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ABSTRACT

Images are often decoded with noise at receiver due to captu

ing errors and/or signal quantization during compresstamther, it
is often necessary to display a decoded image at a highdutieso
than the captured one, given available high-resolution)(&iBplay
or a need to zoom-in for detailed examination. In this paper,
address the problems of image denoising and super-resol(8R)
jointly in one unified graph-based framework, focusing onpa-s
cial class of signals called generalized piecewise smd@f\\(S)

images. GPWS images are composed mostly of smooth regions

connected by transition regions, and represent an imgostan
class of images, including cartoon, sub-regions of vidamfrs with
captions, graphics images in video games, etc. Like ouriguev

work on piecewise smooth (PWS) images, GPWS images also im-

ply simple-enough graph representations in the pixel domsd
that suitable graph-based filtering techniques can belyeauiplied.
Specifically, leveraging on previous work on graph speectnallysis,
for a given pixel block in low-resolution (LR) we first use thec-
ond eigenvector of a computed graph Laplacian matrix totifjen
a hard boundary, and then use the third eigenvector to fglemto
piecewise smooth regions and a transition region that atgsthem.

are usually not capable of removing the entire noise comptoine
f corrupted low-resolution (LR) image (without destroyiegture
details in the original image), and so a subsequent SR Bazes
mistakenly amplify the leftover noise, resulting in pooswal qual-
ity in the reconstructed high-resolution (HR) image.

(b) GPWS image

(a) PWS image

Fig. 1. Examples of piecewise smooth (PWS) and generalized piseew
smooth (GPWS) images.

In this paper, we propose to address the problems of image de-
noising and SR jointly for a special class of images wgdner-
alized piecewise smoofttGPWS) characteristics. In our previous

The LR hard boundary is then super-resolved into HR via agproc work [1, 2], we have studied the compression and denoisipipce-

dure based on local self-similarity, while graph weightsiof LR

transition region is mapped to those of the HR transitionoregia

polynomial fitting. Using the computed HR boundary and wsgih

the transition region, we construct a suitable HR graphespond-
ing to the LR counterpart, and perform joint denoising / Siagis
a graph smoothness prior. Experimental results show thaprad

posed algorithm outperforms two representative sepacsnieising
/ SR schemes in both subjective and objective quality.

wise smooth (PWS) images such as depth maps in a graph fermula
tion, where a PWS image is composed of spatially smooth megio
separated by sharp boundaries. GPWS images are similar & PW
images but with a non-sharp transition region between twoosm
regions. GPWS images can be found commonly in mass media,
cartoon images, logo images, sub-regions of video framéssavier-

laid language captions, visual saliency maps [3], grapihieges in
video gamey etc. See Fig. 1 for examples of PWS and GPWS im-

Index Terms— Graph signal processing, image denoising, 29€ patches.

super-resolution, piecewise-smooth signals

1. INTRODUCTION

Despite continuing progress in camera and network teclyreso
images are still often decoded at a user corrupted with ndise
to either errors in the capturing process, or lossy comjmestem-
ming from storage / bandwidth limitations. Further, deabaeages
are often expected to be super-resolved into higher résn|wither
for now popular ultra high-definition displays.¢, 4k TV), or for
zoom-in operations to examine details of the image. Whigttob-
lems of image denoising and super-resolution (SR) can bel&gn
independently in separate stages, this divide-and-corapgoach
is in general sub-optimal. The reason is that denoisingrikgos

This work is supported in part by Hong Kong Research Grantn€ou
cil GRF, Innovation and Technology Fund, and the State Kelyokatory
on Advanced Displays and Optoelectronics Technologiesj€Br No: ITC-
PSKL12EGO02).

Leveraging on recent advances graph signal processing
(GSP) [4], we propose to jointly solve the GPWS image denois-
ing and SR problems in one unified graph-theoretic framework
The key observation is that a GPWS image implies a simplexgmo
graph representation in the pixel domain—where an edgesmbimg
two vertices contains a weight that reflects the intensitfedince
between two adjacent pixels—so that graph-based filterzog-t
niques [5] can be readily applied. The graph representaifon
GPWS pixel patch can be derived naturally via segmentatitm i
smooth and transition regions via spectral clustering [Bpecifi-
cally, for a given LR pixel patch, we first use the second eigetor
of a computed graph Laplacian matrix to identiffrard boundary
(which defines the shape of the transition region), and tisentloe
third eigenvector to identifypordersbetween smooth and transition

lvideo games played by experts are broadcasted live as cesgatgideo
to a mass audience in South Korea. One usage of our propagmtttah is
to enhance image quality of decoded game video in real-time.



regions. The LR hard boundary is then super-resolved intovtdR
a procedure based on local self-similarity [7], while grapéights
of the LR transition region is mapped to those of the HR titéonsi
region via polynomial fitting. Using the computed HR boundand
weights in the transition region, we construct a suitable ¢t&h
corresponding to the LR counterpart, and perform joint d&ng /
SR using a graph smoothness prior. Experimental results et
our proposed algorithm outperforms two representativersdye
denoising / SR schemes in both subjective and objectivetgual

The outline of the paper is as follows. We first discuss relate
work in Section 2. We then review GSP tools in Section 3 an
overview our proposed joint denoising / SR algorithm in &ecd.
Section 5 describes in detail our proposed problem forrmurand
algorithm. Experimentation and conclusion are presemefeic-
tion 6 and 7, respectively.

2. RELATED WORK

There are extensive research on image denoising and SRhébut t

two problems are typically studied independently. Instg&d 9]
performed denoising and color demosaicking (a special cBSR)
under a unified framework. [10] proposed to jointly train taic-
tionaries for the LR and HR image patches and enforce siityilaf
sparse representations between them. The computatiomgleo
ity of dictionary training, however, is a hurdle for reafré imple-
mentation. [11] modeled denoising and SR under the samarline
minimum mean square-error estimation (LMMSE) framewor&ge
timate both the noiseless and missing samples from the aoidy
LR image. Unlike [11], our joint denoising / SR algorithm éoips
the GPWS characteristics and thus is more computationesftic
Leveraging on spectral graph theory [12], GSP is the study o
signals on structured data kernels described by graphS8[4GISP
can also be applied to signals on regular kernels, such asageion
a 2D grid, where the signal structure is embedded into thaitlefi
of the graph before GSP tools are applied to the signal. Iprwi-
ous work [1, 2], we studied the compression and denoising/d&P

images in the graph domain. Our current work on GPWS images ca

be interpreted as an extension of our previous work, wherBW&
signal is a generalization of a PWS signal.

3. SPECTRAL GRAPH THEORY

Spectral graph theory [12] studies the properties of a giajpérms

of the characteristic polynomial, eigenvalues and eigetiove of
matrices associated with the graph, such as adjacency tadiap
matrices. A weighted grapg = {V, &, W} consists of a finite
set of vertices) with cardinality|[V| = N, a set of edgeg§ con-
necting vertices, and a weighted adjacency mai&x W is a real

N x N matrix whereW; ; is the weight assigned to the edge con-
necting vertices andj. We consider here only undirected graphs
which correspond to symmetric weighted adjacency matrices
Wi, = Wji. We also assume that the weights are non-negativ
i.e., Wi_’j > 0.

The unnormalized combinatorial graph Laplacian is defired a
L := D — W, whereD is thedegree matrix-a diagonal matrix
where theith diagonal element is the sum of all elements inhe
row OfW, i.e., DZL = Z;V:l Wi_’j.

Since the Laplacian matrix is a real symmetric matrix, it &dia
set of real eigenvalueg\; };—1 ..., v With a complete set of orthonor-
mal eigenvector§; }i—=1,... ., i.€, L1y = Npy, forl = 1,..., N.
Note that zero appears as an eigenvalue with multiplicibaétp the
number of connected components in the graph [12].

€

3.1. Spectral Clustering

Clustering, identification of sub-groups of similar datasheen
widely used for exploratory data analysis. In particulgecral
clustering [6] has emerged as one of the most popular modiesh ¢
tering techniques. In general, spectral clustering deptbe firstk
eigenvector ¢ }i=1,..., of the Laplacian matrix for the construc-
tion of k clusters in the data. There exist a family of spectral cluste
ing algorithms, such as the well-known Normalized Cuts [14]

In this work, we use the second eigenvecforto identify the
ard boundary in a pixel patch (shape of transition regiom) the
hird eigenvector); to identify the borders between smooth / transi-

tion regions. An example is illustrated in Fig. 2.

(a) image patch

(b) 2

() s

Fig. 2. An example of thénard boundaryandbordersof smooth and transi-
tion regions in a GPWS signal: (a) GPWS image patch; (b) thesponding
second eigenvector of the graph Laplacian, using which #érd houndary
can be identified; (c) the corresponding third eigenveaisimg which the
borders of the smooth / transition regions can be identified.

3.2. The Smoothness Interpretation of Graph Signals

f'I'he graph Laplacian can be used to describe the total \amiafithe
signal with respect to the grapie., for any signalkk € RY residing
on the vertices of the graph representedXhyve can write [6]

LN
x'Lx = 3 Z z:‘/V”(gﬂZ —z;)?

i=1 j=1

1)

xT £x is small whenx has similar values at each pair of vertiges
andj connected by an edge, or when the weight; is small for an
edge connecting andj with dissimilar values. Hence signal is
smooth with respect to a graph if the graph weights well cagptie
underlying structure of the signal

4. SYSTEM OVERVIEW

Given GPWS images are composed of mostly smooth regions con-
nected by transition regions (see Fig. 1 for an example)jadoirde-
noising / SR system is based on the observation that the iigt®
graph structure for a GPWS image patch is relatively simptecan

be derived easily from observed LR image pixels. After therap
priate graph is computed for the target HR patch (one cooratipg

to the observed LR patch), simple graph filtering operatizars be
performed for joint denoising / SR to reconstruct the HR aign

Noisy and LR _|Construct HRGraph| ~ Graph | E:Qt:;ed
GPWS Image |LR Graph Regularization GPWS Image

Boundaries
Fig. 3. Framework of our proposed joint denoising / SR of GPWS image

Specifically, given an input noisy and LR GPWS image, we di-
vide itinto non-overlapping patches of sizéV x /N (e.g, VN =



8) and super-resolve each patch tda/N x M+/N HR patch for

5.1.2. Robust Weight Estimation in the LR Transition Region

an up-sampling factah/. As shown in Fig. 3, for each LR patch we aying identified the LR hard boundary and borders betweerotm

perform the following three steps to reconstruct the caoasing
HR patch:

/ transition regions, we compute weights within the bor@éthe LR
transition region by an averaging kernel along the oriémaf the

1. Construct a graph for the LR patch, and identify via sggctr hard boundary for robust weight estimation.

clustering théhard boundanand thebordersbetween smooth

Inspired by the concept dbteering Kerneln [15], the aver-

and transition regions to compute appropriate graph weight aging kernel averages pixels along the orientation of theatied
(See Fig. 2 for examples of hard boundary and smooth / trankhard boundary to effect denoising strongly along the hanghbe
sition region borders.) If the LR patch is detected by sgéctr ary. Weights in the transition region are then robustly corag as
clustering to be entirely smooth, then we construct a graphn (2). Averaging over multiple pixel values along the otagion of

with all weightsl.

the hard boundary results in robust weight estimation, ayhieserv-

. Given the constructed LR graph, construct a HR graph foi"d details perpendicular to the hard boundary.
the HR latent signal, where we construct the HR hard bound-
ary from the LR one via local self-examples as done in [7]

Note that while [15] uses singular value decomposition far t

estimation of the dominant orientation for denoising, viahie com-

and derive the HR transition region from the LR counterpart Putational expensive, we use the orientation of the ideuifiard
For entirely smooth patches, we simply construct a HR graptPoundary directly, which is simple yet robust.

where all weights aré accordingly.

graph constructed in the previous step.

5. PROBLEM FORMULATION

The key to our proposed joint denoising / SR of GPWS imagd®is t
derivation of an appropriate graph representation for dtent HR
signal from the observed LR counterpart. A subsequent dgetinn
regularized by a smoothness prior with respect to the coctstd HR
graph can then be readily performed to acquire the recasistiu
signal. Hence, we first elaborate on the two-step procedutieeo
derivation of the HR graph for each image patch, includirgdbn-
struction of the LR graph in Subsection 5.1 and the constmiaif

. Formulate the joint denoising / SR as an optimization prob
lem, with a smoothness prior for the HR signal using the HR

5.2. Construction of the HR Graph from the LR Graph

Given the constructed LR graph, we now derive the correspgnd
HR graph. We first super-resolve the hard boundary, whictatdis
the shape of the transition region. Then we derive the HRdysride-
tween the smooth / transition regions and estimate weighiteiHR
transition region. Weights within the HR borders of smoabions
are assigned.

5.2.1. Estimation of the HR Hard Boundary

Given the identified LR hard boundary, we super-resolve & R
boundary via local self-examples [7]. This technique eitplo-
cal scale invariance in natural images upon small scaliotpfs,
which holds for various image singularities such as stitzagld cor-
ner boundaries. The algorithm is simple yet efficient andipces

the HR graph from the LR graph in Subsection 5.2. Then weearriv high-quality HR boundaries.

at the problem formulation using the derived HR graph.

5.1. Construction of the LR Graph

For the construction of the LR graph, we first identify the char
boundary and borders between smooth / transition regi@aspec-
tral clustering. Then we compute edge weights in the treomsit
regions using an averaging kernel along the orientatioh®iden-
tified hard boundary, resulting in robust weight estimatididge
weights within the borders of smooth regions are simplygaesi
the valuel.

5.1.1. Ildentification of LR Hard Boundary & Borders

In order to employ spectral clustering for the identificatiaf the
hard boundary and borders between smooth / transitionnsgiee
first construct a four-connectivity graph for each obseviB@dmage
patch. The edge weight/; ; between adjacent pixelsand j is
estimated by their intensity similarity:

2
- i — v
Wij= exp{%},

wherey; andy; are the intensities of pixglandj. 0., controls the
sensitivity of the similarity measure to the noise and theyesof the
intensity difference.

Second, we compute the graph Laplacian mattixfrom the
edge weights, and identify the hard boundary and bordergdeet
smooth / transition regions using the second and third e&sars
of L, respectively, as described in Sec. 3. The segmentation
smooth and transition regions is critical for the subsetjgdenois-
ing and SR, because it enables the preservation of imagprefsa
during joint denoising / SR, as will be discussed later.

@)

5.2.2. Estimation of the HR Transition Region

We derive the HR borders between the smooth / transitioronsgi
from the LR transition region and the super-resolved HR barchd-
ary. We first compute thevidth of the HR transition region. Assum-
ing a Gaussian filtering degradation process, the correfgrme be-
tween the width of the LR transition regieh and that of the HR
transition regioni;, takes the form

dn = Md; — 6a(M), 3)
wheredq (M) is a function of M describing the degradation of the
low-pass filtering. For examplé, (M) = 2 whenM = 2 with a
Gaussian filter of siz8 x 3. This ensures that the width of the HR
transition region is not simply/ times the width of the LR transition
region, which otherwise will result in a blurred image.

We then derive the HR borders between the smooth / transi-
tion regions from the width of the HR transition region cortgul
from (3) and the HR hard boundary. Further, we estimate wigigh
in the HR transition region via polynomial fitting from weitghin
the corresponding LR transition region. In particularuasing edge
weights perpendicular to the orientation of the HR hard lolauy
follow the same varying trend in LR / HR transition regiong fivst
fit edge weights in the LR transition region to a second-opisy-
nomial, and then compute weights in the HR transition redign
polynomial fitting within the borders of the HR transitiorgien.

|ntg.3. Problem Formulation

Having constructed the HR graph, we compute its correspgndi
graph Laplacian matrixC, and define the smoothness prior of the



latent HR image patcla € RM*Y as

Table 1. Performance Comparison in SSIM

P(z) = 2z’ Lz, 4) o
Image Method 10 15 20 25
which describes the total variation afvith respect to the HR graph ] BE+NEDI 082111 0.7433] 0.6720] 0.5792
as discussed in Sec. 3. English | yLm+NEDI | 0.8311| 0.7800| 0.7726 | 0.6698
Further, in order to measure the reconstruction error, \seras Proposed | 0.8855| 0.8641| 0.8356| 0.8117
the HR image patch is the Gaussian-low-pass-filtered anchdow ) BE+NEDI 071211 0.6610| 0.5821 | 05253
sampled version of the LR patch. The joint denoising / SR lerab Chinese NLM+NEDI | 0.7674 | 0.7505| 0.6747| 0.6525
is then modelled as Proposed | 0.9069 | 0.8850 | 0.8539 | 0.8280
y=DHz+e, ®) HKUST | BFFNEDI [ 0.9707 [ 0.9456 | 0.8784 0.7894
wherey € RY is the noise-corrupted and LR observation vector, NLM+NEDI | 0.9786 | 0.9572| 0.9424 | 0.9245
H is a Gaussian low-pass filtering operatbr,is a down-sampling Proposed | 0.9791| 0.9677| 0.9507 | 0.9321
matrix, ande is independent and identically distributed (iid) additive Teddy BF+NEDI | 0.8498 | 0.6636| 0.5582| 0.4018
white Gaussian noise (AWGR) NLM+NEDI | 0.9444 | 0.9225| 0.9066 | 0.8974
We then formulate the joint denoising / SR problem as an opti Proposed | 0.9583| 0.9339| 0.9244 | 0.9046
mization problem regularized by the smoothness prior, vkakes
the form transition regions via spectral clustering, whileBR+NEDI image
min |DHz —y||5+ Xz" Lz (6) structures are increasingly hard to preserve in the demnpisiep

] ) o o prior to SR. Further, unlikeBF+NEDI , there remains very little
struction error, and the second term is the graph smootipmess A

is a weighting parameter for the trade-off between the rsiroation
error and signal smoothness. This optimization is an uricained
quadratic programming problem and can thus be efficientiyeso

r2-

6. EXPERIMENTATION
6.1. Experimental Setup
We evaluate our proposed joint denoising / SR scheme using tw
caption imageg£nglish and Chinese one logo imageHKUST and ———
one depth maf@eddy (which is piecewise smooth, a special case (a) BF+NEDI (b) BF+NEDI (c) BF+NEDI
of GPWS images). AWGN is added to these images, with the stan-

dard deviatiorr ranging from 10 to 25. We compare our scheme
against two representative separable denoising / SR apmsa
one performs denoising via Bilateral Filtering (BF) [16]sfimand
then SR via New Edge-Directed Interpolation (NEDI) [17]l(ed
BF+NEDI for short), and the other performs Non-Local Means De-
noising (NLM) [18] first and then SR via NEDI (called_M+NEDI

for short). The parameterin (6) is empirically set t@.1, andM is
assigne for evaluation.

. _am—
(d) Proposed (e) Proposed (f) Proposed

6.2. Experimental Results Fig. 4. The denoised and super-resolved images of (&(djlishat noise
We first quantitatively measure the denoising / SR resulisgus 'evel 20; (b)(e)Chineseat noise level 10; and (c)(f) a cropped partUST
the structural similarity (SSIM) index [19] to assess imagal-  2tnoise level 10.

ity. SSIM of the denoised and super-resolved images foewifit

schemes under various noise levels are listed in Table 1. é&e s

that our scheme outperformrBF+NEDI and NLM+NEDI at all 7. CONCLUSION

noise levels, W|th0.1917 gain over BF+NEDI and 0.0624 gain  |n this paper, we propose to perform joint denoising / SR fBVES
over NLMFNEDI in SSIM on average. Further, we see that thejmages in one unified graph-theoretic framework. The keyenlas
performance of our proposed scheme degrades slower thaoftha tion is that GPWS images imply simple-enough graph reptasen
BF+NEDI as the noise level increaseisg., our proposal is more  ions in the pixel domain, so that suitable graph-basedifilgetech-

robust to increasing noise levels. This is due to the rolulesttifi-  piques can be readily applied. The graph representatioedoh
cation of hard boundaries and borders between smooth ftteans gpws pixel patch is derived via spectral clustering thatresgs
regions at various noise levels. the patch into smooth and transition regions, resultingpénpreser-

Fig. 4 shows the subjective comparison of our scheme withjation of image structures. Graph weights in the smoottoregare
BF+NEDI . The denoised and super-resolved HR images by ougimply assigned 1, and weights in the transition region abeistly
scheme are all sharper than those produce®®yNEDI . This is  computed using an average kernel oriented parallel to trectbel
due to the robust identification of hard boundaries betwemoth /  pharg boundary. Our formulation leads to an unconstrainedigic

2Though we assume a simple iid noise model in this paper, aosed programming prOb_lem' which can be very efficiently solvechev
graph-based joint denoising / SR framework can be exteraedlude more tested on GPWS images corrupted by AWGN, we show that our
complex noise model. We leave this investigation for futnoek. algorithm outperforms two representative separable derpi SR

Shitp://vision.middlebury.edu/stereo/data/scenes2003 schemes in both subjective and objective quality.
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