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Abstract—Quality of sleep greatly affects a person’s phys-
iological well-being. Traditional sleep monitoring systems are
expensive in cost and intrusive enough that they disturb the
natural sleep of clinical patients. In our previous work, we
proposed a non-intrusive sleep monitoring system to first record
depth video in real-time, then offline analyze recorded depth
data to track a patient’s chest and abdomen movements over
time. Detection of abnormal breathing is then interpreted as
episodes of apnoea or hypopnoea. Leveraging on recent advances
in graph signal processing (GSP), in this paper we propose two
new additions to further improve our sleep monitoring system.
First, temporal denoising is performed using a block motion
vector smoothness prior expressed in the graph-signal domain,
so that unwanted temporal flickering can be removed. Second,
a graph-based event classification scheme is proposed, so that
detection of apnoea / hypopnoea can be performed accurately
and robustly. Experimental results show first that graph-based
temporal denoising scheme outperforms an implementation of
temporal median filter in terms of flicker removal. Second,
we show that our graph-based event classification scheme is
noticeably more robust to errors in training data than two
conventional implementations of support vector machine (SVM).

I. INTRODUCTION

It is well documented [1] that a sleep-deprived person
carries a number of health-related risks, including increase in
body weight, increased risk of diabetes and heart diseases,
increased risk of psychiatric illness such as depression, etc.
Further, it is not simply the quantity of sleep that affects
a person’s physiological well-being, but also the quality of
sleep. In particular, sleep-disordered breathing is a common
problem [2], and repeated episodes of apnoea (temporary sus-
pension of external breathing) and hypopnoea (overly shallow
breathing or low respiratory rate) can significantly disturb
a person’s sleep. It is thus important to monitor and detect
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episodes of apnoea and hypopnoea during a patient’s sleep
for quick diagnosis and appropriate treatment. We address the
problem of sleep monitoring and apnoea / hypopnoea detection
in this paper.

Existing sleep monitoring systems can be categorized into
two classes: i) vibration-sensing wristbands like Fitbit1 and
Jawbone UP2; and ii) full multi-sensing monitoring devices
like Philips Alice PDx3. While the first class of systems are
minimally intrusive, they mostly record sleep time, i.e., the
quantity rather than the quality of sleep. On the other hand,
the second class are accurate in measuring various vital signs
such as oxygen intake, airflow, etc, but are expensive and
intrusive with multiple body straps and tubes. (PDx requires
up to 10 minutes to set up.) The numerous sensors attached to
various body parts disturb the natural sleep of a patient during
monitoring (who had enough difficulties sleeping).

In our previous work [3], we proposed a non-intrusive
sleep monitoring system based on depth video coding and
analysis. Not relying on the lighting condition of a dark
sleeping room, we used a MS Kinect camera projecting
infrared light patterns to capture depth images of the sleep
patient. We then analyzed the recorded depth data to track the
patient’s chest and abdomen movements over time; detection
of abnormal breathing was then interpreted as episodes of
apnoea or hypopnoea. Unlike vibration-sensing wristbands,
our system can quantify the quality of one’s sleep by detecting
episodes of apnoea / hypopnoea during the night. Yet unlike
full monitoring devices, our system is entirely non-contact,
and thus is completely non-intrusive to the patient’s sleep.

Leveraging on recent advances in graph signal processing
(GSP) [4], in this paper we propose two new additions to
further improve our sleep monitoring system. First, we perform
temporal denoising using a block motion vector smoothness

1http://www.fitbit.com/
2https//jawbone.com/up/
3http://alicepdx.respironics.eu



prior expressed in the graph-signal domain, so that unwanted
flickering can be removed. Second, we propose a graph-
based event detection scheme to detect apnoea / hypopnoea
accurately and robustly. Experimental results show first that
our graph-based denoising scheme outperforms an implemen-
tation of temporal median filter in terms of flicker removal
without over-smoothing. Second, we show that our graph-
based event classification scheme is noticeably more robust to
errors in training data than two conventional implementations
of support vector machine (SVM) [5].

The outline of the paper is as follows. We discuss related
works in Section II and overview our sleep monitoring system
in Section III. We discuss the two novelties in our system,
graph-based temporal denoising and sleep event detection, in
Section IV and V, respectively. Finally, we present experimen-
tal results and conclusion in Section VI and VII.

II. RELATED WORK

To the best of our knowledge, there are only two other
works [6], [7] that also used captured depth video for sleep
monitoring. [6] claimed that a Time-of-Flight (ToF) camera
was used to detect chest and abdomen movements for apnoea
detection, but there is no mention of what ToF camera was
used and how chest and abdomen movements were deduced
from collected depth measurements. There is also no perfor-
mance analysis of the proposal against ground truth data. This
renders a direct comparison with [6] impossible.

[7] described a sleep monitoring system using a Kinect
camera, where chest movements over time are tracked by
observing the nearest depth measurement of the patient to
a virtual camera directly above the patient. Our system [3]
is different from [7] in that we propose a more accurate
dual-ellipse model, so that individual chest and abdominal
movements can be tracked, as recommended in standard sleep
medicine [1], even if the patient is sleeping sideway.

New GSP tools [4] such as graph Fourier transform (GFT)
have been shown recently to be useful in applications such
as depth map coding [8] and spatial denoising [9]. In this
paper, we show how GFT can also be used for temporal
depth video denoising, which is more complex than the more
straight-forward spatial denoising case and involves the joint
optimization of motion vectors and noise-corrupted pixels in
the target frame, as described in Section IV. GSP tools have
been also used for data classification [10]. Though similar
in spirit to [10], our graph-based classification methodology,
described in Section V, is more intuitive and less complex—
each optimization instance is formulated as an unconstrained
quadratic programming problem, solvable in closed form.

III. SYSTEM OVERVIEW

We first overview our proposed sleep monitoring system
in [3], which we have set up at Bondi Junction Private Sleep
Laboratory in Sydney, Australia, to capture depth videos of pa-
tients with suspected sleep problems. The system is composed
of a first-generation MS Kinect depth capturing camera and a
Lenovo X220 laptop. As shown in Fig. 1, the camera is set

up at a higher elevation above and away from the head of the
patient lying down. Kinect captures depth image of resolution
640×480 at 30fps at 11-bit pixel precision. In [3], we proposed
an efficient H.264 implementation of Kinect-captured video,
where different 8 bits per pixel are extracted from 11 available
bits of different temporal frames for encoding. At decoder, the
uncoded 3 bits are recovered from neighboring frames using
a block motion search procedure. We will assume full 11 bits
per pixel are recovered at the decoder for further processing.
See [3] for details.

Fig. 1. Side view of sleep patient. Torso is divided into two cross sections,
each modeled by an ellipse.

We stress that, beyond automatic apnoea / hypopnoea de-
tection, recorded depth videos are useful as a visual inspection
tool of detected sleep events for doctors and an educational
tool for patients. The recorded video can also be used to detect
other sleep-related events beyond apnoea, such as irregular leg
movements, frequent turning / tossing, etc [1]. Thus, annoying
flickering removal in sleep video is important; we discuss our
graph-based approach in Section IV.

A. Dual Ellipse Model

We next discuss how apnoea or hypopnoea is detected given
a recorded depth video. There are three basic steps. First,
we back-project depth pixels from the captured camera view
to the 3D space and reproject them to a virtual viewpoint
image, where the virtual camera is located parallel to the
sleeping patient above his/her head, as shown in Fig. 1. This
back-projection / reprojection procedure requires intrinsic and
extrinsic camera parameters, which can be computed using
standard camera calibration procedures4 [11].

Next, given the computed coordinates (u, v, d)—i.e., pixel
location (u, v) with depth value d—in the head-on view, we
classify observations into two cross-sections that correspond
to the patient’s chest and abdomen using the depth values d.
It is recommended in standard sleep medicine [1] to track
chest and abdominal movements for detection of apnoea; in
central apnoea, there is a lack of respiratory effort and hence a
corresponding lack of chest and abdominal movements, while
in obstructive apnoea there can be very slight movements in
chest and abdomen but in opposite phase. Though we do not
distinguish between central and obstructive apnoea (central ap-
noea takes place only 0.4% of the time), we nonetheless follow
the medical recommendation and track chest and abdominal
movements separately.

4Camera calibration software can be downloaded here:
http://www.vision.caltech.edu/bouguetj/calib doc/htmls/ref.html



Fig. 2. Best-fitting ellipse from multiple depth observations of the cross
section. The closest ellipse point to each observation is perpendicular to the
tangent of ellipse at that point.

Finally, we estimate chest and abdomen movements by
fitting two ellipses to the available depth observations in the
two cross-sections of the patient’s body, as ilustrated in Fig. 2.
An ellipse in 2D space, with major and minor axes denoted
at u and v respectively, can be described as:(u

a

)2
+
(v
b

)2
= r2 (1)

a and b are called the major and minor radius, respectively.
For simplicity, we assume the center of the ellipse is at origin
(0, 0). r is determined based on the patient’s waist size.

Assuming a Gaussian noise model for the observed depth
data, we formulated a maximum likelihood (ML) problem to
find two best fitting ellipses with parameters (a, b) per frame.
In [3], computed variances of a and b in a window of frames
for the two cross-sections were used as training data to design
an SVM to detect episodes of hypopnoea. In this paper, we will
instead use computed vairances of a and b as input to perform
graph-based classification, to be discussed in Section V.

IV. TEMPORAL DEPTH VIDEO DENOISING

We now discuss how we perform temporal denoising using
a graph-signal formulation. We first discuss how we can
formulate an optimization problem for the motion field in a
frame t given previous frame t− 1 and a motion smoothness
prior. Then we discuss how the problem can be modified
if frame t is corrupted by noise, and present an efficient
algorithm to solve it.

A. Finding Motion Field

For simplicity, we assume first that neither target frame t
nor previous frame t− 1 is corrupted by noise. The goal is to
find an accurate motion field for all K × K pixel blocks in
frame t. Let the ith K ×K block in frame t, with upper-left
pixel at pi, be denoted by bpi(t). Let the motion vector (MV)
of the ith block be vi = (xi, yi); the MV field of all N blocks
in the frame is expressed in vector form as v = [v1, . . . ,vN ].

We first assume a spatial motion smoothness prior: a block’s
MV will be similar to MVs of neighboring blocks if they
belong to the same object; i.e., the MV field is piecewise
smooth (PWS). One way of expressing piecewise smoothness
is through a graph [8]. We first construct a 4-connected graph,
where each node i represents a block bpi(t), and the node is

connected to nodes that correspond to neighboring blocks of
bpi(t). We compute the weight wi,j of an edge connecting
two nodes (blocks) i and j as follows:

wi,j = exp

{
−‖vi − vj‖22

σ2
v

}
(2)

where σv is a chosen parameter. Given the constructed graph,
we can define the degree and adjacency matrices, D and A,
correspondingly [4]. The graph Laplacian is defined as L =
D−A. If the MV field is PWS, we say the graph variation
term, ‖vTLv‖22, is small:

v(x)T Lv(x) =
∑
i,j

wi,j (vi(x)− vj(x))
2 (3)

Note that because vi is a multi-valued sample (contains x- and
y-coordinates of the MV), ‖vTLv‖22 means computing vTLv
for the x- and y-coordinates v(x) and v(y) of v separately,
then computing the resulting vector magnitude square.

We can now define an optimal MV field v as one that finds
good block matches in previous frame t− 1 and is smooth:

min
v

∑
i

‖bpi+vi(t− 1)− bpi(t)‖22 + λ ‖vTLv‖22 (4)

where λ is a chosen weighting parameter that trades off the
motion estimation term (first term) and the MV smoothness
term (second term).

Fig. 3. Example graph construction given four blocks in target frame t and
four corresponding predictor blocks in previous frame t− 1.

B. Temporal Denoising
We now remove the assumption that target frame t is noise-

less, meaning we have to find MV field v and denoise blocks
bpi

(t) at the same time. Beyond spatial motion smoothness
prior, we now assume further a temporal motion smoothness
prior; i.e., if ith block at position pi of frame t has MV vi,
then the predictor block at position pi + vi of frame t − 1
will have a MV upi+vi

that is similar to vi. We can again
express this notion of smoothness via a graph. In particular,
in additional to the graph constructed for MV vi in frame
t, we create additional nodes to represent predictor blocks in
frame t − 1. We draw an edge between node representing
block bpi

(t) in frame t and node representing corresponding
predictor block bpi+vi

(t−1) with weight computed using (2).
In addition, we draw an edge between two predictor blocks

at locations p and q in frame t − 1, if ‖p − q‖22 ≤ δ, with
weight:

wi,j = exp

{
−‖up − vq‖22

σ2
v

}
exp

{
−‖p− q‖22

σ2
g

}
(5)



where σg is a chosen parameter. This weight assignment is
similar to one done in bilateral filtering [12]. See Fig. 3
for an example graph constructed from four blocks in the
target frame t and four corresponding predictor blocks in the
previous frame t− 1.

Without loss of generality, we define the combined motion
vector ζ to be a concatenation of MV u of predictor blocks of
frame t− 1 and MV v of target blocks of frame t, i.e. ζT =
[uT vT ]. We can also define degree and adjacency matrices D
and A as done previously for the larger graph. The resulting
Laplacian L is again L = D−A.

With these definitions, we can define the new objective to
find MV v and denoised blocks bpi(t) as a composition of
three terms: i) motion estimation term, ii) MV smoothness
term, and iii) fidelity term with respect to observed noisy
blocks dopi

(t), i.e.,

min
v,b(t)

{ ∑
i‖bpi+vi(t− 1)− bpi(t)‖22 + λ ‖ζTLζ‖22
+ µ

∑
i‖bpi

(t)− bopi
(t)‖22

}
(6)

where µ is weighting parameter for the fidelity term. We
discuss how we solve (6) next.

C. Optimization Algorithm

(6) is difficult to solve as it involves a large set of op-
timization variables. Our strategy is to alternately solve one
set of variables at a time while keeping the other set fixed,
until convergence. Suppose first we initialize MV v using
conventional ME, then fix v and solve for optimal blocks
bpi

(t). The MV smoothness term is not affected by the
selection of bpi

(t), and so (6) reduces to:

min
b(t)

∑
i

‖bpi+vi
(t− 1)− bpi

(t)‖22 + µ
∑
i

‖bpi
(t)− bopi

(t)‖22

(7)
Let bpi

(t) be a convex combination of bpi−vi
(t − 1) and

bopi
(t), i.e.,

bpi
(t) = ε bpi−vi

(t− 1) + (1− ε) bopi
(t) (8)

By substituting (8) into (7), taking the derivative with respect
to ε and setting the equation to zero, one can see that the
optimal ε∗ is:

ε∗ =
1

1 + µ
(9)

This agrees with intuition; if µ = 0, then ε∗ = 1 and bpi
(t) is

set to predictor block bpi−vi(t− 1), and if µ = 1, then ε∗ =
1/2, and bpi(t) is the average of predictor block bpi−vi(t−1)
and observed noisy block bopi

(t).
Now we fix blocks bpi

(t) and solve for the optimal MV v.
The fidelity term is not affected by MV v, so (6) reduces to:

min
v

∑
i

‖bpi+vi(t− 1)− bpi(t)‖22 + λ ‖ζTLζ‖22 (10)

(10) is still difficult to solve, as each change in MV vi
induces a change in corresponding predictor block bpi+vi

(t−
1), resulting in a different predictor MV upi+vi

and a modified
Laplacian L. Our strategy then is to first find the optimal MV

v∗ that minimizes the smoothness term, then try to install v∗
i

one-by-one into (10) to see if the objective is reduced.
Given ζ is a concatenation of predictor MV u and target

MV v, we can rewrite the smoothness term as:[
u v

]T︸ ︷︷ ︸
ζT

[
Luu Luv

Lvu Lvv

]
︸ ︷︷ ︸

L

[
u
v

]
︸ ︷︷ ︸

ζ

= uTLuuu+ uTLuvv + vTLvuu+ vTLvvv (11)

The first term is a constant and not influenced by v. Thus
to find v∗ that minimizes the smoothness term, we write:

min
v

vTLvvv + 2uTLuvv (12)

This is an unconstrained quadratic programming problem, with
closed form solution [13]:

v∗ = L#
vv

(
−uTLuv

)T
(13)

where L#
vv is the pseudo-inverse of Lvv.

Because v∗ only minimizes the second term in objective
(10), we perform the following greedy procedure using v∗

to reduce the overall objective function value: we iteratively
try to install a “beneficial” component of v∗ into the current
vector v—one that decreases the objective (10). We stop when
no more beneficial component in v∗ exists.

Pixels in frame t, b(t), and MV v are alternately optimized
using the two procedures described above, until the solution
converges. Experimentation shows this only requires a few
iterations in practice.

V. SLEEP EVENT DETECTION

We now discuss how given the computed variances for the
ellipse major and minor radius a and b, we can formulate
a graph-based classification problem to identify if a new
data sample is normal or abnormal breathing (for simplicity,
we classify hypoponoea and apnoea into the same abnormal
breathing category). First, we split the depth video sequence
into 10-second windows. This size was chosen as a good trade-
off between complexity and performance, since the respiratory
rate of both normal breathing and overly-shallow-breathing
(hypopnoea) are approximately 3 breaths per 10 seconds.
For each 10-second window, we compute the variances of
all ellipse parameters, i.e. (â1, b̂1) and (â2, b̂2), for the two
ellipses corresponding to the chest and abdomen cross-sections
of the patient as discussed in Section III-A. As training data,
we assume the availability of a length-M sample vector yo

with ground truth classification—obtained using more intru-
sive sleep monitoring equipments, for example. Specifically,
for each four-dimensional sample i, yoi = [âi1, b̂

i
1, â

i
2, b̂

i
2], there

is a classification C(yoi ) of yoi to {1,−1}, indicating the event
of normal or abnormal breathing, respectively.

Let z be a new four-dimensional sample with no classfica-
tion yet. Further, let ξ = [(yo)T z]T be a concatenation of
classified sample vector yo and unclassified sample z. We can
treat ξ as a graph-signal: we draw an edge between any two



Fig. 4. Example graph construction given 8 classified training samples (4
normal, 4 abnormal). Linear SVM classifier is also shown.

samples (nodes) yoi and yoj (resulting in a complete graph),
where the edge weight wi,j is:

wi,j = exp

{
−

4∑
k=1

dk‖xik − x
j
k‖22

σ2
c

}
(14)

where xik represents the four parameters âi1, b̂i1, âi2 and b̂i2
for k = 1, . . . , 4 respectively, and dk is a parameter weight.
See Fig. 4 for an example graph constructed from eight two-
dimensional samples. Edge weights connecting normal and an
abnormal breathing samples will typically be small.

Given the defined edge weights, we can compute the ad-
jacent and degree matrices, A and D, as defined earlier, and
subsequently the graph Laplacian L as well. Our objective is to
find classification of unclassified sample z such that the graph
variation term is minimized (i.e., the graph-signal is smooth):

min
z

ξT L ξ (15)

Note that unlike ζ in (11), ξ is a vector of single-value samples
(each with value either 1 or -1), and so taking the l2-norm of
the graph variation term is not necessary. The intuition of (15)
is that classified samples in yo with ellipse parameters close to
unclassified sample z will have large edge weights wi,j , and
so a smooth graph-signal prior will ensure z to have similar
classification as these similar samples in yo.

Like ζ in (11), because ξ is a concatenation of known and
unknown signal samples yo and z, we can similarly derive the
optimal classification of z as:

z∗ = L−1
zz

(
−(yo)TLyoz

)T
(16)

where Lzz and Lyoz are the bottom-right and top-right quad-
rant of the Laplacian matrix respectively, as written in (11).
In this case, Lzz is simply a scalar since z is a single sample.
Because the classifier is restricted to be in the set {1,−1},
in practice we set z to be 1 if z∗ > 0, and −1 otherwise.
The magnitude |z∗| can be interpreted as the confidence in
the estimated classification.

A. Alternative Graph Formulation for Noisy Samples

If the training data samples yo are noisy, we can add an
additional fidelity term and optimize the entire sample vector
ξ instead:

min
ξ
‖y − yo‖22 + γ ξT L ξ (17)

where γ is a parameter to trade off data fidelity term and the
graph-signal smoothness prior; γ should set large if the data
noise level is large. (17) is still an unconstrained quadratic
programming problem, thus the optimal solution can be solved
in closed form.

VI. EXPERIMENTATION

We now demonstrate the effectiveness of our proposed
temporal denoising scheme for flicker removal and event
detection scheme for apnoea / hypopnoea detection.

A. Experimental Setup

We captured depth videos of six patients diagnosed with
obstructive sleep apnoea (OSA) [1], at Bondi Junction Private
Sleep Laboratory in Sydney, Australia during October and
November 2013. Besides our depth video capturing, each
patient was connected to a professional-grade sleep monitoring
system (expensive and intrusive) that measured various vital
signs. This provided ground truth data for validation of our
event detection results.

B. Experimental Results

First, we evaluate the performance of our proposed graph-
based temporal denoising scheme in terms of flickering re-
duction. For comparison, we used a scheme that performs
bilateral filtering [12], a non-iterative, local method on each
frame, where each pixel is replaced by a weighted average of
intensity from neighboring pixels. In particular, each weight
is determined by a combination of both spatial-domain and
intensity-domain Gaussian distributions. We also implemented
an algorithm that performs motion estimation and temporal
median denoising (TMF) separately similar to existing works
such as [14].

(a) energy vs. frame number (b) close-up of (a)

Fig. 5. Energy of the difference between two consecutive frames, where
+i/-i denotes the number of future and previous depth images used for TMF.

Figure 5 shows the energy of the difference between two
consecutive frames for our proposed scheme and the compar-
ison scheme for the first 10 frames of an acquired sleep video
sequence. We observe that our proposed scheme can more
effectively reduce frame-difference energy, and thus flickering
effects, over the comparison schemes, even if fewer number
of frames were used in the processing window.

Figure 6 shows a sample depth frame before and after our
proposed graph-based denoising. We observe that while our
scheme reduces the flickering effect, it does not over-smooth
and preserves sharp edges well.



(a) before denoising (b) after denoising

Fig. 6. Two consecutive frames before and after denoising.

For sleep event detection, we compared our two proposed
graph-based classification schemes, graph smoothness (GS) in
(15) and robust graph smoothness (RGS) in (17) with two
conventional implementations of SVM: linear kernel (SVM-l)
and radial basis function kernel (SVM-rbf) available in
Matlab, and used in our prior work [3]. The training dataset
had 50 or 30 quadruples of ellipse parameters with ground-
truth classification to normal / abnormal breathing. Additional
50 quadruples were used as test dataset.

We first tested different schemes using the original training
dataset. As shown in Fig. 7, all four schemes achieved perfect
classification for 50 training quadruples, while for 30 training
quadruples, SVM-l had a 4% error rate.

Next we examined the robustness of the four methods.
We added noise to the training dataset using the following
procedure. Using a uniform distribution, we randomly mis-
classified a subset of training data, and then ran the clas-
sification schemes on the noise-corrupted training set. For
a given number of corrupted quadruples in the training set,
we repeated the mis-classification procedure 2500 times and
then computed the average. We observe that GS and RGS are
more robust under noise in the training set than two SVM
methods, and RGS is more noise-robust than GS, as expected.
We conjecture that the reason why graph-based event detection
is more robust than SVM in training data error is because a
full graph considers correlation between every pair of data
points, while an SVM only maximizes the distance between
the classifier and the boundary data points of the two events.

(a) 50 training samples (b) 30 training samples

Fig. 7. Sleep Event Classification Results

VII. CONCLUSION

Leveraging on recent advances in graph signal processing,
we propose two additions to improve our previously proposed
sleep monitoring system based on depth video coding and
analysis. First, towards the goal of temporal denoising of
depth images, we express spatial and temporal smoothness
of block motion vectors in graph-signal domain, and propose
an efficient algorithm to denoise blocks and find motion
vectors at the same time. Second, to classify new data sample
into normal or abnormal breathing based on (possibly noisy)
training data, we construct a graph with appropriate weights
reflecting data sample similarities and minimize a graph vari-
ation term. Experimental results show that both graph-based
temporal denoising and classification can outperform existing
techniques in existing denoising and classification literature
respectively.
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