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Introduction to PWS Image Denoising

• Limitations of current sensing technologies 

- acquired PWS images are often corrupted by non-negligible acquisition noise.

• Denoising is an inverse imaging problem.

• Signal prior is key to inverse imaging problems!

• Depth images are PWS, self-similar.

noise

desired signal

observation vxy 
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• Local methods (e.g., bilateral filtering)

• Nonlocal image denoising

Buades et al, "A non-local algorithm for image denoising," CVPR 2005

- Assumption: nonlocal self-similarity

• Dictionary learning based

Elad et al, "Image denoising via sparse and redundant representation over 

learned   

dictionaries," TIP 2006.

- represent a signal by the linear combination of a few atoms out of a dictionary

Other related works

- Huhle et al, “Robust non-local denoising of colored depth data,”  CVPR Workshop 

2008

- Tallon et al, “Upsampling and denoising of depth maps via  joint segmentation,” 

EUSIPCO 2012

Existing Image Denoising Methods
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Local Piecewise SmoothnessNonlocal self-similarity

unify in GFT domain 

Challenges Our method                

1. Adapt to nonlocal statistics  --- adapt to nonlocal statistics via nonlocal self-similarity

2. Characterize PWS                --- characterize PWS via GFT representation

+ learn GFT dictionary efficiently

Key Idea in Non-local GFT
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Algorithm:

1. Identify similar patches, compute avg patch.

（self-similarity）

2. Given avg patch, use Gaussian kernel to 

compute weights between adjacent pixels.

3. Compute graph Fourier transform (GFT).

4. Given GFT, soft thresholding on transform coeff. 

for sparse representation.

7[1]  W. Hu, X. Li, G. Cheung, O. Au, "Depth Map Denoising using Graph-based Transform and Group Sparsity," IEEE International 

Workshop on Multimedia Signal Processing, Pula (Sardinia), Italy, October, 2013. (Top 10% paper award.)
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Justification of Sparsity Prior

• GFT domain sparsity prior in objective function:

• ”Argument”:

• GFT approximates KLT if statistical model is GMRF and each graph 

weight captures correlation of 2 connected pixels [2, 3].

• Underlying “causes” of PWS signals are few; PWS signal can be 

sparsely represented in GFT domain [4, 5].
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[2] C. Zhang and D. Florencio, “Anaylzing the optimality of predictive transform coding using graph-based models,” in IEEE Signal 

Processing Letters, vol. 20, NO. 1, January 2013, pp. 106–109.

[3] W. Hu, G. Cheung, A. Ortega, O. Au, “Multi-resolution Graph Fourier Transform for Compression of Piecewise Smooth Images,” 

IEEE Transactions on Image Processing, January 2015.

[4] G. Shen, W.-S. Kim, S.K. Narang, A. Ortega, J. Lee, and H. Wey, “Edge-adaptive transforms for efficient depth map coding,” in IEEE

Picture Coding Symposium, Nagoya, Japan, December 2010.

[5] W. Hu, G. Cheung, X. Li, O. Au, “Depth Map Compression using Multi-resolution Graph-based Transform for Depth-image-based 

Rendering,” IEEE International Conference on Image Processing, Orlando, FL, September 2012.



• Setup:

- Test Middleburry depth maps: Cones, Teddy, Sawtooth

- Add Additive White Gaussian Noise 

- Compare against Bilateral Filtering (BF), Non-Local Means Denoising (NLM) 

and Block-Matching 3D (BM3D)

• Results

– Up to 2.28dB improvement over BM3D.

NLGFT BM3D

NLM BF

Experimental Results (1)
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• Image denoising—a basic restoration problem:

• It is under-determined, needs image priors for regularization:

• Graph Laplacian regularizer: should be small for target patch 

• Many works use Gaussian kernel to compute graph weights [1, 6]:

is some distance metric between pixels i and j

Motivation (I)

 y x eobservation noise

desired signal

2

2
min   prior( ) 

x
y x x

fidelity term
prior term

x

T( )S x x LxG  L D A

12

dist( , )i j

graph Laplacian matrix

[6] D. Shuman et al., “The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and 

other irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.
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approximate

discrete graph continuous manifold

Motivation (II)
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• However…

a. Why is  a good prior?

b. Why using Gaussian kernel for edge weights?

c. How to design a discriminant for restoration?

T( )S x x LxG

T
x Lx

• We answer these basic questions by viewing:

• discrete graph as samples of high-dimensional manifold. 
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[7]  Jiahao Pang, Gene Cheung, Antonio Ortega, Oscar C. Au, "Optimal Graph Laplacian Regularization for Natural Image Denoising," IEEE 

International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, April, 2015.

[8]  Jiahao Pang, Gene Cheung, Wei Hu, Oscar C. Au, "Redefining Self-Similarity in Natural Images for Denoising Using Graph Signal 

Gradient," APSIPA ASC, Siem Reap, Cambodia, December, 2014.



Our Contributions
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1. Using Gaussian kernel to compute graph weights,

converges to a continuous functional       .

T( )S x x LxG

S

A continuous functional
for regularization

Graph Laplacian 
regularizer SG S

converge

2. Analysis of functional        provides understanding of how signals are 

being discriminated and to what extent; careful graph construction leads 

to discriminant signal prior.

S

Effective regularizer  
Select edge weights via 

“feature functions” 
obtain SG

3. We derive the optimal graph Laplacian regularizer for denoising, which is 

discriminant for small noise and robust when very noisy.
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• Graph for image restoration

• Each pixel corresponds to a vertex in a graph (denote # of pixels as      ).

• Regard the image as a signal defined on a weighted graph.

• With proper graph configuration, construct filter for image (graph signal) 

using prior knowledge (i.e., smooth on the graph).

e.g., graph of a 5×5 patch,

(not necessarily be a grid graph)

M

Graph-Based Image Processing

15



Continuous Domain Discrete Domain

Obtain continuous 

functional ( )S h

Choose the continuous

feature functions 1{ }N

n nf 

SAMPLE

Get metric space

on point-by-point basis

2 2R G Compute the weights 

and Laplacian M MR L

Sample            to obtain

the discrete 1}{ D N

n nf
1{ }N

n nf 

Graph Laplacian 

Regularizer ( )DS hG

CONVERGE

• Different features lead to different regularization behavior!1{ }N

n nf 

Road Map
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• First, define:

• 2D domain

—shape of an image patch

•

— uniformly distributed

random samples on     ,

pixel locations in our work

2R

 T [ ] | ,1i i i iyx i M     s s



M

Functional

( )S h

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer

( )DS hG

converge

Roadmap

• (Freely) choose      continuous functions

called feature functions, for example

• intensity for gray-scale image  (          )

• R, G, B channels for color image  (           )

( , ) : ,  1nf x R n Ny   

N

1N 

3N  𝑥

𝑦
𝑓𝑛(𝑥, 𝑦)

Ω
𝑂

Graph Construction (I)
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• For each sample          ,  define a length vector

• Build a graph      with       vertices; each sample             has a 

vertex 

T

1 2[ ( ) ( ) ( )]D D D

i Ni i i v f f f

i s

iV

G i s

N

M

• Sampling       at positions in      gives

discretized feature functions

T

1 1 2 2[ ( , ) ( , ) ( , )]D

n n MMn nf x y f x y f x y f

nf  N

𝑥

𝑦
𝑓𝑛(𝑥, 𝑦)

Ω𝒔𝑖

𝑓𝑛(𝑥𝑖 , 𝑦𝑖)

𝑂

Functional

( )S h

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer

( )DS hG

converge

Roadmap

Graph Construction (II)
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• Weight between vertices      andiV jV

( ) ( )ij i j ijw d  

2
2

2ij i jd  v v

“Distance” between two features

1
( )i ij

M

j
d 




degree before normalization

normalization factor 

• is an r-neighborhood graph, i.e., no edge connecting two 

vertices with distance greater than

G
r

Clipped Gaussian kernel
2

2
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otherwise0
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where                and         is a constant
rCrCr 

Functional

( )S h

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer

( )DS hG

converge

Roadmap

Graph Construction (III)
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• — -th entry is        

— diagonal entry is

unnormalized Graph LaplacianA ijw( , )i j

D
1 ij

m

j
w

  L D A

• Our graph      is very general

• e.g., one can derive that the popular 

2D grid graph is a special case of ours

G

• — graph Laplacian regularizer, functional inT( ) ( )D D DS h h LhG

MR

• is some continuous candidate function

— discrete version of 

( , ) :h x y R

T

1 1 2 2[ ( , ) ( , ) ( , )]D

M Mh x y h x y h x y h ( , )h x y

Functional

( )S h

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer

( )DS hG

converge

Roadmap

Graph Construction (IV)
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• The continuous counterpart of       is a 

functional        on domain

is the gradient of

 
2 1

T 1( ) ( ) ( ) detS h h h dxdy
 






   G G

T[  ]x yh h h    h

SG
S 

Convergence of the Graph Laplacian Regularizer 

(I)

[9] H. Knutsson, C.-F. Westin, and M. Andersson, “Representing local structure using tensors ii,”

in Image Analysis. Springer, 2011, vol. 6688, pp. 545–556.

• is a 2-by-2 matrix:
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 


 

 
G

Structure tensor [9] of the

gradients                       1{ ( , )}N

n nx yf 

G

• is computed from                on a point-by-point basis G 1{ }N

n nf 

Functional

( )S h

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer

( )DS hG

converge

Roadmap
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• Theorem : convergence of       to      

“~” means there exist a constant

such that equality holds.

2) neighborhood                 shrinks

SG

1) number of samples  increases

S

M

Convergence of the Graph Laplacian Regularizer 

(II)

[10] M. Hein, “Uniform convergence of adaptive graph-based regularization,” in Learning Theory. Springer, 2006, pp. 50–64.

• With results of [10], we proved it by viewing a graph as proxy of an

-dimensional Riemannian manifold

Vertex Coordinate on Ω Coordinate on N-D manifold

N

iV  ,i i iyxs
T

1 2[ ( ) ( ) ( )]D D D

i Ni i i v f f f

   
0

lim h ~D

G
M

S S h







rCr 

Functional

( )S h

Matrix

2 2R G

Graph weights,

and M MR L

Samples

1}{ D N

n nf1{ }N

n nf 

Features

Regularizer

( )DS hG

converge

Roadmap
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• converges to       , with     , any new insights we gain on      ??

• Inspect the equations carefully…

• 3 observations:

• measures length of          in a metric space built by      !

• The eigen-space of       reflects dominant directions of 

• integrates the gradient norm

23

Interpretation of Graph Laplacian Regularizer (I)

SG S SGS

T 1( ) ( )h h G h

G

G

1{ }N

n nf 

S

 
T

1
· n

N

nn
f f


  G

T( ) ( )D D DS h h LhG
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Green dots are 1{ }N

n nf 

Justification of Graph Laplacian Regularizer (II)

• Metric space defined by      ?

• At a certain location            on the image

𝜕𝑥

𝜕𝑦

𝑙
𝑂

G

l: dominant direction,

eigenvector corresponds to

the largest eigenvalue of         G

Ellipses are contours (isolines),

reflects how concentrate 1{ }N

n nf 

T 1( ) ( ) ( )S h h h dxdy




   G  
T

1
· n

N

nn
f f


  G

( , )x y
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Justification of Graph Laplacian Regularizer (III)

• The 2D metric space provides a clear picture of what signals are 

being discriminated and to what extent, on a point-by-point basis in 

the continuous domain.

• Both (a)(b) are correct, but (b) is more discriminant,

(c) is discriminant but incorrect

• Lesson: when ground-truth is unknown, one should design a 

discriminant metric space only to the extent that estimates of 

ground-truth are reliable!

𝜕𝑥

𝜕𝑦

𝑙

𝑂

(a)

𝜕𝑥

𝜕𝑦

𝑙
𝑂

(b)

𝜕𝑥

𝜕𝑦

𝑙

𝑂

(c)

ground-truth
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• For a                     noisy patch               , identify            similar patches 

on the noisy image, the      patches               form a cluster

26

Noise Modeling in Gradient Domain

M M

2

2 2 2

1
exp

2

1
( | )

2
k k

e e
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 

 
  





g g g g

1K 
1

0{ }K

k k



pK

• On patch     , gradient at pixel     is      .

• Drop superscript   ,  model the noisy gradients               as

kp i
i

kg
1

0{ }K

k k



g

,0 1k k k K   g g e

Unknown ground-truth
Noise term, follows 2D Gaussian 

with zero-mean and covariance

• PDF of      given ground-truth     (likelihood) is simply

2

e I

kg g

i

MR0p

COST Training School 7/06/2015



• We first establish an ideal metric space assuming we 

know ground truth:

It is discriminant to

, smaller      makes the space more skewed

27

Seeking for the Optimal Metric Space (I)

  2 1

0 0
arg min ( ) |

K

k kF
Pr d




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G

G G G g g g g
・

∆ is the whole gradient domain posterior prob. of ground truth

g

T

0 ( )  G g gg I

g

𝜕𝑥

𝜕𝑦

𝑙
𝑂

g

• With noisy gradients               seek for the optimal metric space

0 

1

0{ }K

k k



g

  1

0 0
( )· |
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k k
dPr




  G G g g g g

・
(1)


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• Intuition: If noise       is small,           dominates and       is discriminant;

if       is large,                     dominates,        defaults to Euclidean space!

• Assume the prior            is a 2D Gaussian with covariance

we derive

where the “ensemble” mean       and variance        are

28
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• Carrying out the integral in (1) gives the optimal metric space

2
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・

( )Pr g 2
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1
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 
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Seeking for the Optimal Metric Space (II)
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• Our work is closely-related to joint (or cross) bilateral filtering, with the 

averaging of similar patches as guidance image.

• The structure of                                          allows us to select            

feature functions, such that they lead to the optimal metric space:

29

2

1 ( ) ·D

ii x  f

• and             correspond to the term                     in

2

2 ( ) ·D

ii y  f

1 ( )D if

3N 

03 2

1

2

1D

k

e g

K

kK  







f p

2 ( )D if
2( )  I G

・

• leads to the term            in 3 ( )D if T

 g g G
・

T 2( )    G g g I
・

• However, we adapt to noise, resulting in robust weight estimates.

From Metric Space to Graph Laplacian

— Spatial

— Intensity
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Formulation and Algorithm

• Adopt a patch-based recovery framework, for a noisy patch

1. Find            patches similar to       in terms of Euclidean distance.

2. Compute the feature functions, leading to edge weights and Laplacian. 

3. Solve the unconstrained quadratic optimization:

to obtain the denoised patch.

0p

1K  0p

• Aggregate denoised patches to form an updated image.

• Denoise the image iteratively to gradually enhance its quality.

• Optimal Graph Laplacian Regularization for Denoising (OGLRD).

  0

12

20
q

pLIqLqqqpminarg*q


  T
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Experimentation (I)

1.5 dB better than NLM!

• Test images: Lena, Boats, Peppers and Airplane

• i.i.d. Additive White Gaussian Noise (AWGN)

• Compare OGLRD to NLM and BF
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Experimental Results (II)

• Visual comparisons (             ) of fragments25n 

BF

NLM

OGLRD
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Experimental Results (III)

• Some visual results when 30n 

Before After Before After Before After
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Summary

• Image denoising is an ill-posed problem; we use graph Laplacian 

regularizer as prior for regularization.

• Graph Laplacian regularizer with Gaussian kernel weights converges to a 

continuous functional.

• Analysis of the continuous functional provides theoretical justification of 

why and to what extent the graph Laplacian regularizer can be 

discriminant.

• We describe a methodology to derive the optimal edge weights given 

nonlocal noisy gradient observations.

• Our denoising algorithm with graph Laplacian regularizer and gradient-

based similarity out-performs NLM by up to 1.5 dB.
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Outline

• Depth Image Denoising

• Graph Sparsity Prior

• Graph-signal Smoothness Prior

• Bit-depth Enhancement
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Image Bit-depth Enhancement

Problem:

low bit-depth (LBD) image y—a quantized

version of underlying HBD image

an estimate of the 

original HBD image

[11]  Rudin et al, “Nonlinear total variation based noise removal algorithms”, Elsevier, 1992
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Image Bit-depth Enhancement

Objective: find      that minimizes mean-squared-error (MSE),

Smoothness prior: HBD signal is 

smooth

Conventional smoothness (e.g., total Variation) 

are signal-independent  over-smoothing

Posterior:

Likelihood: equals to 1 iff xi quantizes 

to yi

  xy|xxx̂minargx̂
2

2x̂
dfMMSE

 

posterior prob of HBD 

signal x given LBD signal y

squared errx̂

Question: what’s a good signal smoothness prior?
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[12]  P. Wan, G. Cheung, D. Florencio, C. Zhang, O. Au, “Image Bit-depth Enhancement via Maximum-a-Posteriori Estimation of Graph 

AC Component," IEEE International Conference on Image Processing, Paris, France, October, 2014. (Top 10% accepted paper recognition)

Graph-signal smoothness prior

• MMSE problem is now well posed, but difficult to solve.

L is the graph Laplacian matrix 
describing inter-pixel similarities*

Reconstruct smooth signal without blurring edges

Image Bit-depth 

Enhancement
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• MAP finds smoothest solution in feasible space.

• Can have arbitrarily large MSE!

Image Bit-depth Enhancement

Smoothest feasible signal 

is basically DC.
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Proposed ACDC Algorithm:

• Compute edge weights from quantized signal.

• Compute MAP solution of AC signal.

• Compute MMSE solution of DC signal given AC signal.

Image Bit-depth Enhancement

Why better?

• Posterior ≈ likelihood * prior

• Likelihood of AC                is less skewed 

(integrating over possible DC values).

)x|y( Af

DA xxx
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Numerical comparison:

Experiments
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Visual comparison:

Experiments
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Summary

• Inverse imaging requires good signal priors.

• Depth Image Denoising

• Graph Sparsity Prior (probabilistic interpretation)

• Graph-signal Smoothness Prior (deterministic interpretation)

• Bit-depth Enhancement

• Instead of fidelity term, restricted feasible space due to 

quantization bin constraints (as likelihood term).
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Conclusion

Depth Image Coding & Processing

• Coding:  graph Fourier Transform (GFT), generalized graph 

Fourier Transform (GGFT)

• Denoising:  graph sparsity prior, graph-signal smoothness prior

Future Work

• Natural image coding using graph-based transforms.

• Depth image denoising / interpolation for non-AWGN noise.

• Apps: Given depth images, foreground / background 

segmentation, tracking, face modeling, etc.
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