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Abstract—The graph Fourier transform (GFT)—adaptive to
the signal structures of local pixel blocks—has recently been
shown to be a good alternative to fixed transforms, e.g., the
Discrete Cosine Transform (DCT), for image coding. However, the
majority of proposed GFTs assume an underlying 4-connected
graph structure with vertical and horizontal edges only. In this
paper, we propose a design methodology to select more general
sparse graph structures and edge weights, on which GFTs are
defined for block-based coding. Specifically, we first cluster blocks
via the Lloyd-Max algorithm based on their principal gradients,
which are eigenvectors of the computed structure tensors. For
each cluster a graph template with edges orthogonal to the
principal gradient is designed. Finally, optimal edge weights
are computed assuming each template is a graph describing
the inter-pixel correlation in a Gaussian Markov Random Field
(GMRF). Experimental results show that GFTs derived from our
graph templates lead to sparser signal representations and fewer
encoding bits than DCT for a set of natural test images.

I. INTRODUCTION

In conventional block-based image codecs such as JPEG,
a fixed transform such as discrete cosine transform (DCT) is
used for transform coding of a pixel block’s intensity values.
However, distinct signal structures (e.g., gradients, disconti-
nuities, etc) of local pixel patches vary widely throughout an
image, and it is more desirable to adapt a transform to the
target signal’s characteristics during coding.

Recently it has been shown [1–3] that using different graph
Fourier transforms (GFT) for transform coding, where each
GFT is computed from a weighted undirected graph that
reflects the target block’s discontinuities (e.g., an edge is
assigned weight 0 if the connecting pixels straddle a disconti-
nuity and 1 otherwise), one can obtain significant compression
gain over DCT for piecewise smooth (PWS) images. Most
of these recent approaches use a simple 4-connected graph,
where each pixel can be connected to its nearest vertical
and horizontal pixel neighbors only. For natural images with
discontinuities and/or strong gradients in local pixel patches,
this approach is not sufficiently adaptive, however, since a
pixel may be most similar to its nearest diagonal neighbors,
and a graph structure with diagonal edges that exploit this
correlation during filtering would be more appropriate.

In this paper, we propose a design methodology to select
more general sparse graph structures and edge weights, on
which GFTs will be defined for block-based image coding.

(Sparse graphs are preferable, since fast implementation of
GFTs becomes possible via lifting [4].) Specifically, we first
cluster blocks via the Lloyd-Max algorithm based on their
principal gradients; for each code block its structure tensor
is first computed, and the eigenvector corresponding to the
larger eigenvalue is the principal gradient. Then, for each
cluster a graph template with edges orthogonal to the principal
gradient is designed, connecting most similar pixels in the
cluster. Finally, optimal edge weights are computed assuming
each template is a graph describing the inter-pixel correlation
in a Gaussian Markov Random Field (GMRF). Experimental
results show that GFTs derived from our designed graph
templates lead to sparser signal representation and fewer
encoding bits than DCT for a set of natural test images.

The outline of the paper is as follows. We first discuss
related work in Section II. We review necessary mathematical
tools in Section III and discuss our graph template design
methodology in Section IV. Experiment results and conclusion
are presented in Section V and VI, respectively.

II. RELATED WORK

Commonly used transforms like DCT, discrete sine
transform (DST) and asymmetric discrete sine transform
(ADST) [5] are fixed and do not flexibly adapt to heteroge-
neous image structures. Directional transforms [6] offer one
alternative where directionality can be incorporated into the
transform design, but cannot easily adapt to arbitrarily shaped
discontinuities such as “L” and “V”.

To be more adaptive to local image statistics, a classical
approach is to first cluster similar pixel patches into separate
classes, and then for each class derive the optimal decorrelat-
ing Karhunen-Loève Transform (KLT) based on class statistics
[7]. This purely data-driven approach leads to unstructured
inverse covariance matrices, however, and thus the resulting
KLTs tend to be computationally expensive to implement.

With the recent development in graph signal processing
(GSP) [8], transforms can now be defined on an irregular
data kernel described by a weighted undirected graph [1–3].
Unlike [7], GFTs derived from structured sparse graphs lead to
efficient implementation via lifting [4]. However, while edge
weights can be selected to reflect the similarities of connecting
pixels, using an underlying 4-connected graph structure with



only vertical and horizontal edges restricts the degree of free-
dom when adapting to the target block’s signal structure. Our
proposal generalizes these schemes by considering diagonal
edges as well when designing sparse graphs.

The most related work to our proposal is graph template
transform (GTT) [9], which, assuming a probabilistic inter-
pretation of signal in a code block, proposed to find sparse
inverse covariance matrices given a set of training blocks,
similar to graphical lasso proposed in [10]. Our proposal
differs in the following regards. First, while [9] considered
up to 24-connected graphs (each pixel is connected to its 24
nearest pixels), all our graph templates remain 4-connected and
thus are sparser, which can lead to faster implementation via
lifting [4]. Second, we cluster blocks based solely on principal
gradients derived from computed structure tensor, which leads
to fast identification of blocks to appropriate clusters. Finally,
we assume that all edges with the same orientation in a given
template have the same weight, leading to more robust edge
weight estimates than [9] where each edge in a graph template
can take on a different weight.

III. PRELIMINARIES

A. Graph Fourier Transform
A graph G is defined by a set of nodes V and a set of

edges E that connect them. Each edge k ∈ E connects nodes
i = e1(k) and j = e2(k), i, j ∈ V , with weight wi,j . Denote
by W the adjacency matrix, where Wi,j = wi,j . Denote by D
the degree matrix, where di,i =

∑
j Wi,j . The combinatorial

Laplacian L is defined as:

L = D−W (1)

Given G = (V, E ,W), we define the GFT for G as the
eigen-matrix of the graph Laplacian L, i.e, Φ such that

ΦΛΦT = L (2)

where Λ is a diagonal matrix with eigenvalues of L as
its diagonal entries. Given a graph-signal x on G, its GFT
coefficients α can be computed as α = ΦTx. While there
exist other definitions of graph Laplacian and corresponding
transforms, we prefer the combinatorial graph Laplacian in
(1), since its corresponding GFT guarantees a DC component,
which is important for natural images that tend to be smooth.
See [8] for more details.

B. Structure Tensor
The 2D structure tensor Sw(p) of a pixel patch centered at

pixel location p is computed as follows1:

=

 ∑
r

w(r)(Ix(p− r))2
∑
r

w(r)Ix(p− r)Iy(p− r)∑
r

w(r)Ix(p− r)Iy(p− r)
∑
r

w(r)(Iy(p− r))2


(3)

where w(r) is a weight parameter for displacement vector r
such that

∑
r w(r) = 1. Ix and Iy are the partial derivatives

with respect to the x- and y- axis, respectively.

1https://en.wikipedia.org/wiki/Structure tensor

By performing eigen-decomposition on the 2D structure
tensor Sw(p), one can obtain eigenvalues λ1 and λ2, where
λ1 ≥ λ2 ≥ 0, and corresponding eigenvectors v1 and v2 that
describe the gradient ∇I = (Ix, Iy) of the patch centered at p.
v1 corresponding to the larger λ1 is the principal gradient.
For example, λ1 ≈ λ2 ≈ 0 would imply the patch is mostly
flat with little or no detectable gradient in any direction. In
contrast, λ1 � λ2 ≈ 0 would indicate a dominant principal
gradient in the patch in direction v1. Finally, if λ1 and λ2 are
both large, then the patch has complex structure and there is
no one dominant gradient direction.

IV. COMPUTING OPTIMAL GRAPH

Given a training set of N pixel blocks, we now describe
four steps in our proposed block-based coding system. First,
M of N training blocks with dominant principal gradients are
identified for GFT coding; blocks without dominant principal
gradients are encoded using conventional DCT. Second, the
M selected blocks are clustered into K groups via the Lloyd-
Max algorithm. Third, for each cluster a graph template is
designed. Finally, appropriate edge weights are computed for
each designed template. The designed graph for each cluster
is used to derive a GFT as previously described.

During actual encoding, a code block is first assigned to
one of K clusters (K + 1 clusters including default cluster
that uses DCT) based on its computed principal gradient. It
is then encoded using the GFT corresponding to that cluster.
The assigned cluster index is encoded as side information for
correct decoding at the decoder.

A. Identifying Blocks for Clustering

(a) block 4 (b) block 55 (c) block 88 (d) block 130
Fig. 1. Example 8× 8 code blocks with corresponding eigenvectors of their
computed structure tensor drawn in yellow.

The goal of the first step is to identify blocks with dominant
principal gradients. We accomplish this by examining the
two eigenvalues of the computed structure tensor matrix.
Specifically, given eigenvalues λn1 and λn2 of block n, where
λn1 ≥ λn2 ≥ 0, we declare the block to have a dominant
principal gradient iff λn1 − λn2 > δ, where δ is a pre-
defined threshold. Recall that the sizes of the structure tensor
eigenvalues reflect the strength of the gradients in the block. If
there is a significant difference between them, then the patch
has a dominant principal gradient that an adaptive GFT can
exploit for coding gain. See Fig. 1 for examples of blocks with
dominant principal gradients.

B. Lloyd-Max Clustering

Given M blocks in the training set with strong principal
gradients, the next step is to cluster them into K groups via



the Lloyd-Max (LM) algorithm [11]. Specifically, each block
n is associated with a principal gradient of angle θn, where
0o ≤ θn < 180o. Using θn as the variable of interest, we are
essentially seeking K non-uniform quantization bins for θn, so
that: i) each bin Bk has a centroid φk that minimizes the mean
squared error (MSE)

∑
n∈Bk

|φk−θn|2 with respect to blocks
n assigned to bin Bk, and ii) each block n is assigned to a bin
Bk with the closest centroid: k = arg mink |φk − θn|2. The
LM algorithm finds these K bins that satisfy both conditions.

C. Graph Template Design

(a) gradient-based clustering (b) template 4 (c) template 5

Fig. 2. (a) examples of six clusters; (b) cluster 4 with vertical and horizontal
edges; (b) cluster 5 with 45o and horizontal edges.

Given the clustering described previously, we now discuss
how a graph template can be designed for each cluster. We
have two design criteria for each template: i) it contains edges
that connect pairs of most similar neighboring pixels in the
cluster, and ii) it is a fully connected graph. The second
criterion is important; a disconnected graph would result in
a GFT with multiple DC components (one for each connected
component), which is not efficient for coding. To fulfill these
criteria, we propose a three-step construction procedure for a
h× h template for each cluster as follows:

1) Select an edge orientation ψ1 from the set
{0o, 45o, 90o, 135o} that is most orthogonal to the
cluster’s centroid φk.

2) Select another edge orientation ψ2 from the set
{0o, 90o}\{ψ1} that is most orthogonal to the cluster’s
centroid φk.

3) Draw all edges in the h × h template with orientation
ψ1 or ψ2 to connect neighboring nodes in the graph.

One can see that this procedure always returns a 4-connected
graph template. Fig. 2(a) shows an example clustering with six
clusters. Examples of templates generated from our procedure
is shown in Fig. 2(b) and (c).

D. Edge Weight Computation

For each graph template with two sets of edges with
orientation ψ1 and ψ2, we now compute the edge weights,
where we assume edges of the same orientation have the same
weight. We first write the graph Laplacian L as a weighted
sum of “mini-Laplacians” Lk with weights w1 and w2:

L = w1

∑
k∈l1

Lk + w2

∑
k∈l2

Lk (4)

where l1 and l2 are the two set of edges, and each mini-
Laplacian Lk accounts only for one edge k with end nodes

e1(k) and e2(k):

Lk(i, j) =

 −1 if i 6= j and i, j ∈ {e1(k), e2(k)}
1 if i = j and i ∈ {e1(k), e2(k)}
0 o.w.

(5)

As an example, the mini-Laplacian L1 that accounts for an
edge e1 = (1, 2) that connects node 1 and 2 is:

L1 =


1 −1 0 . . .
−1 1 0 . . .
0 0 0 . . .
...

...
...

 (6)

Writing Laplacian L in the form (4) shows that the eigenvec-
tors of L depend only on the relative size of w1 to w2 rather
than the absolute values of w1 and w2.

From [12] we know that if L is a precision matrix for a
GMRF signal model, then graph template G describes the
conditional independence of variables on G; i.e., xi ⊥ xj ⇐⇒
Li,j = 0. Further, we know that:

corr(xi, xj |x−ij) = − Li,j√
Li,iLj,j

(7)

where x−ij denotes all variables in x except xi and xj , and
corr(xi, xj |x−ij) is the conditional correlation between xi
and xj given x−ij . To compute the relative size w1 to w2, we
can write:

w1

w2
=
corr(xi, xj |x−ij)

√
Li,iLj,j

corr(xs, xt |x−st)
√
Ls,sLt,t

(8)

where i, j ∈ {e1(l1), e2(l1)} and s, t ∈ {e1(l2), e2(l2)}.
Conditional corr(xi, xj |x−ij) is hard to compute, so we apply
the approximation:

corr(xi, xj |x−ij)
corr(xs, xt |x−st)

≈ corr(xi, xj)

corr(xs, xt)
(9)

so that corr(xi, xj) can be computed from data in cluster
B. Having computed the relative weight w1/w2 in (8), the
resulting GFT is then the KLT that optimally decorrelates the
input signal x.

V. EXPERIMENTATION

To test the effectiveness of our proposal, we use three
standard natural test images lena, barbara and elaine
and a fingerprint image as our test set. Each image is a
grayscale images of 512×512 resolution with 8 bits bit-depth.
We use non-overlapping 8 × 8 pixel blocks in these images
and set δ = 200 for our experiments.

Fig. 3 show the average normalized cumulative squared
energy for coded blocks in the fingerprint image and lena,
when the number of clusters is K = 6. We observe that
our proposed GFT can accumulate more energy with fewer
coefficients than DCT; i.e., GFT can achieve more compact
signal representations.

While more clusters in general can lead to sparser signal
representations, the side information coding cost of cluster
indices also increases. Given blocks classified into K clusters
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(b) lena
Fig. 3. Total energy versus number of non-zero transform coefficients used
for for signal reconstruction when K = 6.
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Fig. 4. Total distortion versus rate for different combination of cluster number
K and QP Q.

{B1, . . . ,BK} and a quantization parameter Q, we estimate
the distortion and rate as follows. Let dQ(n) be the distortion
of a transform-coded block n given QP Q. The total distortion
for the training set is:

D(Q,K) =

K∑
k=1

∑
n∈Bk

dQ(n) (10)

Let the number of non-zero transform coefficients of block
n be ξQ(n). It is expected that as Q increases, more high-
frequency coefficients are rounded to zero, resulting in a
smaller ξQ(n). We estimate the cost of encoding a cluster
index k to be

∑
k −pk log(pk), where pk is the probability of

cluster k. The total rate for the training set is then:

R(Q,K) =

K∑
k=1

−pk log(pk) + µ
∑
n∈Bk

ξQ(n)

 (11)

where µ reflects the cost of coding transform coefficients
relative to transform indices.

Given distortion (10) and rate (11) defined above, we try
different combinations of K and Q, and then trace the convex
hull as the RD performance of our proposal. Fig. 4 and 5
show the RD points for different combinations of K and Q
for the four test images. We see that for low rate, a small
K is preferable, while for large rate, a larger K is more
appropriate. In any case, the convex hull of GFT is lower
than DCT, showing that our proposal is better than DCT at
any rate region.

VI. CONCLUSION

To adapt to varying signal structures in code blocks, in this
paper we generalize previous work in graph Fourier transforms
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Fig. 5. Total distortion versus rate for different combination of cluster number
K and QP Q.

(GFT) defined on undirected graphs by considering more
general sparse graph structures that capture principal gradients
in code blocks, which are derived from computed structure
tensor. Edge weights of a fixed graph template are computed
simply assuming a Gaussian Markov Random Field (GMRF)
image model. Experimental results show that GFTs derived
from our designed graph templates lead to sparser signal
representations than DCT for a set of natural images.
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