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ABSTRACT
Image denoising is an under-determined problem, and hence it is
important to define appropriate image priors for regularization. One
recent popular prior is the graph Laplacian regularizer, where a given
pixel patch is assumed to be smooth in the graph-signal domain. The
strength and direction of the resulting graph-based filter are com-
puted from the graph’s edge weights. In this paper, we derive the
optimal edge weights for local graph-based filtering using gradient
estimates from non-local pixel patches that are self-similar. To ana-
lyze the effects of the gradient estimates on the graph Laplacian reg-
ularizer, we first show theoretically that, given graph-signal hD is
a set of discrete samples on continuous function h(x, y) in a closed
region Ω, graph Laplacian regularizer (hD)TLhD converges to a
continuous functional SΩ integrating gradient norm of h in metric
space G— i.e., (∇h)TG−1(∇h) — over Ω. We then derive the op-
timal metric space G?: one that leads to a graph Laplacian regu-
larizer that is discriminant when the gradient estimates are accurate,
and robust when the gradient estimates are noisy. Finally, having de-
rived G? we compute the corresponding edge weights to define the
Laplacian L used for filtering. Experimental results show that our
image denoising algorithm using the per-patch optimal metric space
G? outperforms non-local means (NLM) by up to 1.5 dB in PSNR.

Index Terms— graph Laplacian regularization, metric space,
image denoising, inverse imaging problem

1. INTRODUCTION

Image denoising [1] seeks the original signal x given observed signal
y = x + e corrupted by additive noise e. It is an under-determined
problem, and thus appropriate definition of image priors to regu-
larize the problem is important. Among proposed image priors in
the literature such as total variation (TV) [2] and auto-regressive
prior [3], one recent popular prior is the graph Laplacian regularizer
[4, 5, 6]. Leveraging on recent advance in graph signal processing
(GSP) [7], graph Laplacian regularizer states that a desirable image
patch x in vector form induces a small value SG(x) = xTLx, where
L = D−A is the graph Laplacian matrix for a well-defined combi-
natorial graph G with degree and adjacency matrices D and A, and
whose vertices correspond to pixels in patch x. Using such regular-
ization term, the denoising problem can now be formulated as:

x? = arg min
x

‖y − x‖22 + λ xTLx. (1)

Because (1) is an unconstrained quadratic optimization problem, the
optimal solution x? can be derived in closed form [7]:

x? = (I + λL)−1 y, (2)

where I denotes the identity matrix. One can thus interpret the so-
lution x∗ as a locally filtered version of noisy input y using linear
filter (I + λL)−1.

It is clear from (2) that the strength and direction of the result-
ing local filter depends on the edge weights that define adjacency
matrix A (and subsequently Laplacian L). In this paper, assuming
that pixel patches with similar gradients recur throughout a natu-
ral image (akin to the image self-similarity assumption in non-local
means (NLM) [8]), we derive optimal edge weights for local graph-
based filtering using gradients estimated from a set of K non-local
similar pixel patches. This means that the effectiveness of the graph
Laplacian regularizer depends on the overall quality of the K gradi-
ent estimates. Compared to bilateral filtering [9], our filtering in (2)
is also a local filter but the weights are computed using K non-local
similar patches, resulting in more robust weight estimates. Yet un-
like NLM [8], filtering of a pixel is still performed locally using its
neighboring pixels, meaning local luminance characteristics (pixels
in a local patch likely have similar luminance values assuming an
intrinsic image model [10]) can be preserved.

To analyze the effects of the K non-local gradient estimates
on the graph Laplacian regularizer, we first show theoretically that,
given graph-signal hD is a set of discrete samples on continuous
function h(x, y) in a closed region Ω, graph Laplacian regularizer
(hD)TLhD converges to a continuous functional SΩ integrat-
ing the gradient norm of h measured in metric space G— i.e.,
(∇h)TG−1(∇h) — over Ω. We then derive the optimal metric
space G?: one that leads to a graph Laplacian regularizer that is
discriminant when theK gradient estimates are accurate, and robust
when the K gradient estimates are noisy. Finally, having derived
G? we compute the corresponding edge weights to define the Lapla-
cian L used for filtering in (2). Experimental results show that our
denoising algorithm using the per-patch optimal metric space G?

outperforms NLM by up to 1.5 dB in PSNR.
The outline of the paper is as follows. We first show convergence

of graph Laplacian regularizer to its corresponding continuous func-
tional in Section 2. We then derive the optimal metric space and the
corresponding graph Laplacian in Section 3. Experimentation and
conclusion are presented in Section 4 and 5, respectively.

2. CONTINUOUS DOMAIN INTERPRETATION OF
GRAPH LAPLACIAN REGULARIZATION

We first formally define a graph-signal and demonstrate the conver-
gence of the graph Laplacian regularizer SG = (hD)TLhD to a
continuous functional SΩ. To gain better understanding of SG , we
then present a detailed analysis of the functional SΩ.

2.1. Graph Construction from Feature functions

Denote a bounded region on the 2D plane by Ω ⊂ R2; we call Ω
the domain in the sequel. In practice, Ω takes the shape of an im-
age (or image patch) which is typically a rectangle (e.g., Fig. 1). Let
Γ = {si = (xi, yi) | si ∈ Ω, 1 ≤ i ≤ M} be a set of M random
samples uniformly distributed on Ω. Since images are typically sam-



Fig. 1. Sampling the function fn uniformly in domain Ω. Red
crosses are sampling positions and blue dots are the samples.

pled uniformly on Ω in a 2D grid, samples in the set Γ are construed
as pixel coordinates in this work.

Let fn(x, y) : Ω→ R, 1 ≤ n ≤ N , be continuous feature func-
tions defined on domain Ω and can be freely chosen by users. For
image denoising, fn’s can be chosen to be the intensity of the ob-
served grayscale patch (N = 1), or R, G, and B channels of a noisy
color image (N = 3), or K patches similar to the observed patch
(N = K) due to self-similarity. Our work chooses fn’s optimally,
which will be derived in Section 3. Sampling the feature functions
{fn}Nn=1 at positions in Γ gives N vectors of length M ,

fDn = [fn(x1, y1) fn(x2, y2) . . . fn(xM , yM )]T, (3)

where 1 ≤ n ≤ N , and superscript D means “discrete”. Fig. 1 il-
lustrates the sampling process of an example function fn — a simple
ramp in domain Ω. The red crosses are sampling positions in Γ. The
blue dots are samples of fn and collectively form vector fDn .

For each sample location si ∈ Γ, we construct a lengthN vector
vi (1 ≤ i ≤M ) with previously defined fDn ,

vi = [fD1 (i) fD2 (i) . . . fDN (i)]T, (4)

where fDn (i) is the i-th entry of fDn . With vectors {vi}Mi=1, we build
a weighted neighborhood graph G, where each sample (or pixel)
si ∈ Γ is represented by a vertex Vi. The weight wij between two
different vertices Vi and Vj is computed as

wij = (ρiρj)
−γψ(dij). (5)

The weighting kernel ψ(·) is a truncated Gaussian

ψ(dij) =

 exp

(
− d

2
ij

2ε2

)
if |dij | ≤ r,

0 otherwise,
(6)

where the distance d2
ij = ‖vi − vj‖22, and the degree of Vi before

normalization is ρi =
∑M
j=1 ψ(dij).

Under these settings, G is an r-neighborhood graph; i.e., there is
no edge connecting two vertices with distance greater than r. Here
r = εCr , andCr is a constant. The parameter ε controls the sensitiv-
ity of the graph weights to the distances, and γ controls the normal-
ization of the weights. Let the adjacency matrix of G be A, where
entry (i, j) of A is wij . The degree matrix of G is a diagonal matrix
D with entry (i, i) computed as

∑M
j=1 wij . The unnormalized graph

Laplacian L is simply L = D −A. Note that graphs employed in
many recent works (e.g., [4, 5, 11, 12]) are special cases of our more
generally defined graph G.

2.2. Convergence of The Graph Laplacian Regularizer

Suppose h(x, y) : Ω→ R is yet another continuous function defined
on domain Ω. Sampling h at positions in Γ leads to its discretized
version, hD = [h(x1, y1) h(x2, y2) . . . h(xM , yM )]T. The graph
Laplacian L obtained in Section 2.1 induces the graph Laplacian
regularizer SG(hD) = (hD)TLhD .

The continuous counterpart of regularizer SG(hD) is given by a
functional SΩ(h) on domain Ω,

SΩ(h) =

∫∫
Ω

(∇h)TG−1(∇h)
(√

detG
)2γ−1

dxdy, (7)

where ∇h = [∂xh ∂yh]T is the gradient of continuous function h.
G is a 2×2 matrix given by

G =
∑N

n=1
∇fn · (∇fn)T. (8)

G, a matrix-valued function of location (x, y), is also the structure
tensor [13] of the gradients {∇fn}Nn=1. We see that feature func-
tions {fn}Nn=1 determine the functional SΩ and the graph Laplacian
regularizer SG . We can now declare the following theorem:

Theorem 1 (Convergence of SG). Under mild conditions for ε, func-
tions {fn}Nn=1 and h as stated in [14],

lim
M→∞
ε→0

M2γ−1

ε4(1−γ)(M − 1)
SG(hD) ∼ SΩ(h), (9)

where “∼” means there exists a constant depending on Ω, Cr , and
γ, such that equality holds.

In other words, as the number of samplesM increases and the neigh-
bourhood size r = εCr shrinks, graph Laplacian regularizer SG ap-
proaches the continuous functional SΩ. We proved Theorem 1 in
[12], by viewing a graph as discrete approximation of a Riemannian
manifold. 1

2.3. Metric Space in Continuous Domain

Convergence of the graph Laplacian regularizer SG to the continu-
ous functional SΩ allows us to understand the behaviour of SG via
analysis of SΩ. In (7), the quadratic term (∇h)TG−1(∇h) mea-
sures the gradient norm of h in a metric space defined by matrix
G. From (8), G’s eigenvectors and eigenvalues capture the statis-
tics of {∇fn}Nn=1. Fig. 2 shows three examples of different metric
spaces in gradient coordinates for some location (x, y) ∈ Ω. The
green dots are gradients {∇fn}Nn=1. The eigenvector corresponding
to the largest eigenvalue of G has direction l, which passes through
the origin and aligns with the center of {∇fn}Nn=1. The ellipses are
isolevel lines (norm balls) of the metric spaces, and the flatness of
their shapes reflects how concentrated {∇fn}Nn=1 are.

Fig. 2 also shows different scenarios when SΩ is used as a regu-
larization term to recover the ground truth continuous patch (denoted
as ht). We mark the ground truth gradient — defined as g = ∇ht —
with the red crosses in Fig. 2. We see that, though both the metric
spaces in Fig. 2(a) and Fig. 2(b) skew toward g, the one in Fig. 2(b) is
more skewed or discriminant; i.e., a small Euclidean distance away
from the ground truth gradient g in a direction orthogonal to l will
result in a large metric distance. This is desirable for a regulariza-
tion term to distinguish between good pixel patch candidates (close
to ground truth) and bad candidates (far from ground truth).

However, if the gradients {∇fn}Nn=1 concentrated in a location
far from ground truth g—resulting in a skewed metric space that is
not aligned with g—then the metric space is discriminant but incor-
rect (as shown in Fig. 2(c)); i.e., bad pixel patch candidates would
have smaller regularization terms than good candidates, which is un-
desirable. Therefore, one should design a discriminant metric space

1In [12], Theorem 1 is proved by applying the result of [14]. Different
from [12], in this work the spatial coordinates are not included in vi, leading
to a more general graph G, but the proof in [12] remains valid.



(a) (b) (c)

Fig. 2. At a position (x, y) ∈ Ω, different arrangements of gradients
{∇fn}Nn=1 establish different metric spaces for regularization.

only to the extent that estimates of g are reliable. We discuss the
procedure to obtain the optimal metric space in the next section.

We first establish an ideal metric space when ground truth g is
known. Specifically, ∀(x, y) ∈ Ω, we seek for a matrix G to define
a metric space, so that SΩ is discriminant with respect to g,

G0(g) = ggT + αI, (10)

whereα > 0 is a small constant. Given definition in (10), G0(g) has
two eigenvalues ‖g‖22 +α andα. Moreover, (10) can be rewritten as

G0(g) =

(
1 +

α

‖g‖22

)
· ggT +

α

‖g‖22
· g⊥gT

⊥, (11)

where g⊥ is a vector orthogonal to g, e.g., g rotated by π/2 clock-
wise. The skewness of the metric space can be adjusted using α
(small α means a more skewed metric space).

However, in image denoising the ground-truth gradient g is usu-
ally unknown. We discuss how to find an optimal metric space for
image denoising in the next section.

3. IMAGE DENOISING WITH OPTIMAL GRAPH
LAPLACIAN REGULARIZATION

We first introduce our noise model in gradient domain. Given a set
of noisy gradient observations, we then derive the optimal metric
space in the minimum mean square error (MMSE) sense. From the
optimal metric space we derive the corresponding feature functions,
leading to the optimal edge weights for the graph modeling pixels
in the target patch. Our work adopts a patch-based recovery frame-
work as done in [8, 11, 12]. We further assume the input image is
corrupted by independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN).

3.1. Noise Modeling of the Gradients

Given a
√
M ×

√
M noisy image patch p0 ∈ RM , one can identify

a set of K − 1 patches on the noisy image that are similar in terms
of gradients. Together with p0, the K patches {pk}K−1

k=0 are collec-
tively called a cluster in the sequel. On patch pk, the 2D gradient
at pixel i is denoted as gik. With all the noisy gradient observations
at some pixel i, we seek the optimal metric space for this pixel. For
simplicity, hereafter the superscript i is neglected. We model the
noisy gradients {gk}K−1

k=0 as

gk = g + ek, 0 ≤ k ≤ K − 1, (12)

where g is the unknown ground-truth gradient on p0 at pixel i.
{ek}K−1

k=0 are independent noise terms, which follow 2D Gaussian
distribution with zero-mean and covariance matrix σ2

eI. {ek}K−1
k=0

are the outcome of the i.i.d. AWGN process2, and the forma-
tion noise introduced in the image formation process. Hence the

2For simplicity, we assume the i.i.d. AWGN condition in the pixel domain
carries to the gradient domain.

probability density function (PDF) of gk given ground truth g is

Pr(gk
∣∣g) =

1

2πσ2
e

exp

(
− 1

2σ2
e

‖g − gk‖22

)
. (13)

Our work assumes that the noise statistics change slowly, so that the
variance σ2

e is a constant for a cluster {pk}K−1
k=0 .

3.2. Seeking for the Optimal Metric Space

Given the noisy gradients {gk}K−1
k=0 , we seek the optimal metric

space for pixel i in the MMSE sense. Specifically, we formulate
the following minimization problem to find the optimal matrix G∗

given {gk}K−1
k=0 :

G? = arg min
G

∫∫
∆

‖G−G0(g)‖2F · Pr
(
g
∣∣∣ {gk}K−1

k=0

)
dg,

(14)
where ∆ represents the whole gradient domain, and we adopt the
Frobenius norm to measure the difference between metric spaces.
By taking derivative of the objective in (14) with respect to G and
setting it to zero, we obtain

G? =

∫∫
∆

G0(g) · Pr
(
g
∣∣∣ {gk}K−1

k=0

)
dg, (15)

which integrates G0(g) over the gradient domain. Note that inte-
gration of a matrix means integrate it component-wise. Moreover, by
Bayes rules we can replace the posterior probability with the product
of likelihood and prior probability:

Pr
(
g
∣∣∣ {gk}K−1

k=0

)
∝ Pr(g) · Pr

(
{gk}K−1

k=0

∣∣∣g)
∝ Pr(g) ·

∏K−1

k=0
Pr (gk|g)

∝ exp

(
− 1

2σ2
g

‖g‖22

)
· exp

(
− 1

2σ2
e

∑K−1

k=0
‖g − gk‖22

)
, (16)

where we apply (13) and assume the prior Pr(g) follows a 2D zero-
mean Gaussian with covariance σ2

gI. With further algebraic manip-
ulation, one can show that the right-hand side of (16) is also a 2D
Gaussian. Hence

Pr
(
g
∣∣∣ {gk}K−1

k=0

)
=

1

2πσ2
exp

(
− 1

2σ2
‖g − gµ‖22

)
, (17)

where its mean is gµ and covariance is σ2I, expressed as:

gµ =
1

K + σ2
e

/
σ2
g

∑K−1

k=0
gk, σ2 =

σ2
e

K + σ2
e

/
σ2
g

. (18)

Note that σ2 is a constant for different pixel locations on p0. Given
(10) and (17), the integral of (15) has a closed-form expression

G? = gµg
T
µ + (σ2 + α)I. (19)

(19) has an intuitive interpretation: when the noise variance σ2 of
the patch is small, the first term dominates and the metric space is
skewed and discriminant. When σ2 is large — i.e., when the esti-
mated gradients gk are unreliable, the second term dominates and
the metric space is not skewed and is essentially the Euclidean space.

3.3. From Metric Space to Graph Laplacian

From Section 2.1, when operating on discrete images, we need dis-
crete feature functions {fDn }Nn=1 to compute the graph weights,
which subsequently lead to graph Laplacian L. The simplicity of
(19) allows us to select N = 3 appropriate feature functions by
comparing (19) with (8), such that the selected feature functions will
directly lead to the optimal metric space G? in (19). Let

f1(x, y) =
√
σ2 + α · x, f2(x, y) =

√
σ2 + α · y. (20)



Table 1. Natural image denoising with OGLRD: performance com-
parisons in PSNR (dB) with NLM and BF

Image Method
Standard Deviation σn

10 15 20 25 30

Lena
OGLRD 35.12 33.53 32.33 31.38 30.64

NLM 34.26 32.03 31.51 30.38 29.45
BF 29.48 27.00 24.80 23.00 21.52

Boats
OGLRD 33.19 31.39 30.21 29.23 28.54

NLM 32.88 30.69 29.74 28.62 27.68
BF 27.91 26.42 24.89 23.47 22.19

Pepp.
OGLRD 34.70 33.31 32.26 31.51 30.81

NLM 33.97 31.96 31.48 30.42 29.50
BF 28.96 26.70 24.67 22.95 21.49

Airpl.
OGLRD 35.29 33.48 32.14 31.13 30.29

NLM 34.42 32.13 31.20 30.04 29.08
BF 30.39 28.15 25.96 24.04 22.40

According to (8), f1(x, y) and f2(x, y) lead to the term (σ2 + α)I
in (19). Correspondingly, in the discrete domain,

fD1 (i) =
√
σ2 + α · xi, fD2 (i) =

√
σ2 + α · yi. (21)

Recall that (xi, yi) denotes the coordinate of pixel i. And let

fD3 =
1

K + σ2
e

/
σ2
g

∑K−1

k=0
pk, (22)

which sums the whole cluster {pk}K−1
k=0 . From the definition of gµ

(18), fD3 leads to the term gµg
T
µ in (19). With the defined fD1 , fD2 and

fD3 , we can obtain the neighborhood graph G and therefore the graph
Laplacian L according to Section 2.1. Notice that from (21) and (22),
our optimal graph Laplacian is closely-related to joint (or cross) bi-
lateral filtering [15, 16] using the averaging of similar patches as
guidance image. In contrast, our proposal adapts to the noise vari-
ance, resulting in more robust weight estimates.

We estimate the constant σ2
e (variance of the noisy gradient)

from the cluster {pk}K−1
k=0 . We first estimate the gradients of patches

{pk}K−1
k=0 with two filters Hx = [1 −1] and Hy = [1 −1]T, lead-

ing to 2D gradients gik = [gik,1 g
i
k,2]T for 0 ≤ k ≤ K − 1 and

1 ≤ i ≤M . Then at each pixel i, we compute the sample variances
of {gik,1}K−1

k=0 and {gik,2}K−1
k=0 respectively. Then σ2

e is estimated as
the mean of all the obtained sample variances.

3.4. Optimization Algorithm

We perform optimal local graph-based filtering for a noisy patch p0

as follows. We first search for its K − 1 most similar patches via
block-matching and Euclidean distance as metric. We then compute
the feature functions, which lead to edge weights and graph Lapla-
cian L as described in Section 3.3. Note that to reduce the effect of
noise and obtain a good Laplacian L, the aforementioned two steps
are both performed on a bilateral-filtered version of the noisy im-
age [9]. Having computed graph Laplacian L, we can compute the
optimally filtered output using (2). We denoise the given image iter-
atively to gradually enhance the image quality. At the end of the i-th
iteration, the denoised patches are aggregated to form the updated
denoised image. Our method has the same time complexity as NLM
due to the block matching process. We name our method optimal
graph Laplacian regularization for denoising (OGLRD).

4. EXPERIMENTATION

In this section, we evaluate the denoising performance of the pro-
posed OGLRD and compare it against competing natural image de-

(a) OGLRD (b) NLM (c) BF

(d) OGLRD (e) NLM (f) BF

(g) OGLRD (h) NLM (i) BF

Fig. 3. Fragments of different denoised versions of the images Lena,
Boats, and Airplane. The original images are corrupted by AWGN
with σn = 25.

noising algorithms. Four 512×512 gray-scale images: Lena, Boats,
Peppers and Airplane was used as the test images. The images were
corrupted by i.i.d. AWGN, with standard deviation σn ranging from
10 to 30. We compared OGLRD with two competing methods: bi-
lateral filtering (BF) [9] and non-local means (NLM) [8].

In our implementation, the patch size
√
M was set as 25. We

set the threshold r in (6) such that each vertex of G had at least eight
edges, the normalization factor γ in (5) was chosen as 0.4. We let σg
be a large value 106, while the constant α be a small value 10−12.
We run 3 iterations to denoise the images for a reasonable tradeoff
between complexity and denoising quality.

Objective performance (measured in PSNR) of the proposed
method, accompanied with those of the competing methods, are
tabulated in Table 1. We see that OLGRD provided superior de-
noising performance, achieving up to 1.5 dB gain over NLM (Lena,
σn = 15) and 9.3 dB gain over BF (Peppers, σn = 30).

Visual comparisons of OGLRD to NLM and BF are shown in
Fig. 3, which shows segments from different denoised versions of
Lena, Boats and Airplane corrupted by AWGN (σn = 25). We
see that results of OGLRD exhibit natural and clear appearances,
while NLM smears the details and BF fails to clean up the noise.

5. CONCLUSION

A key to graph-based local filtering for image denoising is the appro-
priate selection of edge weights in the graph that represents pixels in
a target patch. In this paper, assuming patch gradients recur through-
out an image due to self-similarity, we describe a methodology to de-
rive the optimal edge weights given K nonlocal noisy observations
of the target patch gradient. The resulting graph Laplacian regular-
izer is discriminant when the gradient estimates are accurate, and
robust when the estimates are not. Experimental results show up to
1.5 dB denoising performance gain over non-local means (NLM).
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