same local community with high speed network. Due to the source access cost and heterogeneous view

popularity, it may not be cost-effective to stream all the anchor views to the client pool.

Video distortion cost: The distortion cost reflects the quality or PSNR of the synthesized virtual views of the

video. In general the cost for DIBR synthesized view tends to be larger as the distance from the virtual view to

anchor views increases, as experimentally demonstrated and argued using statistical models [7]. We are interested

in the total distortion cost for all peers as they select virtual views of different popularities.

Network reconfiguration cost: As the viewpoint of a peer changes over time, he/she may eventually move outside

the anchor window. This necessitates the peer to search for some new suppliers for his/her anchor(s) for view

synthesis. We assume that there is a network reconfiguration cost due to communication overhead and connection

management among peers. The reconfiguration cost reflects the underlying cost and complexity of re-arranging the

P2P network, and is a function of the probability for peers to change their anchor views due to view switching

interactivity. Such framework is general enough to be applied to any P2P topology. Therefore, the P2P overlay

construction, peer group organization and reconfiguration mechanisms are irrelevant to and outside the scope of

this paper. There have been extensive studies on these issues. Interested readers may refer to studies in [8], [9].

It is clear from above that the three cost components trade off with each other. On the one hand, it is beneficial

for a viewer to request anchor views that tightly “sandwich” its virtual view to reduce the distortion cost. However,

this increases both the access cost and reconfiguration cost (due to higher likelihood of a viewpoint falling outside

the anchor window). On the other hand, using wider anchor windows may reduce both access and reconfiguration

costs. However, this increases the distortion cost.

In this work, we study the anchor view allocation problem to minimize total streaming cost composed jointly

of anchor access, video distortion and network reconfiguration. The allocation problem is to optimally select the

set of anchor views from the source, so that an appropriate pair of anchor views can be supplied to each peer for

synthesis of his chosen virtual view, given the popularity of different virtual views are known. Though much work

has been done on peer-to-peer streaming, it is on single-view video which is passive (no interactive view-switching)

and hence provides no sensible solution to the anchor view allocation problem that optimizes the tradeoff among

different cost components. To the best of our knowledge, this is the first piece of work that addresses the allocation
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problem for collaborative live streaming of interactive free viewpoint video. Our contributions are as follows:

1) Problem formulation for interactive free viewpoint live video streaming: We discuss two representative for-

mulations of the anchor view allocation problem for live free viewpoint video streaming. If the reconfiguration

cost is negligible (e.g., peers switch views infrequently or the peer network is a simple topology), we formulate

a cost optimization problem named FLS which we prove to be solvable in polynomial time. On the other

hand, if the network reconfiguration cost is non-negligible, (e.g., in the case of complex P2P network, or

large and frequent view-switching by the peers), we formulate the problem as FLSR, which is shown to be

NP-hard.

2) Exact optimal algorithm for negligible reconfiguration cost: We present a polynomial time exact algorithm

for FLS based on dynamic programming (DP). It works for both of the following cases: i) when the maximum

number of anchor views allocated to a peer group cannot be larger than a certain number Bmax, and ii) when

the anchor view access cost is formulated as a cost function (i.e., each anchor view pulled from the source

incurs a certain access cost a). Simulation results show that our algorithm makes sensible tradeoffs among

the three cost components, and significantly out-performs a traditional sharing approach.

3) Heuristic algorithms for non-negligible reconfiguration cost: Since FLSR is NP-Hard, we thus present a

centralized and locally optimal anchor view allocation heuristic algorithm called Centralized Grouping . We

further propose a distributed version of our algorithm Distributed Grouping with guaranteed convergence,

where each peer group independently makes merge-and-split decisions with a well-defined fairness criteria.

The simulation results show that our proposed algorithms achieve close-to-optimal cost performance. They

substantially outperform a traditional sharing approach.

The outline of the paper is as follows. We first discuss related work in Section II. In Section III, we discuss

our system models on the collaborative network, free viewpoints video and view-switching. We present the anchor

view allocation problem formulations for negligible and non-negligible reconfiguration costs in Section IV. In

Section V, we present an optimal DP algorithm and experimental results for anchor view allocation with negligible

reconfiguration cost. We then describe locally optimal solutions with reconfiguration cost in Section VI. Simulation

results with reconfiguration cost are presented in Section VII. We conclude in Section VIII.

II. RELATED WORK

We divide the overview of related work into two areas. We first discuss the related work on multiview video

streaming and on the high-dimensional media navigation problem. Then we discuss the related work on collaborative

streaming of single-view video, as well as game-theoretic analysis of collaborative video streaming.

A. Multiview Video Streaming and High-Dimensional Media Navigation

Much research on multiview video has been focusing on compression (e.g., multiview video coding (MVC)

[10], [11]). Streaming strategies and network optimization for multiview video is still a relatively unexplored and

new research topic. In their seminal work on multiview video streaming [12], the authors propose a coding and
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streaming strategy for interactive multiview video to a single user, where only a selected number of captured views

are transmitted based on predicted user’s view selection. The work in [13] proposes a similar but more advanced

coding scheme that is also based on predicted user’s selection, but individual code blocks are encoded with a quality

proportional to the likelihood that the pixels in the blocks are used in the synthesized image. However, these works

have not addressed the problem of collaborative streaming of multiview video, where costs of transmitting video

views can be shared among users.

Recent investigations have also studied the problem of loss-resilient multiview videos streaming over error-prone

networks. The works in [14] propose to exploit the flexibility provided by reference picture selection (RPS) in

H.264 video coding standard for real-time encoded depth video, so that a depth block important to the quality of

the synthesized view can be predicted from a transmitted frame further in the past for more reliable decoding [15].

The authors in [16], [17] propose to use distributed source coding (DSC) [18] to enable both periodic view-switching

in multiview video and loss resiliency for peers watching the same multiview video synchronized in time but not

in view. While loss resiliency in video streaming is an important topic, we consider the orthogonal anchor view

selection issue in this paper; we leave the joint loss resiliency and anchor view selection problem for future work.

The study in [19] discusses an interactive multiview video streaming (IMVS) video-on-demand scenario, where

only a single requested view per client is needed at one time during video playback when the clients may periodically

request view-switches. It proposes an efficient coding structure where a captured image can be pre-encoded into

multiple versions, so that the appropriate version can be transmitted depending on the currently available content in

decoder’s buffer, in order to reduce server transmission rate. Later, the work in [20] leverage on the IMVS coding

structure in [19] for content replication, so that suitable versions of multiview video segments can be cached in a

distributed manner across cooperative network servers. Our current work on anchor view allocation differs from

[20] in that: i) we consider the more general free viewpoint video, where a client can select and synthesize any

intermediate virtual view between two anchor views via DIBR; and ii) we focus on the live collaborative streaming

scenario, where anchor views can be shared among peers that are synchronized in time but not necessarily in view.

While we focus our study on video view-switching among a feasible set of virtual viewpoints delimited by

anchor cameras in a 1D array, there exists a more general high-dimensional media navigation problem [21] where

the captured media has a much higher number of views than what a user’s visual display hardware is capable

of displaying at a time (e.g., only one video view at a time can be shown on a conventional 2D display). Thus,

interactive browsing by the user is a sensible paradigm, where the user navigates through the large media data

by periodically requesting from the server the media subset he/she wants to observe next (e.g., view-switching).

Previous works such as [19], [22] provide coding tools to reduce the coding cost of high-dimensional media

navigation. We are complimentary to these previous works and we provide algorithms to lower the streaming cost

of high-dimensional media among peers interested in the same content. This provides an important building block

to the general high-dimensional media navigation problem.
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B. Collaborative Video Streaming and Game-Theoretic Analysis

There has been a large body of work on collaborative streaming, addressing different aspects of the problem

such as topology construction, scheduling, capacity, security and deployment, etc. The papers in [8], [9], [23]–[26]

study the structure and organization of streaming overlays. The works of [27] investigate the maximum theoretical

streaming capacity (streaming rate) that can be achieved, given a peer uplink bandwidth constraint or a node degree

bound. All these works study single-view video streaming, which is passive in nature (i.e., no view-switching), and

the results cannot be applied to live free viewpoint video streaming, which is interactive in nature (i.e., each viewer

can freely select a virtual view from which to observe the 3D scene), and where anchor view selection is a critical

and challenging issue.

There has been little work studying multiview streaming over P2P network. The work of [28] proposes a

scheduling algorithm that allows peers to frequently compute the scheduling of multiview segments. The paper

[29] studies the problem of achieving low view-switching delay by organizing viewers of different views together.

These works essentially treat the multiview video streaming as multiple single-view video, and it is not clear how to

extend them to the live free viewpoint streaming problem where the anchor view selection and its effect on virtual

view distortion need to be carefully considered.

Collaborative video streaming has also been studied using non-cooperative game-theoretic approaches, where

users are often modeled as selfish and rational, and they seek to maximize their own payoff. Thus, the challenge is

to design cooperation incentives that encourage users to help each other by sharing their resources. For example,

the work in [30] consider single-view video streaming systems where users receive and watch the same stream.

The work in [31] consider the more challenging problem of high-dimensional multi-view video streaming and

study incentive strategies when users watch different but correlated video streams. All these works use tools from

competitive game theory to study the individual behavior of each user. In our work, users cooperate with each other

to share the access cost in downloading anchor views from the streaming server, and the main issue is on the fair

allocation of the cost so that cooperation improves everyone’s utility. For this game, cooperative game models are

more appropriate. To the best of our knowledge, our work is the first piece of work on collaborative live streaming

of interactive free viewpoint video.

It is important to note that we focus on the optimization of the anchor view allocation among peers. After the

left and right anchor views for each user are determined, the overlay can be arranged into either a push-based or

a pull-based structure for stream distribution. There are various overlay arrangement methods that can be directly

applied here (see, for examples, [32]). In addition, issues regarding peer joins and leaves are studied in various

works of both single view and multi-view streaming [33]–[35]. Our work is orthogonal to them, and the above

approaches can be applied in our system.

III. SYSTEM MODELS

In this section, we describe the models that we use in our analysis and in the design of our algorithm for

collaborative free viewpoint video streaming. We first present the network model for the streaming server and the

June 16, 2015 DRAFT



6

peers, followed by the free viewpoint video model that we use in this paper. Finally, we describe how we model

user’s interactive behavior during view-switching.

A. Network Model

Our free viewpoint video distribution network model consists of only two nodes: S is the live streaming source,

and G is a single node representing the group of collaborative peers. (If the peer group is too large, the management

cost and control overhead become high. In this case, the large peer group may be sub-divided into smaller ones.

Dividing a large peer group into smaller ones is an orthogonal problem and would not be considered here.)

All camera views are generated at the streaming source S and synchronized in time. The connection between the

server S and the peer group G may be modeled as a hard constraint; i.e., the number of anchor views simultaneously

pulled from S by G cannot exceed a pre-defined value Bmax. This is the case for a local community of local users

who are inter-connected by a high-speed network, but are connected to the server via a slower common bottleneck

link [36]. Alternatively, the connection between the server S and the peer group G may be modeled as a soft

constraint, i.e., each anchor view pulled by G induces a cost a in the total cost function. This is the case when

the server S charges a fixed price for each additional anchor view the peer group G subscribes to. The linear

relationship between the “access cost” and the number of anchor views is based on the assumption that the cost of

a typical CDN service is linear with respect to the bandwidth consumption; the video source charges a certain fixed

monetary amount per output video stream to users, which is reasonable given most video streaming systems cost

models in practice. We will consider these two different connection constraints later in the problem formulation.

B. Free Viewpoint Video Model

Let V = {1, 2, ..., V } be the discrete set of captured views for V equally spaced cameras in a 1D array as done

in [1] and other works. Each camera captures both a texture map (RGB image) and a depth map (per-pixel physical

distances between objects in the 3D scene and camera) at the same resolution. The texture map from an intermediate

virtual view between any two cameras can be synthesized using texture and depth maps of the two camera views

(anchor views) via a depth-image-based rendering (DIBR) technique like 3D warping [4]. DIBR essentially maps

texture pixels in the anchor views to appropriate pixel locations in a virtual view; such locations are derived from

the corresponding depth pixels in the anchor views. Disoccluded pixels in the synthesized view — pixel locations

that are occluded in the two anchor views — can be filled in using depth-based inpainting techniques [37], [38].

Because inpainting offers only a best-guess solution, the larger the disoccluded region, the lower the image quality

of the synthesized view in general.

More specifically, let u be the virtual view that a peer currently requests for observation. We consider that

u = 1 + k/K, k = {0, . . . , (V − 1)K}, for some large pre-determined constant K. In other words, u belongs to

an ordered discrete set of intermediate viewpoints — the set of views between (and including) camera views 1

and V , spaced apart by integer multiples of distance 1/K. Clearly, the set of views approaches a continuum as K

increases. (Although we consider equally spaced virtual views for ease of exposition, our analysis and algorithms
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can be easily generalized to uneven virtual view spacing as well.) A distribution function qu describes the fraction

of peers in the group who currently request the virtual view u. Any virtual view u can be synthesized using left

and right anchor views denoted as vlu and vru, respectively, where vlu, v
r
u ∈ V and vlu ≤ u ≤ vru. Note that vlu and

vru do not have to be the closest captured camera views to u.

When texture and depth maps of multiple views of a free viewpoint video are captured at the source, they are

compressed and encoded by the encoder at the server before network transmission. In our work on anchor view

allocation for collaborative free viewpoint video streaming, we assume that the source coding problem solved by

the server is orthogonal to our anchor view allocation problem solved by the peers. In other words, we consider

that the compressed camera views (generally of good quality) are given at the server, and focus on minimizing the

additional distortion due to the synthesis of virtual views, based on these compressed camera views.

We can model the synthesized view distortion as a sum of the distortion due to lossy source coding of anchor

view frames (affecting directly the quality of rendered pixels), and the distortion due to virtual view synthesis

(influencing the sizes of disocclusion holes). The second distortion depends on the distance between virtual view

and anchor view frames. We essentially seek to minimize it by selecting the appropriate set of anchor views, because

source coding has already been decided at the server, which is outside of peers’ control. Therefore, we consider

the optimization of the source coding distortion in the camera views to be orthogonal to our problem.

The distortion of the synthesized view varies with the choices of anchor views. Let Du(vlu, v
r
u) be the distortion

function for peers looking at virtual view u, which is synthesized using vlu, vru as anchor views.

We make two assumptions regarding the distortion function Du(vlu, v
r
u). First, we assume that further-away anchor

views vlu, vru cannot induce smaller distortion in the synthesized view, that is

Du(v′, vru) ≥ Du(v, vru), ∀v′ < v < u.

Du(vlu, v) ≤ Du(vlu, v
′), ∀u < v < v′. (1)

We call this monotonicity in anchor view distance for synthesized view distortion. This is a reasonable assumption in

general, since a further-away reference view typically means larger disoccluded regions in the virtual view image.

The disocclusion holes can be filled using inpainting algorithms [39], [40], but in general the larger the holes,

higher the penalty in reconstruction quality. This monotonicity assumption is also demonstrated experimentally in

[41] using a large number of multiview image sequences.

Second, given that the minimum distance τ between the anchor views vlu, v
r
u and the synthesized viewpoint u is

defined as τ = min
{
|vlu − u|, |vru − u|

}
, we assume that a larger τ will not induce a smaller distortion, i.e.,

Du1
(vl, vr) ≤ Du2

(vl, vr) if τ1 < τ2

τ1 = min
{
|vl − u1|, |vr − u1|

}
τ2 = min

{
|vl − u2|, |vr − u2|

}
(2)

We call this monotonicity in minimum anchor view distance. This is also reasonable; it is observed empirically that

when both anchor views are encoded at the same quality, the worst synthesized view distortion takes place at the
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middle view [7]. Further, as the minimum view distance τ approaches zero, the synthesized viewpoint is essentially

one of the two anchor views with no distortion due to synthesis. This assumption ensures that the synthesized view

distortion for τ = 0 is the minimum possible, which agrees with the earlier statement. In the experimental section,

we will construct a specific distortion equation that satisfies these two monotonicity assumptions.

Note that we do not consider distortion due to packet loss in our distortion function Du. We consider packet

loss as an orthogonal problem and focus our distortion model on the synthesized view distortion only. There are

plenty of works in the literature that study stream reliability and packet loss recovery, e.g., transmission methods

such as automatic retransmission request (ARQ) or forward error correction (FEC) for UDP. Also in the recent

years, HTTP-based live streaming is widely used by many state-of-the-art streaming systems, and protocols such as

“HTTP Live Streaming” (HLS) and “Dynamic Adaptive Streaming over HTTP” (DASH) efficiently handle packet

loss, congestion control and retransmissions issues by using lower layer transport protocols like TCP with persistent

packet retransmission. Hence we consider that packet loss are handled by transmission protocols and that views are

delivered reliably to the video clients.

C. View-switching Model

In order to model the view-switching behavior of peers, we consider that a peer with virtual view u can switch

in the next time instant to any virtual views w’s with probability Pu,w. The view transition probability matrix is

denoted by P. For example, if a peer keeps the current view u = 1 + k/K with probability Ω, and switches to any

of the two adjacent views with equal probability (1− Ω)/2, we have the following transition probabilities:

P1+k/K,w =


Ω, if w = 1 + k/K;

(1− Ω)/2, if w = 1 + (k ± 1)/K;

0, o.w.

(3)

Note that the above view-switching model is a multi-state first-order Markov model: the selection of the next

view only depends on the current view u. More complicated view-switching models may also be envisaged; for

example, authors in [42] have argued that the selection of the next view is based on the current and the previously

selected views. For the sake of simplicity, however, we use the multi-state first-order Markov view-switching model

in this paper. Extensions to include more general view-switching models like [42] are conceptually straightforward

and hence not discussed here.

IV. ANCHOR ALLOCATION PROBLEMS FOR NEGLIGIBLE AND NON-NEGLIGIBLE RECONFIGURATION COSTS

In this section, we present two formulations of the anchor view allocation problem for negligible and non-

negligible reconfiguration costs. Figure 2 shows a road-map of our problems and algorithms to be discussed in this

paper.
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Fig. 2: Road-map for formulations and algorithms.

A. Anchor Allocation with Negligible Reconfiguration Cost

We first consider the case where the reconfiguration cost due to peers’ anchor view changes is negligible (due

to, for examples, simple peer network protocols or infrequent user view switching). For this case, we formulate the

anchor view allocation problem as the free-viewpoint live streaming (FLS) problem as discussed below.

Let V ′ ⊆ V be the purchased set of captured views selected by the peer group to serve as anchor views to

synthesize virtual views. In other words, V ′ is streamed from the live source to the user pool. A peer with virtual

view u selects left and right anchor views vlu and vru from the purchased set V ′ to synthesize its target virtual view

u. We consider the following anchor view selection constraint:

vlu ≤ u ≤ vru, vlu, v
r
u ∈ V ′ ⊆ V, ∀u. (4)

In words, Equation (4) states that a peer with virtual view u must select from V ′ an anchor view vlu to the left of

u (i.e., vlu ≤ u), and an anchor view vru to the right of u (i.e., u ≤ vru). The selected anchor views, vlu and vru,

induce distortion Du(vlu, v
r
u) in the view synthesis process, as discussed in Section III-B. These are our variables

to be optimized.

There is an access cost to purchase the set V ′ of anchor views by the peer group G. If there is a hard connection

constraint (or cost budget for the group), we have

|V ′| ≤ Bmax. (5)

We label the combinatorial optimization problem with the hard constraint as FLS-H, which is to select a subset

V ′ and anchor views vlu, v
r
u ∈ V ′ for each virtual view u, so as to minimize the aggregate distortion of all peers

for all virtual views u’s, i.e.,

min
V′⊆V

N
∑
u

quDu(vlu, v
r
u), (6)

subject to Constraints (4) and (5), where qu is the fraction of peers that request view u, where 0 ≤ qu ≤ 1 and∑
u qu = 1.
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One may alternatively consider a soft connection constraint, where the total access cost Atotal for the peer group

is proportional to the number of purchased anchor views, i.e., Atotal = a |V ′|. This linear model assumes that a

certain fixed monetary amount per output video stream is charged by the video source, which is consistent with

cost models in many video streaming systems today.

We label the problem with the soft constraint on server connection as FLS-S, with the objective of minimizing

the sum of the total distortion of all peers for all virtual views u’s and the total access cost

min
V′⊆V

N
∑
u

quDu(vlu, v
r
u) +Atotal, (7)

subject to Constraint (4), where N is the total number of peers in the network. We use the weighted sum method [43],

[44] to model these objectives so that the overall streaming cost can be minimized. The exact value of the weight

could be modified to fit particular problems.

Note that we are only concerned here with the access cost of camera views in the purchased set V ′; the question

of how the cost should be fairly distributed to each peer is deferred to Section VI-C.

B. Anchor View Allocation with Reconfiguration Cost

As the video is played back, a peer may switch from a virtual view u to a new view u′, where u′ may fall outside

the range [vlu, v
r
u] spanned by the anchor views vlu and vru. The network hence needs to be reconfigured to supply

the peer with new anchor views. If the reconfiguration cost is non-negligible, the group would tend to choose the

anchor views vlu and vru that are further apart, so that the likelihood of the virtual view switching outside the range

[vlu, v
r
u] is low. In this section, we formulate the anchor view allocation problem with reconfiguration cost, termed

free-viewpoint live streaming with reconfiguration (FLSR, as shown in Figure 2).

The reconfiguration cost Su(vlu, v
r
u) depends on the probability that a peer requires new anchor views during

the next τ view-switches, given the current virtual view u and the anchor views vlu and vru. This probability can

be computed as follows. We first define a sub-matrix P(vlu, v
r
u) that contains only the entries Pw,z’s, defined in

Equation (3) with w, z ∈ [vlu, v
r
u]. In other words, we keep only entries in P that correspond to virtual views within

the range [vlu, v
r
n]. Note that the sum of the entries in a row of P(vl, vr) does not need to add up to 1. We can

thus write Su as a simple sum:

Su(vlu, v
r
u) = 1−

∑
w

P τu,w(vlu, v
r
u), (8)

where P τu,w(vlu, v
r
u) is the entry [u][w] in the matrix Pτ (vlu, v

r
u) =

∏τ
t=1 P(vlu, v

r
u), which is the τ−step transition

probability matrix. Equation (8) states that the reconfiguration cost Su is one minus the probability that the peer

stays within the range [vlu, v
r
u] for all τ view-switches.

We first consider the server-peer cost as a hard constraint and formulate the corresponding FLSR-H optimization

problem. The FLSR-H problem is to select a global subset V ′ of camera views for the peer group and to select

anchor views (vlu, v
r
u) for each virtual view u within V ′, in order to minimize the sum of the distortion of all peers
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and the reconfiguration cost weighted by µ, i.e.,

min N
∑
u

qu
(
Du(vl, vr) + µSu(vl, vr)

)
, (9)

subject to Constraints (4) and (5). The weight µ is a system parameter that is used to adjust the relative contribution

between distortion and the reconfiguration cost. In this formulation section, we on purpose design a general cost

function without specifying a particular value for µ, so that our developed algorithms can be applied to a variety

of scenarios. In the results section, we will discuss how we choose a sensible µ in different experimental settings.

If the connection costs are considered as a soft constraint, we label the problem as FLSR-S. The FLSR-S problem

is to minimize the sum of the distortion, reconfiguration cost, and the total access cost, i.e.,

min
V′⊆V

N
∑
u

qu(Du(vl, vr) + µSu(vl, vr)) +Atotal, (10)

subject to Constraint (4).

Both the FLSR-H and FLSR-S problems are NP-hard. The proofs are given in the Appendix.

V. OPTIMAL SOLUTION WITH NEGLIGIBLE RECONFIGURATION COST

Both FLS-H and FLS-S problems can be solved optimally in polynomial time via dynamic programming (DP).

We show here how FLS-S is solved and its performance in Section V-A and V-B, respectively. The algorithm for

FLS-H follows similarly in a straightforward manner, and hence is omitted.

A. FLS-S Solution with Dynamic Programming

First, let uli and uri (i stands for initialization) be the leftmost and rightmost virtual views requested by the peer

group. Let vli and vri be the corresponding camera views just to the left and to the right of them, i.e.,

vli =
⌊
uli
⌋
, uli = arg min {u}, s.t. qu > 0;

vri = duri e , uri = arg max {u}, s.t. qu > 0. (11)

vli and vri must be purchased as anchor views in an optimal solution. Define ϕ(vl) as the minimum cost for all the

peers interested in virtual views u ∈ [ul, uri ], where vl is an already purchased anchor view, and ul is the leftmost

virtual view in the range [uli, u
r
i ] to the right of vl, i.e.,

ul = arg min
u∈[ul

i,u
r
i ] |u>vl

u− vl (12)

The optimal solution of FLS-S can be found by a call to ϕ(vli). ϕ() can be recursively calculated as the minimum

of

ϕ(vl) = min

{
N

∑
ul≤u≤ur

i

quDu(vl, vri ),

min
vl<v<vri

 a +N
∑

ul≤u≤v

quDu(vl, v)

+ ϕ(v)]

}
, (13)
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In words, Equation (13) states that ϕ() is the smaller of:

i) the sum of distortion for synthesized virtual views u’s, ul ≤ u ≤ uri , given that no more anchor views are

purchased (and hence vl and vri are the best anchor views for the synthesis of views u ∈ [ul, uri ]); and

ii) the cost of subscribing to one more anchor view v, vl < v < vri (i.e., access cost a), plus the sum of distortion

for synthesized virtual views u’s, ul ≤ u ≤ v, plus recursive cost ϕ(v) with a reduced virtual view range

(v, uri ].

Equation (13) follows the divide-and-conquer strategy that is common in dynamic programming (DP), where each

recursive call results in a smaller synthesized view range.

The complexity of the solution given by Equation (13) can be analysed as follows. Each time Equation (13)

is solved for arguments vl, the optimal objective value can be stored in entry [vl] of a DP table Φ, so that any

subsequent call to the same sub-problem can simply look up the table. Each minimization in Equation (13) takes

O(V ) steps to try different anchor view v, and each v requires computation of the sum, which has at most KV

terms. Given there are O(V ) entries in the DP table, this results in the run-time complexity of O(V 3K).

B. Experiments and Simulation

We present here illustrative simulation results for the anchor view allocation problem of FLS-S. As discussed

above, the distortion function should monotonically increase with respect to the distance between left and right

views, vr − vl. Furthermore, it should also monotonically increase with respect to the distance between the virtual

view and the closer of the two captured views, vl and vr. Both of these tendencies are generally observed in

empirical multiview data [7], [41]. If the virtual view u is actually one of the anchor views, then the distortion Du

should be zero.

We conduct experiments with view synthesis reference software (VSRS) to study the effect of anchor view

selection on the distortion of the synthesized video.

Two multi-view video sequences “Champagne Tower” and “Kendo” (provided by Tanimoto Laboratory, Nagoya

University) are used in the experiments. The multi-view video sequences have a resolution of 1280×960 pixels

per frame and 30 frames per second. We use the YUV components of the raw camera sequences to synthesize the

virtual views. We do not model the source coding error that is due to signal quantization, and only measures the

PSNR induced by view synthesis. In “Champagne Tower”, we set the left anchor view to camera 37, and use

camera 39 or camera 41 as right anchor view to synthesize virtual view 38. As shown in Figure 3a synthesizing

the video with anchor views further apart leads to worse PSNR. We also observe in Figure 3b that the virtual

view synthesized by closer cameras has less distortion. The results agree with the monotonicity properties of the

distortion model.

For simplicity, we consider the following distortion function Du, which satisfies the two assumptions of

monotonicity in Section III-B:

Du(vl, vr) = γeαu(v
r−vl)

(
eβu×min(u−vl,vr−u) − 1

)
, (14)
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(a) PSNR of “Champagne Tower” view 38. (b) Snapshot of “Champagne Tower” frame 120 view 38.

Fig. 3: PSNR and snapshots of the video at synthesized views.

where γ is the weighting parameter for distortion in the total cost. The rate at which the distortion increases with

the distance between anchor views can be adjusted by the parameters αu and βu. We calculate the values of αu

and βu using the MSE distortion of the VSRS-synthesized virtual views in our experiments with the multiview

video sequences “Champagne Tower” and “Kendo”. The resulting distortion function is used subsequently in the

simulations.

We carry out further simulations to study the performance of our algorithms in solving FLS. The simulator is

implemented in JAVA, where there are V camera views in the system in total. Between each pair of two adjacent

camera views, the same number of virtual viewpoints are generated. The total number of virtual viewpoints is U .

There are N peers in the network. Each peer is randomly assigned a virtual viewpoint of interest, and seeks two

anchor views to synthesize the target virtual viewpoint in between. The distribution of peers watching different

virtual views, i.e., qu, follows a normal distribution (We have also run simulations using different peer distributions.

The results of those simulations are qualitatively the same as what is presented here, and hence are not shown

for brevity). The distortion of a peer is calculated according to Equation (14), and the total cost of all peers is

calculated according to Equation (7).

We define the price of a camera view as the source access cost of pulling one camera view from the streaming

source to the user pool, which is denoted by a. We implement our dynamic programming algorithm, as well as

a comparison scheme, View-independent approach. In View-independent approach, peers independently choose the

anchor views that minimize their own distortion without considering peer collaboration on anchor selection. It

minimizes the total peer distortion, and the access cost of each anchor view is shared by all users that request it.

The baseline parameter values are shown in Table I. We run our simulation on a 64-bit Windows 7 Machine with

a Intel i7-2600 CPU. The results are the average of 10 different simulation runs.

Figure 4 shows the total cost (distortion plus access costs) of the peers as a function of the price of camera views.

Our dynamic programming (DP) algorithm gives significantly better results than the View-independent approach,

especially when the price is high. This is because the peers in the DP algorithm can collaboratively select and share

the same anchor views to reduce the access cost, achieving a low distortion penalty. As fewer camera views are
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TABLE I: Baseline parameters in our simulation.

Parameter Baseline value

Number of camera views 21

Number of virtual views 200

Number of peers 2, 000

Price of a camera view: a 5

Distortion weighting parameter: γ 0.01
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Fig. 4: Total cost versus price of cam-

era views for FLS-S.

0 2 4 6 8 10
0

100

200

300

400

500

Price of a camera view

C
o

s
t

 

 

Access cost (View−independent)

Access cost (DP Algorithm)

Distortion (DP Algorithm)

Distortion (View−independent)

Fig. 5: Cost components versus price

of camera views for FLS-S.

0 2 4 6 8 10
25

28

31

34

37

40

Price of a camera view

P
S

N
R

 

 

View−Independent

DP algorithm

Fig. 6: Average PSNR versus price of

camera views for FLS-S.

pulled from the server, the total cost is low.

Figure 5 shows the cost components of peers as a function of the price of camera views. In the View-independent

approach, the peers greedily pull anchor views to minimize their own distortion. Therefore it leads to high access

cost when the anchor view price is high. On the other hand, when the price of an anchor view increases, our

proposed DP algorithm will pull less anchor views from the streaming source in order to reduce the access cost,

with a small tradeoff in peer distortion. It clearly makes sensible decision on the anchor view allocation.

Figure 6 shows the average PSNR observed by the peers as a function of the price of camera views. The peer

PSNR is calculated using the MSE distortion model in Equation (14). The View-independent approach has optimal

PSNR since the peers always pull anchor views to minimize their own distortion without considering access cost

or network reconfiguration. Our proposed DP algorithm achieves close-to-optimal average PSNR, and at the same

time optimizes the source access cost. It balances the cost components and makes the optimal anchor allocation

decision for each peer.

VI. VIEW ALLOCATION ALGORITHMS WITH NON-NEGLIGIBLE RECONFIGURATION COST

In this section, we present locally optimal and effective algorithms to address the anchor view allocation problem

with non-negligible reconfiguration cost. We first present a centralized and locally optimal algorithm (Centralized

Grouping) based on Lloyd’s algorithm used in non-uniform scalar quantization [45]. Then we present a distributed

algorithm with guaranteed convergence, along with a fair access cost allocation mechanism (Distributed Grouping).
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A. Centralized Grouping: Locally Optimal Algorithm

We present here a low-complexity centralized optimization algorithm that converges to a locally optimal solution

for the NP-hard FLSR problem. We first observe that, for a given subset of camera views V ′ ⊆ V and a given

access cost, a peer interested in the virtual view u can independently select vlu and vru from V ′ in order to minimize

its own sum of distortion and reconfiguration cost given by Du(vl, vr) + µSu(vl, vr). This may potentially lead to

a better global solution. In other words, a solution cannot be globally optimal if a peer of virtual view u can find a

lower sum of distortion and reconfiguration cost by choosing a different left or right anchor views from the same

purchased set V ′. We formalize this necessary condition for global optimality with the following lemma.

Lemma 1: If V ′, vlu’s and vru’s are a set of optimal variables, then peer(s) with any virtual view u cannot switch

from a selected left anchor view v = vlu to another anchor view v′ ∈ V ′ and lower the overall cost. �

The above Lemma also holds for changing the right anchor view to lower the overall cost.

While the first lemma is concerned with switching of anchor views within a fixed subset V ′ of camera views,

we can similarly construct a second Lemma about the replacement of a selected camera view v ∈ V ′ by another

view v′ 6∈ V ′.

Lemma 2: If V ′, vlu’s and vru’s is a set of optimal variables, then one cannot replace a selected camera view

v ∈ V ′ with an unselected view v′ 6∈ V ′, so that peers of views u’s that currently use view v as anchor view (i.e.

vlu = v or vru = v), switch to v′ as anchor view and lower the overall cost. �

The above two Lemmas are analogous to the two necessary conditions in optimizing non-uniform scalar

quantization (SQ) in signal processing [45]. SQ is the problem of quantizing a large number of samples in R1 space

into k Voronoi regions for compact representation, so that only dlog ke bits are required to represent a sample with

minimal distortion. The first necessary optimal condition for SQ is that each sample is represented by the Voronoi

region whose centroid has the minimum distance to itself (minimum distortion). This is similar to our first Lemma.

In the second optimal condition for SQ, each Voronoi region can freely estimate a centroid that minimizes the sum

of distances to all samples in the region. This is similar to our second Lemma.

Due to the similarity of our problem to SQ, we can employ a modified version of the famed Lloyd’s algorithm

to effectively solve our anchor view allocation problem. We call our algorithm the Centralized Grouping algorithm.

In particular, for the FLSR-H problem, we first select the leftmost and rightmost camera views from the server,

and then a total number of (Bmax − 2) camera views are randomly pulled in between. For each peer, we identify

the “best” anchor views (chosen from Bmax selected camera views) that minimize the sum of distortion and

reconfiguration cost. Similar to the Lloyd’s algorithm, we then iteratively adjust the positions of (Bmax−2) camera

views to reduce the total cost of all peers in the group. In each iteration, we go through each one of the (Bmax−2)

camera views, calculate the new total costs if we shift the camera view one step towards its left or right. If the new

total cost is lower than the original one, we substitute the camera view with the one to its left (or right) respectively.

The algorithm stops when the total cost of peers cannot be further reduced. It is guaranteed to converge since the

total cost only decreases at each iteration.
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Fig. 7: Coalition of peers.

Finally, for the FLSR-S problem, we run the above procedure (V − 1) times with Bmax = 2 to V , and then

choose the optimal V ′ that yields the minimum total cost that includes distortion, reconfiguration and access costs.

B. Distributed Grouping: Coalition Maintenance

The centralized algorithm presented above is able to find a locally optimal FLSR solution by assigning anchor

views to each peer. The solution is suitable when there is a central controller, and the network is not large or not

highly dynamic (a dynamic system is a system with frequent peer arrivals and departures, and many view switches).

Like in any centralized systems, the average runtime for “Centralized Grouping” increases with the number of peers.

In this section, we present a simple, adaptive and distributed algorithm for collaborative sharing of anchor views.

Our distributed algorithm is adaptive to dynamic networks and scales well to large networks with peer churns (i.e.,

with peer arrivals and departures). We call this the Distributed Grouping algorithm.

In a peer group, the peers watching the same virtual views or adjacent ones are organized into “coalitions”.

Figure 7 shows an example of how peer coalitions are formed, where ui, uj , . . . , um are virtual views. Peers

watching virtual views between ui and uj are organized into a coalition, say, Coalition 1. All peers that belong

to the same coalition C use the Centralized Grouping algorithm proposed in the previous section to find the

optimal set of anchor views that minimizes the total cost (due to distortion, access and reconfiguration as defined

in Equation (10)) for all users in the coalition C, and let LC be the corresponding minimum total cost. All peers

in the same coalition share these anchor views and thus access costs. There is a leader peer (marked in white in

Figure 7) in each coalition, who keeps track of the number of peers watching each virtual view and of the total

cost of the whole coalition. It periodically exchanges information with the two neighboring coalitions on each side.

Two neighboring coalitions may merge into a new bigger coalition, and a coalition may also split into two if the

overall cost can be reduced.

Inspired by the split-and-merge coalition formation scheme in [46], we use the following algorithms for peer

joins, coalition merge and split, peer leaves and view switching.

Peer join: When a new peer i arrives, it first contacts a Rendezvous Point (RP) that forwards it to the peer

group that i belongs to. If there is an existing coalition C that covers the virtual view that peer i requests in the

peer group, RP connects i with the leader node of the coalition C. The node i joins the coalition C and starts to

pull anchor views from other peers in the coalition. The leader peer in C updates the cost and information of the

coalition. However, if the virtual view requested by peer i is not in the range of any coalition, a new coalition will
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be created, and the peer i becomes the leader of the new coalition. It pulls the anchor views from the streaming

server in order to minimize its own costs (distortion and reconfiguration costs).

Coalition merge: The coalition structure adapts to peer churns in order to keep the P2P network optimized. The

leader of each coalition periodically exchange information. Let L1, L2 be the cost for C1 and C2 respectively, and

L′1, L′2 be the optimal cost for peers in C1 and C2 from the result of the Centralized Grouping algorithm run on

C1 ∪ C2 if they merge and cooperate. If L′1 < L1 and L′2 < L2, the two coalitions C1 and C2 are merged. Let

VM be the optimal set of anchor views returned by the Centralized Grouping algorithm. Each peer i in the merged

coalition adapts to new anchor views vl∗i and vr∗i that give the minimum cost (vl∗i , v
r∗
i ∈ Vm). The leader who

requested the merge becomes the new leader of the merged coalition.

Coalition split: For a big coalition CM , the leader periodically examines whether splitting into two coalitions

leads to lower cost. Let um be a virtual view separating CM into two coalitions CL, CR. For each different view

um, the leader runs the Centralized Grouping algorithm on both CL and CR. If the combination of optimal costs

is smaller than Lm, then CM is split into CL and CR, and a new leader is randomly selected for the newly created

coalition.

Peer leave: When a peer i is about to leave, all content sharing between i and its neighbors is stopped, and the

leader node updates the cost of the coalition. If the leader node leaves, a new leader is randomly chosen.

View switch: A peer i can change its virtual view in the middle of a streaming session. If the new virtual view

is still within the range of the coalition, the peer i can still pull anchor views from other peers and synthesize the

new view. There is no change in the overlay structure. However, if the new virtual view goes out of the range of

the coalition, the peer leaves the current coalition and joins (or creates) a new coalition. It follows the same process

as in the situation where peers join or leave the system.

C. Distributed Grouping: Fair Cost Allocation

In the above Distributed Grouping algorithm, two neighboring coalitions will merge if this reduces the total

cost of all users in both coalitions, and a coalition will split into two if such reduces the total cost of all users in

the coalition. Thus, it targets the overall system performance optimization with the assumption that all users are

altruistic and willing to sacrifice their own performance to lower the overall system cost.

As peers in P2P networks are selfish and rational, they are willing to cooperate if and only if such cooperation

helps to improve their utilities (i.e., if it reduces their cost). Thus, an important issue is to achieve fairness in peer

cooperation; we need to study mechanisms to lower each user’s cost in addition to minimizing the total cost of the

entire P2P network. As such, no user is willing to deviate from the proposed solution, and the constructed overlay

P2P network is stable. In our collaborative live free viewpoint video streaming problem, one possibility to address

the above is to study the fair allocation of the cost among peers in a coalition; and coalitional game theory provides

an ideal tool to provide fair rules for cost reduction via cooperation [47].

Consider a coalition C = {1, 2, · · · , n} with n peers who watch neighboring views and share the anchor views

and the access cost. For a subgroup of users S ⊆ C watching nearby views, let LS be the total cost of peers in
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S if they decide to cooperate with users in S only. Given the coalition C with its n members and the minimum

total cost LC determined by the centralized grouping algorithm, an allocation vector x = [x1, x2, · · · , xn] divides

the total cost LC among its n members, where xi is the cost assigned to user i and
∑
i∈C xi = LC . Note that,

from Section III-B and Equation (8), users’ view distortion and reconfiguration costs are determined by the set of

pulled views only. Therefore, for a coalition C, given the minimum total cost LC and the corresponding optimal

anchor view set V determined by the centralized grouping algorithm, the distortion and reconfiguration costs for a

user are fixed. Users then discuss how to fairly share the total access cost of a|V| such that the coalition C and the

allocation vector x are stable.

Given an allocation vector x, we define the excess of a subgroup S ⊆ C (with respect to x) as e(S,x) =

LS −
∑
i∈S xi. In this definition, the first term LS is the total cost of the subgroup S if the peers in this subgroup

decide to deviate from the coalition C, to form a new coalition S and to cooperate with peers in S only, but not

with others. The second term
∑
i∈S xi is the total cost of S if the peers decide to stay with the coalition C and

with the same allocation vector x. Therefore, the excess of the subgroup S with respect to the allocation vector

x is the extra cost incurred to S if the peers deviate from the coalition C and the allocation x but form a new

coalition by themselves. Apparently, if e(S,x) > 0 and forming a new coalition S incurs more cost to peers in

S, the subgroup has no incentive to deviate from the coalition C. For a given allocation, if its excesses are all

non-negative, then users in C have an incentive to stay in C, and C is a stable coalition. Our goal is to find such

stable coalitions and allocation vectors.

Finding such stable allocations is often difficult, and a well-known fair solution is the nucleolus [47], [48], which

always exists and is unique. It maximizes the excesses in the non-decreasing order, or equivalently, minimizes peers’

dissatisfaction in the non-increasing order. That is, it first selects all allocation vectors that maximize the smallest

excess (or equivalently, the allocation vectors that minimize the dissatisfaction of the subgroup(s) of peers that gain

the least from staying in the coalition C). Then it finds from the selected allocation vectors those that maximize

the second smallest excess, and repeats this process until the allocation vector satisfying all the above constraints

is unique. Nucleolus is often the desired solution since, if there exist stable allocations, nucleolus is always one of

them.

The nucleolus is defined as follows. Given an allocation x, we sort all excesses {e(S,x), ∅ 6= S 6= C} in

the non-decreasing order, and let Φ(x) be the sorted access vector. The nucleolus η is the unique allocation that

lexicographically maximizes Φ over all allocations, that is, Φ(η) �lex Φ(x),∀x 6= η. Given two vectors a and

b sorted in the non-decreasing order, a is said to be lexicographically larger than b (a �lex b) if in the first

component that they differ, that component of a is larger than the one of b.

To compute the nucleolus, we follow the above definition and solve a sequence of linear programs as follows

[48]. We first solve the following problem

(LP1) max ε

s.t.
∑
i∈C

xi = LC ,
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∑
i∈S

xi ≤ LS − ε, ∀S 6= ∅, S 6= C, (15)

which maximizes the smallest excess. Let ε1 be the optimal solution of (LP1), which is the maximal smallest

excess, and let S1 be the collection of all subgroups whose excesses are equal to ε1. We then solve

(LP2) max ε

s.t.
∑
i∈C

xi = LC ,∑
i∈S

xi = LS − ε1, ∀S ∈ S1,∑
i∈S

xi ≤ LS − ε, ∀S 6∈ S1, (16)

which maximizes the second smallest excess. The second constraint forces the excesses of all subgroups in S1 to be

ε1, the maximum smallest excess found in (LP1). We continue the same process until there is only one allocation

x that satisfies all the constraints that allocation is the nucleolus.

In Distributed Grouping, we apply the above procedure to compute the nucleolus for each coalition found by

the algorithm described in Section VI-B. Computing the nucleolus involves solving a sequence of linear programs.

There are O(2n) linear programs in total. Studies have shown that the number of linear programs can be reduced

to O(n) without increasing their size [49]. The complexity of computing the nucleolus can be further reduced by

considering all peers watching the same virtual view as one single node.

VII. ILLUSTRATIVE SIMULATION RESULTS WITH NON-NEGLIGIBLE RECONFIGURATION COST

A. Simulation Environment, Comparison Schemes and Metrics

We carried out simulations to evaluate the performance of our proposed Centralized Grouping (given by

Section VI-A) and Distributed Grouping (given by Sections VI-B and VI-C). In our simulation, the probability

of each peer staying at the same view is Ω, while the total view switches of each peer is τ . The reconfiguration

cost for each peer can be calculated according to Equation (8), and the total cost for all peers are calculated with

Equation (10). We set the view switch parameters as follows: Ω = 0.6, τ = 0.6, µ = 0.1. The set of parameters are

chosen so that the reconfiguration cost in Equation (14) is in the same scale as the distortion cost. In this way, we

explore how our algorithms allocate anchor views given the tradeoff between distortion and reconfiguration cost.

Unless otherwise stated, we use the same distortion model and simulation environment as in Section V-B.

We compare our algorithms with the following schemes:

• Optimal: The optimal solution is obtained by exhaustive search;

• View-independent: In this approach, the peers independently optimize their costs (distortion and reconfigura-

tion). It is similar to the View-independent approach in FLS except that peers minimize their own total cost

instead of distortion.

We evaluate the performance of our proposed algorithms using the following metrics:

• Streaming cost: We are interested in the total streaming cost, which is the weighted sum of distortion,

reconfiguration cost and access cost of all peers. Our algorithms (Centralized Grouping and Distributed
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Grouping) minimize this cost. Besides the total cost, we are also interested in the cost components and

distributions among peers.

• Camera views pulled: In our algorithms, peers collaboratively pull camera views from the streaming server,

and the cost for accessing the camera views are shared. To understand how the algorithms work, we study the

evolution of the total number of camera views pulled versus system parameters, as well as the distribution of

anchor views and their popularity among peers.

B. Streaming Cost

Figure 8 shows the total streaming cost of all peers as a function of camera view prices. The total cost increases

with the price of a camera view. This is because a higher view price leads to a higher access cost, and peers tend

to use the same anchor views with others so they can share the cost of transmitting common anchor views from

the streaming server. This, in turn, increases other cost components, i.e., the distortion and reconfiguration costs.

From Figure 8, we see that Centralized Grouping performs very close to the global optimal solution. The anchor

views can successfully be moved to good positions to minimize the total costs of all peers. Distributed Grouping

is also very efficient in reducing the total cost, especially when the price of a captured view is high. Distributed

Grouping does not outperform View-independent when the view price is low due to the lack of global information.

Figure 9 shows the cost components of Centralized Grouping algorithm. With the increase of view price, the

access cost becomes the major component of the total cost. Distortion and reconfiguration costs also increase

because peers compromise to sub-optimal anchor views (in terms of distortion and reconfiguration) so that their

access costs can be shared with a larger crowd. The cost components of Distributed Grouping are qualitatively the

same as Centralized Grouping, and hence are not shown for brevity.

Figure 10 shows the cost distribution of all peers. The majority of the peers in both Centralized Grouping and

Distributed Grouping have a low overall cost. All peers in Distributed Grouping have a similar cost because of the

fair cost allocation mechanism within a coalition. On the other hand, in Centralized Grouping, the access cost is

evenly shared among all peers. Therefore. the peers with large distortion and reconfiguration cost have significantly

larger overall cost than others.

We show in Figure 11 the cost versus number of peers. The total cost increases with the number of peers.

View-independent performs the worst. It has a very high total cost even when the number of peers is low. This is

due to the lack of collaboration in anchor view selections. Centralized Grouping and Distributed Grouping achieve

close-to-optimal performance. When there are fewer peers in the system, they tend to use the same anchor views

to reduce the access cost, with a penalty in other cost components. When the peer population increases, each peer

can choose better anchor views, which leads to a lower distortion and reconfiguration cost, since there are more

neighbors to share the access cost.

Figure 12 shows the total cost as a function of the number of camera views. When there are more anchor views,

the virtual views that the peers watch become further apart from each other, and hence the peers are less likely to

share anchor views due to the high distortion and reconfiguration penalty. Therefore the total cost increases with
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Fig. 13: Number of camera views

pulled versus anchor price.

the number of anchor views.

C. Camera Views Pulled

Now we look closer at the distribution of the camera views in the different allocations algorithms. Figure 13

shows the total number of views pulled from the streaming server as a function of the access cost of an anchor

view. The number drops with the increase in the price of a camera view. When requesting a captured view from

the streaming server becomes expensive, peers tend to seek more cooperation by using the same anchor views and

sharing the access cost. Therefore, the total number of camera views pulled from the streaming server becomes

smaller. In Distributed Grouping, the total number of views pulled could be higher than the total number of camera

views since peers only share the access costs within the same coalition, and a captured view could be pulled multiple

times by peers from different coalitions.

Figure 14 shows the popularity of camera views in Centralized Grouping, i.e., how many times a camera view is

used as anchor views by peers. With a small standard deviation of the virtual view distribution, only a few camera

views are pulled. The majority of peers watching similar virtual views in the middle use the same anchors (9, 11 and
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Fig. 16: Reconfiguration rate of peers

versus anchor price.

12). Since the rest of the peers are very few in number, they all use the same anchor views (1 or 21) to save access

cost with the price of high distortion. When the virtual viewpoints are more “spread out”, i.e., standard deviation

equals to 4, more camera views are pulled, with more distributed popularity as well. It shows that our algorithms

are adaptive to different virtual view distributions of peers. With different distributions, Centralized Grouping pulls

different numbers of camera views with a different allocation so that the total cost is minimized.

Figure 15 shows the number of coalitions formed by the Distributed Grouping algorithm. The number of coalitions

drops with the price of a captured view. When the anchor views are expensive, neighboring coalitions are more

likely to merge into a bigger one so that the access costs can be shared by more peers. Distributed Grouping can

efficiently re-arrange the topology to minimize the total cost when the view prices changes.

Figure 16 shows the reconfiguration rate, i.e., the probability that peers need to change their anchor views in

Distributed Grouping. A peer’s virtual view can no longer be synthesized if it goes outside of the range defined by

two anchor views in a series of view switches. In this case new anchor views must be obtained, and the P2P network

needs to be reconfigured, which leads to system instability. As shown in the Figure, we achieve low probability of

anchor change (less than 5%), because we consider the reconfiguration cost directly in our objective function. The

reconfiguration rate is higher when the price of a camera view increases, as peers sacrifice their reconfiguration

cost to look for better sharing of access cost.

D. Computational time

Figure 17 shows the average run time of the Centralized Grouping algorithm as a function of the total number

of camera views. It demonstrates the relationship between the computational time of an anchor allocation scheme

and the problem complexity. The running time of the algorithm increases with the number of camera views. With

more camera views, there are more candidates for the Bmax − 2 pulled camera views, and Centralized Grouping

needs to go through more iterations before it converges. However, given a reasonable number of camera views, our

algorithm achieves very low computational time for a medium-sized P2P system.
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Fig. 18: Average reconfiguration time for Distributed

Grouping.

Figure 18 shows the average reconfiguration time of Distributed Grouping algorithm as a function of the total

number of camera views. The reconfiguration time is defined as the amount of time needed by the coalition leader

needs to calculate the new anchor allocation scheme upon peer churns, i.e., peer join, peer leave, view-switch,

coalition merge and coalition split. The reconfiguration time mildly increases with the number of camera views.

However it is relatively low comparing to the length of the player buffer in real P2P streaming systems, hence this

reconfiguration time is not a problem in practice.

VIII. CONCLUSION

In live free viewpoint streaming, videos from different viewpoints of the same 3D scene are captured by multiple

cameras. Peers may select at will different virtual viewpoints, which are synthesized using texture and depth videos

of the sandwiched camera views or the so-called anchor views. In this paper we study anchor view allocation

problem for collaborative live streaming of free viewpoint video, where peers share with each other their anchor

views. There is an access cost to access anchor views from the live source, a distortion cost due to the distance from

the virtual views to the anchor view, and a reconfiguration cost due to change of suppliers in the peer network upon

view switching. The challenge is how to minimize the total streaming cost by trading off these cost components

by allocating anchor views to the peers.

We formulate two problems for anchor view allocation, namely FLS and FLSR, depending on whether the

reconfiguration costs are negligible or not. We provide an exact optimal solution based on dynamic programming

for FLS. For FLSR, we present a locally-optimal and effective centralized algorithm (Centralized Grouping), and

a distributed algorithm with guaranteed convergence (Distributed Grouping). The simulation results show that our

proposed algorithms substantially outperform a baseline scheme without collaborative anchor selection. Our results
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show that collaboration is key in the design of live free viewpoint streaming systems to achieve low distortion and

streaming costs.
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APPENDIX

NP-HARD PROOF OF FLSR

We show that the well-known NP-complete Minimum Cover (MC) problem is polynomial-time reducible to a

special case of FLSR-H. In MC, a collection C of subsets of a finite item set S is given. The decision problem is:

does C contain a cover for S of size at most κ, i.e., a subset C′ ⊆ C where |C′| ≤ κ, such that every item in S

belongs to at least one subset of C′?

Consider a special case of FLSR-H where in the optimal solution, all peers use the leftmost camera view 1 as

their left anchor view. This is the case if the synthesized distortion for each peer of view u is a local minimum

whenever view 1 is used as left anchor, i.e., Du(1, vru) ≤ Du(v, vru),∀v, vru. Hence all peers will share view 1 as

left anchor view, and need to select only the right anchor view to minimize the aggregate cost in Equation (9).

We first map items in set S to consecutive virtual views u’s (each with qu = 1/|S|) just to the right of leftmost

camera view 1. We map subsets in collection C to camera views v’s to the right of the virtual views u’s. We next
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construct the reconfiguration cost Su(1, vru) by assuming a view-switching probability Ω > 0 in (1) and τ = 1,

resulting in a decreasing Su(1, vru) as a function of vru for all virtual views u’s, as shown in Figure 19.

We first set the distortion Du(1, vru) for peers with virtual views u’s such that the aggregate cost is a constant α,

i.e., Du(1, vru) + Su(1, vru) = α. Then, for each item si in subset cj , we reset the distortion Du(1, vru) (of virtual

view u corresponding to item si and of anchor view vru corresponding to set cj) to the distortion Du(1, vru − 1)

with the anchor view vru − 1. Note that the distortion function remains monotonically non-decreasing.

Figure 19 shows an example of the aggregate cost for peer with virtual view u, where d0 is the distortion and

S is the reconfiguration cost. Note that d0 + S = α except for vru = v1 and vru = v2. If an optimal solution to

FLSR-H with constraint VM = κ+1 has a total cost less than |S|α, then the selected camera views will correspond

to C′ in MC. Hence MC is a special case of FLSR-H. �

Then We prove that the FLSR-S problem is NP-hard, by reducing the MC problem to a special case of FLSR-S.

Following similar construction as in the proof for FLSR-H, we first map items in set S to virtual views u’s (each

with qu = 1/|S|) to the right of leftmost camera view 1, and map subsets in collection C to camera views v’s to

the right of the virtual views. Consider again the case where the optimal solution has all peers sharing view 1 as

their left anchor view.

We construct the reconfiguration cost Su(1, vru) as done in the FLSR-H proof. Next, we identify the smallest

Su(1, v) for all u’s and v’s for which u and v correspond to an item and a subset in the original MC problem,

respectively. Let δ = Su(1, v − 1) − Su(1, v). We then construct Du(1, v) to be 1 − Su(1, v) − δ if the subset

corresponding to v contains the item corresponding to u, and 1 − Su(1, v) otherwise. That means that a virtual

view covered by a camera view v has a decrease of δ in distortion. Note that by the definition of δ, Du(1, v) is

monotonically non-decreasing. Finally, we define the access cost a = δ/(|C|+ 1), which means that purchasing all

the camera views v’s is cheaper than paying for a distortion δ for a virtual view u uncovered by a camera view v.

We now claim that, if the optimal solution to FLSR-S has an access cost smaller than κδ/(|C| + 1), then the

MC decision problem is positive, and vice versa. This is because under the above construction, FLSR-S can always

find a solution that covers all virtual views u’s (items in MC) with camera views v’s. If the solution requires κ or

fewer camera views, then the corresponding subsets will cover all items in C in MC. �
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